// See the file "COPYING" in the main distribution directory for copyright. #pragma once #include "IntrusivePtr.h" #include "Type.h" #include "Timer.h" #include "Notifier.h" #include "net_util.h" #include #include #include #include #include // for u_char using std::vector; using std::string; // We have four different port name spaces: TCP, UDP, ICMP, and UNKNOWN. // We distinguish between them based on the bits specified in the *_PORT_MASK // entries specified below. #define NUM_PORT_SPACES 4 #define PORT_SPACE_MASK 0x30000 #define TCP_PORT_MASK 0x10000 #define UDP_PORT_MASK 0x20000 #define ICMP_PORT_MASK 0x30000 template class PDict; class IterCookie; class Val; class BroString; class BroFunc; class Func; class BroFile; class PrefixTable; class PortVal; class AddrVal; class SubNetVal; class IntervalVal; class PatternVal; class TableVal; class RecordVal; class ListVal; class StringVal; class EnumVal; class OpaqueVal; class IPAddr; class IPPrefix; class StateAccess; class VectorVal; class TableEntryVal; class RE_Matcher; union BroValUnion { // Used for bool, int, enum. bro_int_t int_val; // Used for count, counter, port. bro_uint_t uint_val; // Used for addr IPAddr* addr_val; // Used for subnet IPPrefix* subnet_val; // Used for double, time, interval. double double_val; BroString* string_val; Func* func_val; BroFile* file_val; RE_Matcher* re_val; PDict* table_val; val_list* val_list_val; vector* vector_val; BroValUnion() = default; constexpr BroValUnion(bro_int_t value) noexcept : int_val(value) {} constexpr BroValUnion(bro_uint_t value) noexcept : uint_val(value) {} constexpr BroValUnion(IPAddr* value) noexcept : addr_val(value) {} constexpr BroValUnion(IPPrefix* value) noexcept : subnet_val(value) {} constexpr BroValUnion(double value) noexcept : double_val(value) {} constexpr BroValUnion(BroString* value) noexcept : string_val(value) {} constexpr BroValUnion(Func* value) noexcept : func_val(value) {} constexpr BroValUnion(BroFile* value) noexcept : file_val(value) {} constexpr BroValUnion(RE_Matcher* value) noexcept : re_val(value) {} constexpr BroValUnion(PDict* value) noexcept : table_val(value) {} constexpr BroValUnion(val_list* value) noexcept : val_list_val(value) {} constexpr BroValUnion(vector *value) noexcept : vector_val(value) {} }; class Val : public BroObj { public: Val(double d, TypeTag t) : val(d), type(base_type(t).release()) { } explicit Val(Func* f); // Note, will unref 'f' when it's done, closing it unless // class has ref'd it. explicit Val(BroFile* f); // Extra arg to differentiate from protected version. Val(BroType* t, bool type_type) : type(new TypeType({NewRef{}, t})) { } Val() : val(bro_int_t(0)), type(base_type(TYPE_ERROR).release()) { } ~Val() override; Val* Ref() { ::Ref(this); return this; } IntrusivePtr Clone(); int IsZero() const; int IsOne() const; bro_int_t InternalInt() const; bro_uint_t InternalUnsigned() const; double InternalDouble() const; bro_int_t CoerceToInt() const; bro_uint_t CoerceToUnsigned() const; double CoerceToDouble() const; // Returns a new Val with the "size" of this Val. What constitutes // size depends on the Val's type. virtual IntrusivePtr SizeVal() const; // Bytes in total value object. virtual unsigned int MemoryAllocation() const; // Add this value to the given value (if appropriate). // Returns true if succcessful. is_first_init is true only if // this is the *first* initialization of the value, not // if it's a subsequent += initialization. virtual int AddTo(Val* v, int is_first_init) const; // Remove this value from the given value (if appropriate). virtual int RemoveFrom(Val* v) const; BroType* Type() { return type; } const