// See the file "COPYING" in the main distribution directory for copyright. #include "zeek-config.h" #include "Expr.h" #include "Event.h" #include "Desc.h" #include "Frame.h" #include "Func.h" #include "RE.h" #include "Scope.h" #include "Stmt.h" #include "EventRegistry.h" #include "Net.h" #include "Traverse.h" #include "Trigger.h" #include "IPAddr.h" #include "digest.h" #include "module_util.h" #include "DebugLogger.h" #include "broker/Data.h" const char* expr_name(BroExprTag t) { static const char* expr_names[int(NUM_EXPRS)] = { "name", "const", "(*)", "++", "--", "!", "~", "+", "-", "+", "-", "+=", "-=", "*", "/", "%", "&", "|", "^", "&&", "||", "<", "<=", "==", "!=", ">=", ">", "?:", "ref", "=", "[]", "$", "?$", "[=]", "table()", "set()", "vector()", "$=", "in", "<<>>", "()", "function()", "event", "schedule", "coerce", "record_coerce", "table_coerce", "sizeof", "flatten", "cast", "is", "[:]=" }; if ( int(t) >= NUM_EXPRS ) { static char errbuf[512]; // This isn't quite right - we return a static buffer, // so multiple calls to expr_name() could lead to confusion // by overwriting the buffer. But oh well. snprintf(errbuf, sizeof(errbuf), "%d: not an expression tag", int(t)); return errbuf; } return expr_names[int(t)]; } Expr::Expr(BroExprTag arg_tag) { tag = arg_tag; type = 0; paren = 0; SetLocationInfo(&start_location, &end_location); } Expr::~Expr() { Unref(type); } int Expr::CanAdd() const { return 0; } int Expr::CanDel() const { return 0; } void Expr::Add(Frame* /* f */) { Internal("Expr::Delete called"); } void Expr::Delete(Frame* /* f */) { Internal("Expr::Delete called"); } Expr* Expr::MakeLvalue() { if ( ! IsError() ) ExprError("can't be assigned to"); return this; } void Expr::EvalIntoAggregate(const BroType* /* t */, Val* /* aggr */, Frame* /* f */) const { Internal("Expr::EvalIntoAggregate called"); } void Expr::Assign(Frame* /* f */, Val* v) { Unref(v); Internal("Expr::Assign called"); } BroType* Expr::InitType() const { return type->Ref(); } int Expr::IsRecordElement(TypeDecl* /* td */) const { return 0; } int Expr::IsPure() const { return 1; } Val* Expr::InitVal(const BroType* t, Val* aggr) const { if ( aggr ) { Error("bad initializer"); return 0; } if ( IsError() ) return 0; return check_and_promote(Eval(0), t, 1); } int Expr::IsError() const { return type && type->Tag() == TYPE_ERROR; } void Expr::SetError() { SetType(error_type()); } void Expr::SetError(const char* msg) { Error(msg); SetError(); } int Expr::IsZero() const { return IsConst() && ExprVal()->IsZero(); } int Expr::IsOne() const { return IsConst() && ExprVal()->IsOne(); } void Expr::Describe(ODesc* d) const { if ( IsParen() && ! d->IsBinary() ) d->Add("("); if ( d->IsPortable() || d->IsBinary() ) AddTag(d); ExprDescribe(d); if ( IsParen() && ! d->IsBinary() ) d->Add(")"); } void Expr::AddTag(ODesc* d) const { if ( d->IsBinary() ) d->Add(int(Tag())); else d->AddSP(expr_name(Tag())); } void Expr::Canonicize() { } void Expr::SetType(BroType* t) { if ( ! type || type->Tag() != TYPE_ERROR ) { Unref(type); type = t; } else Unref(t); } void Expr::ExprError(const char msg[]) { Error(msg); SetError(); } void Expr::RuntimeError(const std::string& msg) const { reporter->ExprRuntimeError(this, "%s", msg.data()); } void Expr::RuntimeErrorWithCallStack(const std::string& msg) const { auto rcs = render_call_stack(); if ( rcs.empty() ) reporter->ExprRuntimeError(this, "%s", msg.data()); else { ODesc d; d.SetShort(); Describe(&d); reporter->RuntimeError(GetLocationInfo(), "%s, expression: %s, call stack: %s", msg.data(), d.Description(), rcs.data()); } } NameExpr::NameExpr(ID* arg_id, bool const_init) : Expr(EXPR_NAME) { id = arg_id; in_const_init = const_init; if ( id->AsType() ) SetType(new TypeType(id->AsType())); else SetType(id->Type()->Ref()); EventHandler* h = event_registry->Lookup(id->Name()); if ( h ) h->SetUsed(); } NameExpr::~NameExpr() { Unref(id); } Val* NameExpr::Eval(Frame* f) const { Val* v; if ( id->AsType() ) return new Val(id->AsType(), true); if ( id->IsGlobal() ) v = id->ID_Val(); else if ( f ) v = f->GetElement(id); else // No frame - evaluating for Simplify() purposes return 0; if ( v ) return v->Ref(); else { RuntimeError("value used but not set"); return 0; } } Expr* NameExpr::MakeLvalue() { if ( id->AsType() ) ExprError("Type name is not an lvalue"); if ( id->IsConst() && ! in_const_init ) ExprError("const is not a modifiable lvalue"); if ( id->IsOption() && ! in_const_init ) ExprError("option is not a modifiable lvalue"); return new RefExpr(this); } void NameExpr::Assign(Frame* f, Val* v) { if ( id->IsGlobal() ) id->SetVal(v); else f->SetElement(id, v); } int NameExpr::IsPure() const { return id->IsConst(); } TraversalCode NameExpr::Traverse(TraversalCallback* cb) const { TraversalCode tc = cb->PreExpr(this); HANDLE_TC_EXPR_PRE(tc); tc = id->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = cb->PostExpr(this); HANDLE_TC_EXPR_POST(tc); } void NameExpr::ExprDescribe(ODesc* d) const { if ( d->IsReadable() ) d->Add(id->Name()); else { if ( d->IsPortable() ) d->Add(id->Name()); else d->AddCS(id->Name()); } } ConstExpr::ConstExpr(Val* arg_val) : Expr(EXPR_CONST) { val = arg_val; if ( val->Type()->Tag() == TYPE_LIST && val->AsListVal()->Length() == 1 ) { val = val->AsListVal()->Index(0); val->Ref(); Unref(arg_val); } SetType(val->Type()->Ref()); } ConstExpr::~ConstExpr() { Unref(val); } void ConstExpr::ExprDescribe(ODesc* d) const { val->Describe(d); } Val* ConstExpr::Eval(Frame* /* f */) const { return Value()->Ref(); } TraversalCode ConstExpr::Traverse(TraversalCallback* cb) const { TraversalCode tc = cb->PreExpr(this); HANDLE_TC_EXPR_PRE(tc); tc = cb->PostExpr(this); HANDLE_TC_EXPR_POST(tc); } UnaryExpr::UnaryExpr(BroExprTag arg_tag, Expr* arg_op) : Expr(arg_tag) { op = arg_op; if ( op->IsError() ) SetError(); } UnaryExpr::~UnaryExpr() { Unref(op); } Val* UnaryExpr::Eval(Frame* f) const { if ( IsError() ) return 0; Val* v = op->Eval(f); if ( ! v ) return 0; if ( is_vector(v) && Tag() != EXPR_IS && Tag() != EXPR_CAST ) { VectorVal* v_op = v->AsVectorVal(); VectorType* out_t; if ( Type()->Tag() == TYPE_ANY ) out_t = v->Type()->AsVectorType(); else out_t = Type()->AsVectorType(); VectorVal* result = new VectorVal(out_t); for ( unsigned int i = 0; i < v_op->Size(); ++i ) { Val* v_i = v_op->Lookup(i); result->Assign(i, v_i ? Fold(v_i) : 0); } Unref(v); return result; } else { Val* result = Fold(v); Unref(v); return result; } } int UnaryExpr::IsPure() const { return op->IsPure(); } TraversalCode UnaryExpr::Traverse(TraversalCallback* cb) const { TraversalCode tc = cb->PreExpr(this); HANDLE_TC_EXPR_PRE(tc); tc = op->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = cb->PostExpr(this); HANDLE_TC_EXPR_POST(tc); } Val* UnaryExpr::Fold(Val* v) const { return v->Ref(); } void UnaryExpr::ExprDescribe(ODesc* d) const { bool is_coerce = Tag() == EXPR_ARITH_COERCE || Tag() == EXPR_RECORD_COERCE || Tag() == EXPR_TABLE_COERCE; if ( d->IsReadable() ) { if ( is_coerce ) d->Add("(coerce "); else if ( Tag() == EXPR_FLATTEN ) d->Add("flatten "); else if ( Tag() != EXPR_REF ) d->Add(expr_name(Tag())); } op->Describe(d); if ( d->IsReadable() && is_coerce ) { d->Add(" to "); Type()->Describe(d); d->Add(")"); } } BinaryExpr::~BinaryExpr() { Unref(op1); Unref(op2); } Val* BinaryExpr::Eval(Frame* f) const { if ( IsError() ) return 0; Val* v1 = op1->Eval(f); if ( ! v1 ) return 0; Val* v2 = op2->Eval(f); if ( ! v2 ) { Unref(v1); return 0; } Val* result = 0; int is_vec1 = is_vector(v1); int is_vec2 = is_vector(v2); if ( is_vec1 && is_vec2 ) { // fold pairs of elements VectorVal* v_op1 = v1->AsVectorVal(); VectorVal* v_op2 = v2->AsVectorVal(); if ( v_op1->Size() != v_op2->Size() ) { Unref(v1); Unref(v2); RuntimeError("vector operands are of different sizes"); return 0; } VectorVal* v_result = new VectorVal(Type()->AsVectorType()); for ( unsigned int i = 0; i < v_op1->Size(); ++i ) { if ( v_op1->Lookup(i) && v_op2->Lookup(i) ) v_result->Assign(i, Fold(v_op1->Lookup(i), v_op2->Lookup(i))); else v_result->Assign(i, 0); // SetError("undefined element in vector operation"); } Unref(v1); Unref(v2); return v_result; } if ( IsVector(Type()->Tag()) && (is_vec1 || is_vec2) ) { // fold vector against scalar VectorVal* vv = (is_vec1 ? v1 : v2)->AsVectorVal(); VectorVal* v_result = new VectorVal(Type()->AsVectorType()); for ( unsigned int i = 0; i < vv->Size(); ++i ) { Val* vv_i = vv->Lookup(i); if ( vv_i ) v_result->Assign(i, is_vec1 ? Fold(vv_i, v2) : Fold(v1, vv_i)); else v_result->Assign(i, 0); // SetError("Undefined element in vector operation"); } Unref(v1); Unref(v2); return v_result; } // scalar op scalar result = Fold(v1, v2); Unref(v1); Unref(v2); return result; } int BinaryExpr::IsPure() const { return op1->IsPure() && op2->IsPure(); } TraversalCode BinaryExpr::Traverse(TraversalCallback* cb) const { TraversalCode tc = cb->PreExpr(this); HANDLE_TC_EXPR_PRE(tc); tc = op1->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = op2->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = cb->PostExpr(this); HANDLE_TC_EXPR_POST(tc); } void BinaryExpr::ExprDescribe(ODesc* d) const { op1->Describe(d); d->SP(); if ( d->IsReadable() ) d->AddSP(expr_name(Tag())); op2->Describe(d); } Val* BinaryExpr::Fold(Val* v1, Val* v2) const { InternalTypeTag it = v1->Type()->InternalType(); if ( it == TYPE_INTERNAL_STRING ) return StringFold(v1, v2); if ( v1->Type()->Tag() == TYPE_PATTERN ) return PatternFold(v1, v2); if ( v1->Type()->IsSet() ) return SetFold(v1, v2); if ( it == TYPE_INTERNAL_ADDR ) return AddrFold(v1, v2); if ( it == TYPE_INTERNAL_SUBNET ) return SubNetFold(v1, v2); bro_int_t i1 = 0, i2 = 0, i3 = 0; bro_uint_t u1 = 0, u2 = 0, u3 = 0; double d1 = 0.0, d2 = 0.0, d3 = 0.0; int is_integral = 0; int is_unsigned = 0; if ( it == TYPE_INTERNAL_INT ) { i1 = v1->InternalInt(); i2 = v2->InternalInt(); ++is_integral; } else if ( it == TYPE_INTERNAL_UNSIGNED ) { u1 = v1->InternalUnsigned(); u2 = v2->InternalUnsigned(); ++is_unsigned; } else if ( it == TYPE_INTERNAL_DOUBLE ) { d1 = v1->InternalDouble(); d2 = v2->InternalDouble(); } else RuntimeErrorWithCallStack("bad type in BinaryExpr::Fold"); switch ( tag ) { #define DO_INT_FOLD(op) \ if ( is_integral ) \ i3 = i1 op i2; \ else if ( is_unsigned ) \ u3 = u1 op u2; \ else \ RuntimeErrorWithCallStack("bad type in BinaryExpr::Fold"); #define DO_UINT_FOLD(op) \ if ( is_unsigned ) \ u3 = u1 op u2; \ else \ RuntimeErrorWithCallStack("bad type in BinaryExpr::Fold"); #define DO_FOLD(op) \ if ( is_integral ) \ i3 = i1 op i2; \ else if ( is_unsigned ) \ u3 = u1 op u2; \ else \ d3 = d1 op d2; #define DO_INT_VAL_FOLD(op) \ if ( is_integral ) \ i3 = i1 op i2; \ else if ( is_unsigned ) \ i3 = u1 op u2; \ else \ i3 = d1 op d2; case EXPR_ADD: DO_FOLD(+); break; case EXPR_ADD_TO: DO_FOLD(+); break; case EXPR_SUB: DO_FOLD(-); break; case EXPR_REMOVE_FROM: DO_FOLD(-); break; case EXPR_TIMES: DO_FOLD(*); break; case EXPR_DIVIDE: { if ( is_integral ) { if ( i2 == 0 ) RuntimeError("division by zero"); i3 = i1 / i2; } else if ( is_unsigned ) { if ( u2 == 0 ) RuntimeError("division by zero"); u3 = u1 / u2; } else { if ( d2 == 0 ) RuntimeError("division by zero"); d3 = d1 / d2; } } break; case EXPR_MOD: { if ( is_integral ) { if ( i2 == 0 ) RuntimeError("modulo by zero"); i3 = i1 % i2; } else if ( is_unsigned ) { if ( u2 == 0 ) RuntimeError("modulo by zero"); u3 = u1 % u2; } else RuntimeErrorWithCallStack("bad type in BinaryExpr::Fold"); } break; case EXPR_AND: DO_UINT_FOLD(&); break; case EXPR_OR: DO_UINT_FOLD(|); break; case EXPR_XOR: DO_UINT_FOLD(^); break; case EXPR_AND_AND: DO_INT_FOLD(&&); break; case EXPR_OR_OR: DO_INT_FOLD(||); break; case EXPR_LT: DO_INT_VAL_FOLD(<); break; case EXPR_LE: DO_INT_VAL_FOLD(<=); break; case EXPR_EQ: DO_INT_VAL_FOLD(==); break; case EXPR_NE: DO_INT_VAL_FOLD(!