BroType* Type() const { return type; } #define CONST_ACCESSOR(tag, ctype, accessor, name) \ const ctype name() const \ { \ CHECK_TAG(type->Tag(), tag, "Val::CONST_ACCESSOR", type_name) \ return val.accessor; \ } // Needed for g++ 4.3's pickiness. #define CONST_ACCESSOR2(tag, ctype, accessor, name) \ ctype name() const \ { \ CHECK_TAG(type->Tag(), tag, "Val::CONST_ACCESSOR", type_name) \ return val.accessor; \ } CONST_ACCESSOR2(TYPE_BOOL, bool, int_val, AsBool) CONST_ACCESSOR2(TYPE_INT, bro_int_t, int_val, AsInt) CONST_ACCESSOR2(TYPE_COUNT, bro_uint_t, uint_val, AsCount) CONST_ACCESSOR2(TYPE_COUNTER, bro_uint_t, uint_val, AsCounter) CONST_ACCESSOR2(TYPE_DOUBLE, double, double_val, AsDouble) CONST_ACCESSOR2(TYPE_TIME, double, double_val, AsTime) CONST_ACCESSOR2(TYPE_INTERVAL, double, double_val, AsInterval) CONST_ACCESSOR2(TYPE_ENUM, int, int_val, AsEnum) CONST_ACCESSOR(TYPE_STRING, BroString*, string_val, AsString) CONST_ACCESSOR(TYPE_FUNC, Func*, func_val, AsFunc) CONST_ACCESSOR(TYPE_TABLE, PDict*, table_val, AsTable) CONST_ACCESSOR(TYPE_RECORD, val_list*, val_list_val, AsRecord) CONST_ACCESSOR(TYPE_FILE, BroFile*, file_val, AsFile) CONST_ACCESSOR(TYPE_PATTERN, RE_Matcher*, re_val, AsPattern) CONST_ACCESSOR(TYPE_VECTOR, vector*, vector_val, AsVector) const IPPrefix& AsSubNet() const { CHECK_TAG(type->Tag(), TYPE_SUBNET, "Val::SubNet", type_name) return *val.subnet_val; } BroType* AsType() const { CHECK_TAG(type->Tag(), TYPE_TYPE, "Val::Type", type_name) return type; } const IPAddr& AsAddr() const { if ( type->Tag() != TYPE_ADDR ) BadTag("Val::AsAddr", type_name(type->Tag())); return *val.addr_val; } #define ACCESSOR(tag, ctype, accessor, name) \ ctype name() \ { \ CHECK_TAG(type->Tag(), tag, "Val::ACCESSOR", type_name) \ return val.accessor; \ } // Accessors for mutable values are called AsNonConst* and // are protected to avoid external state changes. // ACCESSOR(TYPE_STRING, BroString*, string_val, AsString) ACCESSOR(TYPE_FUNC, Func*, func_val, AsFunc) ACCESSOR(TYPE_FILE, BroFile*, file_val, AsFile) ACCESSOR(TYPE_PATTERN, RE_Matcher*, re_val, AsPattern) ACCESSOR(TYPE_VECTOR, vector*, vector_val, AsVector) const IPPrefix& AsSubNet() { CHECK_TAG(type->Tag(), TYPE_SUBNET, "Val::SubNet", type_name) return *val.subnet_val; } const IPAddr& AsAddr() { if ( type->Tag() != TYPE_ADDR ) BadTag("Val::AsAddr", type_name(type->Tag())); return *val.addr_val; } // Gives fast access to the bits of something that is one of // bool, int, count, or counter. bro_int_t ForceAsInt() const { return val.int_val; } bro_uint_t ForceAsUInt() const { return val.uint_val; } #define CONVERTER(tag, ctype, name) \ ctype name() \ { \ CHECK_TAG(type->Tag(), tag, "Val::CONVERTER", type_name) \ return (ctype)(this); \ } CONVERTER(TYPE_PATTERN, PatternVal*, AsPatternVal) CONVERTER(TYPE_PORT, PortVal*, AsPortVal) CONVERTER(TYPE_SUBNET, SubNetVal*, AsSubNetVal) CONVERTER(TYPE_ADDR, AddrVal*, AsAddrVal) CONVERTER(TYPE_TABLE, TableVal*, AsTableVal) CONVERTER(TYPE_RECORD, RecordVal*, AsRecordVal) CONVERTER(TYPE_LIST, ListVal*, AsListVal) CONVERTER(TYPE_STRING, StringVal*, AsStringVal) CONVERTER(TYPE_VECTOR, VectorVal*, AsVectorVal) CONVERTER(TYPE_ENUM, EnumVal*, AsEnumVal) CONVERTER(TYPE_OPAQUE, OpaqueVal*, AsOpaqueVal) #define CONST_CONVERTER(tag, ctype, name) \ const ctype name() const \ { \ CHECK_TAG(type->Tag(), tag, "Val::CONVERTER", type_name) \ return (const ctype)(this); \ } CONST_CONVERTER(TYPE_PATTERN, PatternVal*, AsPatternVal) CONST_CONVERTER(TYPE_PORT, PortVal*, AsPortVal) CONST_CONVERTER(TYPE_SUBNET, SubNetVal*, AsSubNetVal) CONST_CONVERTER(TYPE_ADDR, AddrVal*, AsAddrVal) CONST_CONVERTER(TYPE_TABLE, TableVal*, AsTableVal) CONST_CONVERTER(TYPE_RECORD, RecordVal*, AsRecordVal) CONST_CONVERTER(TYPE_LIST, ListVal*, AsListVal) CONST_CONVERTER(TYPE_STRING, StringVal*, AsStringVal) CONST_CONVERTER(TYPE_VECTOR, VectorVal*, AsVectorVal) CONST_CONVERTER(TYPE_OPAQUE, OpaqueVal*, AsOpaqueVal) void