=); break; case EXPR_GE: DO_INT_VAL_FOLD(>=); break; case EXPR_GT: DO_INT_VAL_FOLD(>); break; default: BadTag("BinaryExpr::Fold", expr_name(tag)); } BroType* ret_type = type; if ( IsVector(ret_type->Tag()) ) ret_type = ret_type->YieldType(); if ( ret_type->Tag() == TYPE_INTERVAL ) return new IntervalVal(d3, 1.0); else if ( ret_type->InternalType() == TYPE_INTERNAL_DOUBLE ) return new Val(d3, ret_type->Tag()); else if ( ret_type->InternalType() == TYPE_INTERNAL_UNSIGNED ) return val_mgr->GetCount(u3); else if ( ret_type->Tag() == TYPE_BOOL ) return val_mgr->GetBool(i3); else return val_mgr->GetInt(i3); } Val* BinaryExpr::StringFold(Val* v1, Val* v2) const { const BroString* s1 = v1->AsString(); const BroString* s2 = v2->AsString(); int result = 0; switch ( tag ) { #undef DO_FOLD #define DO_FOLD(sense) { result = Bstr_cmp(s1, s2) sense 0; break; } case EXPR_LT: DO_FOLD(<) case EXPR_LE: DO_FOLD(<=) case EXPR_EQ: DO_FOLD(==) case EXPR_NE: DO_FOLD(!=) case EXPR_GE: DO_FOLD(>=) case EXPR_GT: DO_FOLD(>) case EXPR_ADD: case EXPR_ADD_TO: { vector strings; strings.push_back(s1); strings.push_back(s2); return new StringVal(concatenate(strings)); } default: BadTag("BinaryExpr::StringFold", expr_name(tag)); } return val_mgr->GetBool(result); } Val* BinaryExpr::PatternFold(Val* v1, Val* v2) const { const RE_Matcher* re1 = v1->AsPattern(); const RE_Matcher* re2 = v2->AsPattern(); if ( tag != EXPR_AND && tag != EXPR_OR ) BadTag("BinaryExpr::PatternFold"); RE_Matcher* res = tag == EXPR_AND ? RE_Matcher_conjunction(re1, re2) : RE_Matcher_disjunction(re1, re2); return new PatternVal(res); } Val* BinaryExpr::SetFold(Val* v1, Val* v2) const { TableVal* tv1 = v1->AsTableVal(); TableVal* tv2 = v2->AsTableVal(); TableVal* result; bool res = false; switch ( tag ) { case EXPR_AND: return tv1->Intersect(tv2); case EXPR_OR: result = v1->Clone()->AsTableVal(); if ( ! tv2->AddTo(result, false, false) ) reporter->InternalError("set union failed to type check"); return result; case EXPR_SUB: result = v1->Clone()->AsTableVal(); if ( ! tv2->RemoveFrom(result) ) reporter->InternalError("set difference failed to type check"); return result; case EXPR_EQ: res = tv1->EqualTo(tv2); break; case EXPR_NE: res = ! tv1->EqualTo(tv2); break; case EXPR_LT: res = tv1->IsSubsetOf(tv2) && tv1->Size() < tv2->Size(); break; case EXPR_LE: res = tv1->IsSubsetOf(tv2); break; case EXPR_GE: case EXPR_GT: // These should't happen due to canonicalization. reporter->InternalError("confusion over canonicalization in set comparison"); break; default: BadTag("BinaryExpr::SetFold", expr_name(tag)); return 0; } return val_mgr->GetBool(res); } Val* BinaryExpr::AddrFold(Val* v1, Val* v2) const { IPAddr a1 = v1->AsAddr(); IPAddr a2 = v2->AsAddr(); int result = 0; switch ( tag ) { case EXPR_LT: result = a1 < a2; break; case EXPR_LE: result = a1 < a2 || a1 == a2; break; case EXPR_EQ: result = a1 == a2; break; case EXPR_NE: result = a1 != a2; break; case EXPR_GE: result = ! ( a1 < a2 ); break; case EXPR_GT: result = ( ! ( a1 < a2 ) ) && ( a1 != a2 ); break; default: BadTag("BinaryExpr::AddrFold", expr_name(tag)); } return val_mgr->GetBool(result); } Val* BinaryExpr::SubNetFold(Val* v1, Val* v2) const { const IPPrefix& n1 = v1->AsSubNet(); const IPPrefix& n2 = v2->AsSubNet(); bool result = ( n1 == n2 ) ? true : false; if ( tag == EXPR_NE ) result = ! result; return val_mgr->GetBool(result); } void BinaryExpr::SwapOps() { // We could