Describe(ODesc* d) const override; virtual void DescribeReST(ODesc* d) const; // To be overridden by mutable derived class to enable change // notification. virtual notifier::Modifiable* Modifiable() { return 0; } #ifdef DEBUG // For debugging, we keep a reference to the global ID to which a // value has been bound *last*. ID* GetID() const; void SetID(ID* id); #endif static bool WouldOverflow(const BroType* from_type, const BroType* to_type, const Val* val); IntrusivePtr GetRecordFields(); IntrusivePtr ToJSON(bool only_loggable=false, RE_Matcher* re=nullptr); protected: friend class EnumType; friend class ListVal; friend class RecordVal; friend class VectorVal; friend class ValManager; friend class TableEntryVal; virtual void ValDescribe(ODesc* d) const; virtual void ValDescribeReST(ODesc* d) const; static Val* MakeBool(bool b) { return new Val(bro_int_t(b), TYPE_BOOL); } static Val* MakeInt(bro_int_t i) { return new Val(i, TYPE_INT); } static Val* MakeCount(bro_uint_t u) { return new Val(u, TYPE_COUNT); } template Val(V &&v, TypeTag t) noexcept : val(std::forward(v)), type(base_type(t).release()) { } template Val(V &&v, BroType* t) noexcept : val(std::forward(v)), type(t->Ref()) { } explicit Val(BroType* t) : type(t->Ref()) { } ACCESSOR(TYPE_TABLE, PDict*, table_val, AsNonConstTable) ACCESSOR(TYPE_RECORD, val_list*, val_list_val, AsNonConstRecord) // For internal use by the Val::Clone() methods. struct CloneState { // Caches a cloned value for later reuse during the same // cloning operation. For recursive types, call this *before* // descending down. IntrusivePtr NewClone(Val* src, IntrusivePtr dst); std::unordered_map clones; }; IntrusivePtr Clone(CloneState* state); virtual IntrusivePtr DoClone(CloneState* state); BroValUnion val; BroType* type; #ifdef DEBUG // For debugging, we keep the name of the ID to which a Val is bound. const char* bound_id = nullptr; #endif }; // Holds pre-allocated Val objects for those where it's more optimal to // re-use existing ones rather than allocate anew. class ValManager { public: static constexpr bro_uint_t PREALLOCATED_COUNTS = 4096; static constexpr bro_uint_t PREALLOCATED_INTS = 512; static constexpr bro_int_t PREALLOCATED_INT_LOWEST = -255; static constexpr bro_int_t PREALLOCATED_INT_HIGHEST = PREALLOCATED_INT_LOWEST + PREALLOCATED_INTS - 1; ValManager(); ~ValManager(); inline Val* GetTrue() const { return b_true->Ref(); } inline Val* GetFalse() const { return b_false->Ref(); } inline Val* GetBool(bool b) const { return b ? b_true->Ref() : b_false->Ref(); } inline Val* GetInt(int64_t i) const { return i < PREALLOCATED_INT_LOWEST || i > PREALLOCATED_INT_HIGHEST ? Val::MakeInt(i) : ints[i - PREALLOCATED_INT_LOWEST]->Ref(); } inline Val* GetCount(uint64_t i) const { return i >= PREALLOCATED_COUNTS ? Val::MakeCount(i) : counts[i]->Ref(); } StringVal* GetEmptyString() const; // Port number given in host order. PortVal* GetPort(uint32_t port_num, TransportProto port_type) const; // Host-order port number already masked with port space protocol mask. PortVal* GetPort(uint32_t port_num) const; private: std::array, NUM_PORT_SPACES> ports; StringVal* empty_string; Val* b_true; Val* b_false; Val** counts; Val** ints; }; extern ValManager* val_mgr; #define Microseconds 1e-6 #define Milliseconds 1e-3 #define Seconds 1.0 #define Minutes (60*Seconds) #define Hours (60*Minutes) #define Days (24*Hours) class