check here whether the operator is commutative. Expr* t = op1; op1 = op2; op2 = t; } void BinaryExpr::PromoteOps(TypeTag t) { TypeTag bt1 = op1->Type()->Tag(); TypeTag bt2 = op2->Type()->Tag(); bool is_vec1 = IsVector(bt1); bool is_vec2 = IsVector(bt2); if ( is_vec1 ) bt1 = op1->Type()->AsVectorType()->YieldType()->Tag(); if ( is_vec2 ) bt2 = op2->Type()->AsVectorType()->YieldType()->Tag(); if ( (is_vec1 || is_vec2) && ! (is_vec1 && is_vec2) ) reporter->Warning("mixing vector and scalar operands is deprecated"); if ( bt1 != t ) op1 = new ArithCoerceExpr(op1, t); if ( bt2 != t ) op2 = new ArithCoerceExpr(op2, t); } void BinaryExpr::PromoteType(TypeTag t, bool is_vector) { PromoteOps(t); SetType(is_vector ? new VectorType(base_type(t)) : base_type(t)); } CloneExpr::CloneExpr(Expr* arg_op) : UnaryExpr(EXPR_CLONE, arg_op) { if ( IsError() ) return; BroType* t = op->Type(); SetType(t->Ref()); } Val* CloneExpr::Eval(Frame* f) const { if ( IsError() ) return 0; Val* v = op->Eval(f); if ( ! v ) return 0; Val* result = Fold(v); Unref(v); return result; } Val* CloneExpr::Fold(Val* v) const { return v->Clone(); } IncrExpr::IncrExpr(BroExprTag arg_tag, Expr* arg_op) : UnaryExpr(arg_tag, arg_op->MakeLvalue()) { if ( IsError() ) return; BroType* t = op->Type(); if ( IsVector(t->Tag()) ) { if ( ! IsIntegral(t->AsVectorType()->YieldType()->Tag()) ) ExprError("vector elements must be integral for increment operator"); else { reporter->Warning("increment/decrement operations for vectors deprecated"); SetType(t->Ref()); } } else { if ( ! IsIntegral(t->Tag()) ) ExprError("requires an integral operand"); else SetType(t->Ref()); } } Val* IncrExpr::DoSingleEval(Frame* f, Val* v) const { bro_int_t k = v->CoerceToInt(); if ( Tag() == EXPR_INCR ) ++k; else { --k; if ( k < 0 && v->Type()->InternalType() == TYPE_INTERNAL_UNSIGNED ) RuntimeError("count underflow"); } BroType* ret_type = Type(); if ( IsVector(ret_type->Tag()) ) ret_type = Type()->YieldType(); if ( ret_type->Tag() == TYPE_INT ) return val_mgr->GetInt(k); else return val_mgr->GetCount(k); } Val* IncrExpr::Eval(Frame* f) const { Val* v = op->Eval(f); if ( ! v ) return 0; if ( is_vector(v) ) { VectorVal* v_vec = v->AsVectorVal(); for ( unsigned int i = 0; i < v_vec->Size(); ++i ) { Val* elt = v_vec->Lookup(i); if ( elt ) { Val* new_elt = DoSingleEval(f, elt); v_vec->Assign(i, new_elt); } else v_vec->Assign(i, 0); } op->Assign(f, v_vec); } else { Val* old_v = v; op->Assign(f, v = DoSingleEval(f, old_v)); Unref(old_v); } return v->Ref(); } int IncrExpr::IsPure() const { return 0; } ComplementExpr::ComplementExpr(Expr* arg_op) : UnaryExpr(EXPR_COMPLEMENT, arg_op) { if ( IsError() ) return; BroType* t = op->Type(); TypeTag bt = t->Tag(); if ( bt != TYPE_COUNT ) ExprError("requires \"count\" operand"); else SetType(base_type(TYPE_COUNT)); } Val* ComplementExpr::Fold(Val* v) const { return val_mgr->GetCount(~ v->InternalUnsigned()); } NotExpr::NotExpr(Expr* arg_op) : UnaryExpr(EXPR_NOT, arg_op) { if ( IsError() ) return; BroType* t = op->Type(); TypeTag bt = t->Tag(); if ( ! IsIntegral(bt) && bt != TYPE_BOOL ) ExprError("requires an integral or boolean operand"); else SetType(base_type(TYPE_BOOL)); } Val* NotExpr::Fold(Val* v) const { return val_mgr->GetBool(! v->InternalInt()); } PosExpr::PosExpr(Expr* arg_op) : UnaryExpr(EXPR_POSITIVE, arg_op) { if ( IsError() ) return; BroType* t = op->Type(); if ( IsVector(t->Tag()) ) t = t->AsVectorType()->YieldType(); TypeTag bt = t->Tag(); BroType* base_result_type = 0; if ( IsIntegral(bt) ) // Promote count and counter to int. base_result_type = base_type(TYPE_INT); else if ( bt == TYPE_INTERVAL || bt == TYPE_DOUBLE ) base_result_type = t->Ref(); else ExprError("requires an integral or double operand"); if ( is_vector(op) ) SetType(new VectorType(base_result_type)); else