IntervalVal : public Val { public: IntervalVal(double quantity, double units); protected: IntervalVal() {} void ValDescribe(ODesc* d) const override; }; class PortVal : public Val { public: IntrusivePtr SizeVal() const override; // Returns the port number in host order (not including the mask). uint32_t Port() const; string Protocol() const; // Tests for protocol types. int IsTCP() const; int IsUDP() const; int IsICMP() const; TransportProto PortType() const { if ( IsTCP() ) return TRANSPORT_TCP; else if ( IsUDP() ) return TRANSPORT_UDP; else if ( IsICMP() ) return TRANSPORT_ICMP; else return TRANSPORT_UNKNOWN; } // Returns a masked port number static uint32_t Mask(uint32_t port_num, TransportProto port_type); protected: friend class ValManager; PortVal(uint32_t p); void ValDescribe(ODesc* d) const override; IntrusivePtr DoClone(CloneState* state) override; }; class AddrVal : public Val { public: explicit AddrVal(const char* text); explicit AddrVal(const std::string& text); ~AddrVal() override; IntrusivePtr SizeVal() const override; // Constructor for address already in network order. explicit AddrVal(uint32_t addr); // IPv4. explicit AddrVal(const uint32_t addr[4]); // IPv6. explicit AddrVal(const IPAddr& addr); unsigned int MemoryAllocation() const override; protected: IntrusivePtr DoClone(CloneState* state) override; }; class SubNetVal : public Val { public: explicit SubNetVal(const char* text); SubNetVal(const char* text, int width); SubNetVal(uint32_t addr, int width); // IPv4. SubNetVal(const uint32_t addr[4], int width); // IPv6. SubNetVal(const IPAddr& addr, int width); explicit SubNetVal(const IPPrefix& prefix); ~SubNetVal() override; IntrusivePtr SizeVal() const override; const IPAddr& Prefix() const; int Width() const; IPAddr Mask() const; bool Contains(const IPAddr& addr) const; unsigned int MemoryAllocation() const override; protected: void ValDescribe(ODesc* d) const override; IntrusivePtr DoClone(CloneState* state) override; }; class StringVal : public Val { public: explicit StringVal(BroString* s); explicit StringVal(const char* s); explicit StringVal(const string& s); StringVal(int length, const char* s); IntrusivePtr SizeVal() const override; int Len(); const u_char* Bytes(); const char* CheckString(); // Note that one needs to de-allocate the return value of // ExpandedString() to avoid a memory leak. // char* ExpandedString(int format = BroString::EXPANDED_STRING) // { return AsString()->ExpandedString(format); } std::string ToStdString() const; StringVal* ToUpper(); unsigned int MemoryAllocation() const override; Val* Substitute(RE_Matcher* re, StringVal* repl, bool do_all); protected: void ValDescribe(ODesc* d) const override; IntrusivePtr DoClone(CloneState* state) override; }; class PatternVal : public Val { public: explicit PatternVal(RE_Matcher* re); ~PatternVal() override; int AddTo(Val* v, int is_first_init) const override; void SetMatcher(RE_Matcher* re); unsigned int MemoryAllocation() const override; protected: void ValDescribe(ODesc* d) const override; IntrusivePtr DoClone(CloneState* state) override; }; // ListVals are mainly used to index tables that have more than one // element in their index. class ListVal : public Val { public: explicit ListVal(TypeTag t); ~ListVal() override; TypeTag BaseTag() const { return tag; } IntrusivePtr SizeVal() const override; int Length() const { return vals.length(); } Val* Index(const int n) { return vals[n]; } const Val* Index(const int n) const { return vals[n]; } // Returns an RE_Matcher() that will match any string that // includes embedded within it one of the patterns listed // (as a string, e.g., "foo|bar") in this ListVal. // // Assumes that all of the strings in the list are NUL-terminated // and do not have any embedded NULs. // // The return RE_Matcher has not yet been compiled. RE_Matcher* BuildRE() const; void Append(Val* v); // Returns a Set representation of the list (which must be homogeneous). TableVal* ConvertToSet() const; const val_list* Vals() const { return &vals; } val_list* Vals() { return &vals; } void Describe(ODesc* d) const override; unsigned int MemoryAllocation() const override; protected: IntrusivePtr DoClone(CloneState* state) override; val_list vals; TypeTag tag; }; extern double bro_start_network_time; class TableEntryVal { public: template explicit TableEntryVal(V&& v) : val(std::forward(v)) { last_access_time = network_time; expire_access_time = int(network_time - bro_start_network_time); } TableEntryVal* Clone(Val::CloneState* state); Val* Value() { return val.get(); } // Returns/sets time of last expiration relevant access to this value. double ExpireAccessTime() const { return bro_start_network_time + expire_access_time; } void SetExpireAccess(double time) { expire_access_time = int(time - bro_start_network_time); } protected: friend class TableVal; IntrusivePtr val; double last_access_time; // The next entry stores seconds since Bro's start. We use ints here // to save a few bytes, as we do not need a high resolution for these // anyway. int expire_access_time; }; class TableValTimer : public Timer { public: TableValTimer(TableVal* val, double t); ~TableValTimer() override; void Dispatch(double t, int is_expire) override; TableVal* Table() { return table; } protected: TableVal* table; }; class CompositeHash; class HashKey; class Frame; class TableVal : public Val, public notifier::Modifiable { public: explicit TableVal(IntrusivePtr t, IntrusivePtr attrs = nullptr); ~TableVal() override; // Returns true if the assignment typechecked, false if not. The // methods take ownership of new_val, but not of the index. Second // version takes a HashKey and Unref()'s it when done. If we're a // set, new_val has to be nil. If we aren't a set, index may be nil // in the second version. int Assign(Val* index, IntrusivePtr new_val); int Assign(Val* index, Val* new_val); int Assign(Val* index, HashKey* k, IntrusivePtr new_val); int Assign(Val* index, HashKey* k, Val* new_val); IntrusivePtr SizeVal() const override; // Add the entire contents of the table to the given value, // which must also be a TableVal. // Returns true if the addition typechecked, false if not. // If is_first_init is true, then this is the *first* initialization // (and so should be strictly adding new elements). int AddTo(Val* v, int is_first_init) const override; // Same but allows suppression of state operations. int AddTo(Val* v, int is_first_init, bool propagate_ops) const; // Remove the entire contents. void RemoveAll(); // Remove the entire contents of the table from the given value. // which must also be a TableVal. // Returns true if the addition typechecked, false if not. int RemoveFrom(Val* v) const override; // Returns a new table that is the intersection of this // table and the given table. Intersection is just done // on index, not on yield value, so this really only makes // sense for sets. TableVal* Intersect(const TableVal* v) const; // Returns true if this set contains the same members as the // given set. Note that comparisons are done using hash keys, // so errors can arise for compound sets such as sets-of-sets. // See https://bro-tracker.atlassian.net/browse/BIT-1949. bool EqualTo(const TableVal* v) const; // Returns true if this set is a subset (not necessarily proper) // of the given set. bool