SetType(base_result_type); } Val* PosExpr::Fold(Val* v) const { TypeTag t = v->Type()->Tag(); if ( t == TYPE_DOUBLE || t == TYPE_INTERVAL || t == TYPE_INT ) return v->Ref(); else return val_mgr->GetInt(v->CoerceToInt()); } NegExpr::NegExpr(Expr* arg_op) : UnaryExpr(EXPR_NEGATE, arg_op) { if ( IsError() ) return; BroType* t = op->Type(); if ( IsVector(t->Tag()) ) t = t->AsVectorType()->YieldType(); TypeTag bt = t->Tag(); BroType* base_result_type = 0; if ( IsIntegral(bt) ) // Promote count and counter to int. base_result_type = base_type(TYPE_INT); else if ( bt == TYPE_INTERVAL || bt == TYPE_DOUBLE ) base_result_type = t->Ref(); else ExprError("requires an integral or double operand"); if ( is_vector(op) ) SetType(new VectorType(base_result_type)); else SetType(base_result_type); } Val* NegExpr::Fold(Val* v) const { if ( v->Type()->Tag() == TYPE_DOUBLE ) return new Val(- v->InternalDouble(), v->Type()->Tag()); else if ( v->Type()->Tag() == TYPE_INTERVAL ) return new IntervalVal(- v->InternalDouble(), 1.0); else return val_mgr->GetInt(- v->CoerceToInt()); } SizeExpr::SizeExpr(Expr* arg_op) : UnaryExpr(EXPR_SIZE, arg_op) { if ( IsError() ) return; if ( op->Type()->InternalType() == TYPE_INTERNAL_DOUBLE ) SetType(base_type(TYPE_DOUBLE)); else SetType(base_type(TYPE_COUNT)); } Val* SizeExpr::Eval(Frame* f) const { Val* v = op->Eval(f); if ( ! v ) return 0; Val* result = Fold(v); Unref(v); return result; } Val* SizeExpr::Fold(Val* v) const { return v->SizeVal(); } AddExpr::AddExpr(Expr* arg_op1, Expr* arg_op2) : BinaryExpr(EXPR_ADD, arg_op1, arg_op2) { if ( IsError() ) return; TypeTag bt1 = op1->Type()->Tag(); if ( IsVector(bt1) ) bt1 = op1->Type()->AsVectorType()->YieldType()->Tag(); TypeTag bt2 = op2->Type()->Tag(); if ( IsVector(bt2) ) bt2 = op2->Type()->AsVectorType()->YieldType()->Tag(); BroType* base_result_type = 0; if ( bt1 == TYPE_TIME && bt2 == TYPE_INTERVAL ) base_result_type = base_type(bt1); else if ( bt2 == TYPE_TIME && bt1 == TYPE_INTERVAL ) base_result_type = base_type(bt2); else if ( bt1 == TYPE_INTERVAL && bt2 == TYPE_INTERVAL ) base_result_type = base_type(bt1); else if ( BothArithmetic(bt1, bt2) ) PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2)); else if ( BothString(bt1, bt2) ) base_result_type = base_type(bt1); else ExprError("requires arithmetic operands"); if ( base_result_type ) { if ( is_vector(op1) || is_vector(op2) ) SetType(new VectorType(base_result_type)); else SetType(base_result_type); } } void AddExpr::Canonicize() { if ( expr_greater(op2, op1) || (op1->Type()->Tag() == TYPE_INTERVAL && op2->Type()->Tag() == TYPE_TIME) || (op2->IsConst() && ! is_vector(op2->ExprVal()) && ! op1->IsConst())) SwapOps(); } AddToExpr::AddToExpr(Expr* arg_op1, Expr* arg_op2) : BinaryExpr(EXPR_ADD_TO, is_vector(arg_op1) ? arg_op1 : arg_op1->MakeLvalue(), arg_op2) { if ( IsError() ) return; TypeTag bt1 = op1->Type()->Tag(); TypeTag bt2 = op2->Type()->Tag(); if ( BothArithmetic(bt1, bt2) ) PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2)); else if ( BothString(bt1, bt2) ) SetType(base_type(bt1)); else if ( BothInterval(bt1, bt2) ) SetType(base_type(bt1)); else if ( IsVector(bt1) ) { bt1 = op1->Type()->AsVectorType()->YieldType()->Tag(); if ( IsArithmetic(bt1) ) { if ( IsArithmetic(bt2) ) { if ( bt2 != bt1 ) op2 = new ArithCoerceExpr(op2, bt1); SetType(op1->Type()->Ref()); } else ExprError("appending non-arithmetic to arithmetic vector"); } else if ( bt1 != bt2 && bt1 != TYPE_ANY ) ExprError(fmt("incompatible vector append: %s and %s", type_name(bt1), type_name(bt2))); else SetType(op1->Type()->Ref()); } else ExprError("requires two arithmetic or two string operands"); } Val* AddToExpr::Eval(Frame* f) const { Val* v1 = op1->Eval(f); if ( ! v1 ) return 0; Val* v2 = op2->Eval(f); if ( ! v2 ) { Unref(v1); return 