IsSubsetOf(const TableVal* v) const; // Expands any lists in the index into multiple initializations. // Returns true if the initializations typecheck, false if not. int ExpandAndInit(IntrusivePtr index, IntrusivePtr new_val); // Returns the element's value if it exists in the table, // nil otherwise. Note, "index" is not const because we // need to Ref/Unref it when calling the default function. IntrusivePtr Lookup(Val* index, bool use_default_val = true); // For a table[subnet]/set[subnet], return all subnets that cover // the given subnet. // Causes an internal error if called for any other kind of table. IntrusivePtr LookupSubnets(const SubNetVal* s); // For a set[subnet]/table[subnet], return a new table that only contains // entries that cover the given subnet. // Causes an internal error if called for any other kind of table. IntrusivePtr LookupSubnetValues(const SubNetVal* s); // Sets the timestamp for the given index to network time. // Returns false if index does not exist. bool UpdateTimestamp(Val* index); // Returns the index corresponding to the given HashKey. IntrusivePtr RecoverIndex(const HashKey* k) const; // Returns the element if it was in the table, false otherwise. IntrusivePtr Delete(const Val* index); IntrusivePtr Delete(const HashKey* k); // Returns a ListVal representation of the table (which must be a set). ListVal* ConvertToList(TypeTag t=TYPE_ANY) const; ListVal* ConvertToPureList() const; // must be single index type void SetAttrs(IntrusivePtr attrs); Attr* FindAttr(attr_tag t) const; Attributes* Attrs() { return attrs.get(); } // Returns the size of the table. int Size() const; int RecursiveSize() const; // Returns the Prefix table used inside the table (if present). // This allows us to do more direct queries to this specialized // type that the general Table API does not allow. const PrefixTable* Subnets() const { return subnets; } void Describe(ODesc* d) const override; void InitTimer(double delay); void DoExpire(double t); // If the &default attribute is not a function, or the functon has // already been initialized, this does nothing. Otherwise, evaluates // the function in the frame allowing it to capture its closure. void InitDefaultFunc(Frame* f); unsigned int MemoryAllocation() const override; void ClearTimer(Timer* t) { if ( timer == t ) timer = 0; } HashKey* ComputeHash(const Val* index) const; notifier::Modifiable* Modifiable() override { return this; } // Retrieves and saves all table state (key-value pairs) for // tables whose index type depends on the given RecordType. static void SaveParseTimeTableState(RecordType* rt); // Rebuilds all TableVals whose state was previously saved by // SaveParseTimeTableState(). This is used to re-recreate the tables // in the event that a record type gets redefined while parsing. static void RebuildParseTimeTables(); // Clears all state that was used to track TableVals that depending // on RecordTypes. static void DoneParsing(); protected: void Init(IntrusivePtr t); using TableRecordDependencies = std::unordered_map>>; using ParseTimeTableState = std::vector, IntrusivePtr>>; using ParseTimeTableStates = std::unordered_map; ParseTimeTableState DumpTableState(); void RebuildTable(ParseTimeTableState ptts); void CheckExpireAttr(attr_tag at); int ExpandCompoundAndInit(val_list* vl, int k, IntrusivePtr new_val); int CheckAndAssign(Val* index, IntrusivePtr new_val); // Calculates default value for index. Returns 0 if none. IntrusivePtr Default(Val* index); // Returns true if item expiration is enabled. bool ExpirationEnabled() { return expire_time != 0; } // Returns the expiration time defined by %{create,read,write}_expire // attribute, or -1 for unset/invalid values. In the invalid case, an // error will have been reported. double GetExpireTime(); // Calls &expire_func and returns its return interval; double CallExpireFunc(IntrusivePtr idx); // Enum for the different kinds of changes an &on_change handler can see enum OnChangeType { ELEMENT_NEW, ELEMENT_CHANGED, ELEMENT_REMOVED, ELEMENT_EXPIRED }; // Calls &change_func. Does not take ownership of values. (Refs if needed). void CallChangeFunc(const Val* index, Val* old_value, OnChangeType tpe); IntrusivePtr DoClone(CloneState* state) override; IntrusivePtr table_type; CompositeHash* table_hash; IntrusivePtr attrs; IntrusivePtr expire_time; IntrusivePtr expire_func; TableValTimer* timer; IterCookie* expire_cookie; PrefixTable* subnets; IntrusivePtr def_val; IntrusivePtr change_func; // prevent recursion of change functions bool in_change_func = false; static TableRecordDependencies parse_time_table_record_dependencies; static ParseTimeTableStates parse_time_table_states; }; class RecordVal : public Val, public notifier::Modifiable { public: explicit RecordVal(RecordType* t, bool init_fields = true); ~RecordVal() override; IntrusivePtr SizeVal() const override; void Assign(int field, IntrusivePtr new_val); void Assign(int field, Val* new_val); Val* Lookup(int field) const; // Does not Ref() value. IntrusivePtr LookupWithDefault(int field) const; /** * Looks up the value of a field by field name. If the field doesn't * exist in the record type, it's an internal error: abort. * @param field name of field to lookup. * @param with_default whether to rely on field's &default attribute when * the field has yet to be initialized. * @return the value in field \a field. */ IntrusivePtr Lookup(const char* field, bool with_default = false) const; void Describe(ODesc* d) const override; /** * Returns a "record_field_table" value for introspection purposes. */ IntrusivePtr GetRecordFieldsVal() const; // This is an experiment to associate a BroObj within the // event engine to a record value in bro script. void SetOrigin(BroObj* o) { origin = o; } BroObj* GetOrigin() const { return origin; } // Returns a new value representing the value coerced to the given // type. If coercion is not possible, returns 0. The non-const // version may return the current value ref'ed if its type matches // directly. // // *aggr* is optional; if non-zero, we add to it. See // Expr::InitVal(). We leave it out in the non-const version to make // the choice unambigious. // // The *allow_orphaning* parameter allows for a record to be demoted // down to a record type that contains less fields. IntrusivePtr CoerceTo(const RecordType* other, Val* aggr, bool allow_orphaning = false) const; IntrusivePtr CoerceTo(RecordType* other, bool allow_orphaning = false); unsigned int MemoryAllocation() const override; void DescribeReST(ODesc* d) const override; notifier::Modifiable* Modifiable() override { return this; } // Extend the underlying arrays of record instances created during // parsing to match the number of fields in the record type (they may // mismatch as a result of parse-time record type redefinitions. static void ResizeParseTimeRecords(RecordType* rt); static void DoneParsing(); protected: IntrusivePtr DoClone(CloneState* state) override; BroObj* origin; using RecordTypeValMap = std::unordered_map>>; static RecordTypeValMap parse_time_records; }; class EnumVal : public Val { public: IntrusivePtr SizeVal() const override; protected: friend class Val; friend class EnumType; EnumVal(EnumType* t, int i) : Val(bro_int_t(i), t) { } void ValDescribe(ODesc* d) const override; IntrusivePtr DoClone(CloneState* state) override; }; class VectorVal : public Val, public notifier::Modifiable { public: explicit VectorVal(VectorType* t); ~VectorVal() override; IntrusivePtr SizeVal() const override; // Returns false if the type of the argument was wrong. // The vector will automatically grow to accomodate the index. // // Note: does NOT Ref() the element! Remember to do so unless // the element was just created and thus has refcount 1. // bool Assign(unsigned int index, IntrusivePtr element); bool Assign(unsigned int index, Val* element); template bool Assign(Val* index, E&& element) { return Assign(index->AsListVal()->Index(0)->CoerceToUnsigned(), std::forward(element)); } // Assigns the value to how_many locations starting at index. bool AssignRepeat(unsigned int index, unsigned int how_many, Val* element); // Add this value to the given value (if appropriate). // Returns true if succcessful. int AddTo(Val* v, int is_first_init) const override; // Returns nil if no element was at that value. // Lookup does NOT grow the vector to this size. // The Val* variant assumes that the index Val* has been type-checked. Val* Lookup(unsigned int index) const; Val* Lookup(Val* index) { bro_uint_t i = index->AsListVal()->Index(0)->CoerceToUnsigned(); return Lookup(static_cast(i)); } unsigned int Size() const { return val.vector_val->size(); } // Is there any way to reclaim previously-allocated memory when you // shrink a vector? The return value is the old size. unsigned int Resize(unsigned int new_num_elements); // Won't shrink size. unsigned int ResizeAtLeast(unsigned int new_num_elements); notifier::Modifiable* Modifiable() override { return this; } // Insert an element at a specific position into the underlying vector. bool Insert(unsigned int index, Val* element); // Removes an element at a specific position. bool Remove(unsigned int index); protected: void ValDescribe(ODesc* d) const override; IntrusivePtr DoClone(CloneState* state) override; VectorType* vector_type; }; // Checks the given value for consistency with the given type. If an // exact match, returns it. If promotable, returns the promoted version, // Unref()'ing the original. If not a match, generates an error message // and returns nil, also Unref()'ing v. If is_init is true, then // the checking is done in the context of an initialization. extern IntrusivePtr check_and_promote(IntrusivePtr v, const BroType* t, int is_init, const Location* expr_location = nullptr); extern int same_val(const Val* v1, const Val* v2); extern int same_atomic_val(const Val* v1, const Val* v2); extern bool is_atomic_val(const Val* v); extern void describe_vals(const val_list* vals, ODesc* d, int offset=0); extern void describe_vals(const std::vector>& vals, ODesc* d, size_t offset = 0); extern void delete_vals(val_list* vals); // True if the given Val* has a vector type. inline bool is_vector(Val* v) { return v->Type()->Tag() == TYPE_VECTOR; } // Returns v casted to type T if the type supports that. Returns null if not. // // Note: This implements the script-level cast operator. extern IntrusivePtr cast_value_to_type(Val* v, BroType* t); // Returns true if v can be casted to type T. If so, check_and_cast() will // succeed as well. // // Note: This implements the script-level type comparision operator. extern bool can_cast_value_to_type(const Val* v, BroType* t); // Returns true if values of type s may support casting to type t. This is // purely static check to weed out cases early on that will never succeed. // However, even this function returns true, casting may still fail for a // specific instance later. extern bool can_cast_value_to_type(const BroType* s, BroType* t);