0; } if ( is_vector(v1) ) { VectorVal* vv = v1->AsVectorVal(); if ( ! vv->Assign(vv->Size(), v2) ) RuntimeError("type-checking failed in vector append"); return v1; } Val* result = Fold(v1, v2); Unref(v1); Unref(v2); if ( result ) { op1->Assign(f, result); return result->Ref(); } else return 0; } SubExpr::SubExpr(Expr* arg_op1, Expr* arg_op2) : BinaryExpr(EXPR_SUB, arg_op1, arg_op2) { if ( IsError() ) return; const BroType* t1 = op1->Type(); const BroType* t2 = op2->Type(); TypeTag bt1 = t1->Tag(); if ( IsVector(bt1) ) bt1 = t1->AsVectorType()->YieldType()->Tag(); TypeTag bt2 = t2->Tag(); if ( IsVector(bt2) ) bt2 = t2->AsVectorType()->YieldType()->Tag(); BroType* base_result_type = 0; if ( bt1 == TYPE_TIME && bt2 == TYPE_INTERVAL ) base_result_type = base_type(bt1); else if ( bt1 == TYPE_TIME && bt2 == TYPE_TIME ) SetType(base_type(TYPE_INTERVAL)); else if ( bt1 == TYPE_INTERVAL && bt2 == TYPE_INTERVAL ) base_result_type = base_type(bt1); else if ( t1->IsSet() && t2->IsSet() ) { if ( same_type(t1, t2) ) SetType(op1->Type()->Ref()); else ExprError("incompatible \"set\" operands"); } else if ( BothArithmetic(bt1, bt2) ) PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2)); else ExprError("requires arithmetic operands"); if ( base_result_type ) { if ( is_vector(op1) || is_vector(op2) ) SetType(new VectorType(base_result_type)); else SetType(base_result_type); } } RemoveFromExpr::RemoveFromExpr(Expr* arg_op1, Expr* arg_op2) : BinaryExpr(EXPR_REMOVE_FROM, arg_op1->MakeLvalue(), arg_op2) { if ( IsError() ) return; TypeTag bt1 = op1->Type()->Tag(); TypeTag bt2 = op2->Type()->Tag(); if ( BothArithmetic(bt1, bt2) ) PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2)); else if ( BothInterval(bt1, bt2) ) SetType(base_type(bt1)); else ExprError("requires two arithmetic operands"); } Val* RemoveFromExpr::Eval(Frame* f) const { Val* v1 = op1->Eval(f); if ( ! v1 ) return 0; Val* v2 = op2->Eval(f); if ( ! v2 ) { Unref(v1); return 0; } Val* result = Fold(v1, v2); Unref(v1); Unref(v2); if ( result ) { op1->Assign(f, result); return result->Ref(); } else return 0; } TimesExpr::TimesExpr(Expr* arg_op1, Expr* arg_op2) : BinaryExpr(EXPR_TIMES, arg_op1, arg_op2) { if ( IsError() ) return; Canonicize(); TypeTag bt1 = op1->Type()->Tag(); if ( IsVector(bt1) ) bt1 = op1->Type()->AsVectorType()->YieldType()->Tag(); TypeTag bt2 = op2->Type()->Tag(); if ( IsVector(bt2) ) bt2 = op2->Type()->AsVectorType()->YieldType()->Tag(); if ( bt1 == TYPE_INTERVAL || bt2 == TYPE_INTERVAL ) { if ( IsArithmetic(bt1) || IsArithmetic(bt2) ) PromoteType(TYPE_INTERVAL, is_vector(op1) || is_vector(op2) ); else ExprError("multiplication with interval requires arithmetic operand"); } else if ( BothArithmetic(bt1, bt2) ) PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2)); else ExprError("requires arithmetic operands"); } void TimesExpr::Canonicize() { if ( expr_greater(op2, op1) || op2->Type()->Tag() == TYPE_INTERVAL || (op2->IsConst() && ! is_vector(op2->ExprVal()) && ! op1->IsConst()) ) SwapOps(); } DivideExpr::DivideExpr(Expr* arg_op1, Expr* arg_op2) : BinaryExpr(EXPR_DIVIDE, arg_op1, arg_op2) { if ( IsError() ) return; TypeTag bt1 = op1->Type()->Tag(); if ( IsVector(bt1) ) bt1 = op1->Type()->AsVectorType()->YieldType()->Tag(); TypeTag bt2 = op2->Type()->Tag(); if ( IsVector(bt2) ) bt2 = op2->Type()->AsVectorType()->YieldType()->Tag(); if ( bt1 == TYPE_INTERVAL || bt2 == TYPE_INTERVAL ) { if ( IsArithmetic(bt1) || IsArithmetic(bt2) ) PromoteType(TYPE_INTERVAL, is_vector(op1) || is_vector(op2)); else if ( bt1 == TYPE_INTERVAL && bt2 == TYPE_INTERVAL ) { if ( is_vector(op1) || is_vector(op2) ) SetType(new VectorType(base_type(TYPE_DOUBLE))); else SetType(base_type(TYPE_DOUBLE)); } else ExprError("division of interval requires arithmetic operand"); } else if ( BothArithmetic(bt1, bt2) ) PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2)); else if ( bt1 == TYPE_ADDR && ! is_vector(op2) && (bt2 == TYPE_COUNT || bt2 == TYPE_INT) ) SetType(base_type(TYPE_SUBNET)); else ExprError("requires arithmetic operands"); } Val* DivideExpr::AddrFold(Val* v1, Val* v2) const { uint32_t mask; if ( v2->Type()->Tag() == TYPE_COUNT ) mask = static_cast(v2->InternalUnsigned()); else mask = static_cast(v2->InternalInt()); auto& a = v1->AsAddr(); if ( a.GetFamily() == IPv4 ) { if ( mask > 32 ) RuntimeError(fmt("bad IPv4 subnet prefix length: %" PRIu32, mask)); } else { if ( mask > 128 ) RuntimeError(fmt("bad IPv6 subnet prefix length: %" PRIu32, mask)); } return new SubNetVal(a, mask); } ModExpr::ModExpr(Expr* arg_op1, Expr* arg_op2) : BinaryExpr(EXPR_MOD, arg_op1, arg_op2) { if ( IsError() ) return; TypeTag bt1 = op1->Type()->Tag(); if ( IsVector(bt1) ) bt1 = op1->Type()->AsVectorType()->YieldType()->Tag(); TypeTag bt2 = op2->Type()->Tag(); if ( IsVector(bt2) ) bt2 = op2->Type()->AsVectorType()->YieldType()->Tag(); if ( BothIntegral(bt1, bt2) ) PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2)); else ExprError("requires integral operands"); } BoolExpr::BoolExpr(BroExprTag arg_tag, Expr* arg_op1, Expr* arg_op2) : BinaryExpr(arg_tag, arg_op1, arg_op2) { if ( IsError() ) return; TypeTag bt1 = op1->Type()->Tag(); if ( IsVector(bt1) ) bt1 = op1->Type()->AsVectorType()->YieldType()->Tag(); TypeTag bt2 = op2->Type()->Tag(); if ( IsVector(bt2) ) bt2 = op2->Type()->AsVectorType()->YieldType()->Tag(); if ( BothBool(bt1, bt2) ) { if ( is_vector(op1) || is_vector(op2) ) { if ( ! (is_vector(op1) && is_vector(op2)) ) reporter->Warning("mixing vector and scalar operands is deprecated"); SetType(new VectorType(base_type(TYPE_BOOL))); } else SetType(base_type(TYPE_BOOL)); } else ExprError("requires boolean operands"); } Val* BoolExpr::DoSingleEval(Frame* f, Val* v1, Expr* op2) const { if ( ! v1 ) return 0; if ( tag == EXPR_AND_AND ) { if ( v1->IsZero() ) return v1; else { Unref(v1); return op2->Eval(f); } } else { if ( v1->IsZero() ) { Unref(v1); return op2->Eval(f); } else return v1; } } Val* BoolExpr::Eval(Frame* f) const { if ( IsError() ) return 0; Val* v1 = op1->Eval(f); if ( ! v1 ) return 0; int is_vec1 = is_vector(op1); int is_vec2 = is_vector(op2); // Handle scalar op scalar if ( ! is_vec1 && ! is_vec2 ) return DoSingleEval(f, v1, op2); // Handle scalar op vector or vector op scalar // We can't short-circuit everything since we need to eval // a vector in order to find out its length. if ( ! (is_vec1 && is_vec2) ) { // Only one is a vector. Val* scalar_v = 0; VectorVal* vector_v = 0; if ( is_vec1 ) { scalar_v = op2->Eval(f); vector_v = v1->AsVectorVal(); } else { scalar_v = v1; vector_v = op2->Eval(f)->AsVectorVal(); } if ( ! scalar_v || ! vector_v ) { Unref(v1); return 0; } VectorVal* result = 0; // It's either an EXPR_AND_AND or an EXPR_OR_OR. bool is_and = (tag == EXPR_AND_AND); if ( scalar_v->IsZero() == is_and ) { result = new VectorVal(Type()->AsVectorType()); result->Resize(vector_v->Size()); result->AssignRepeat(0, result->Size(), scalar_v); } else result = vector_v->Ref()->AsVectorVal(); Unref(scalar_v); Unref(vector_v); return result; } // Only case remaining: both are vectors. Val* v2 = op2->Eval(f); if ( ! v2 ) { Unref(v1); return 0; } VectorVal* vec_v1 = v1->AsVectorVal(); VectorVal* vec_v2 = v2->AsVectorVal(); if ( vec_v1->Size() != vec_v2->Size() ) { Unref(v1); Unref(v2); RuntimeError("vector operands have different sizes"); return 0; } VectorVal* result = new VectorVal(Type()->AsVectorType()); result->Resize(vec_v1->Size()); for ( unsigned int i = 0; i < vec_v1->Size(); ++i ) { Val* op1 = vec_v1->Lookup(i); Val* op2 = vec_v2->Lookup(i); if ( op1 && op2 ) { bool local_result = (tag == EXPR_AND_AND) ? (! op1->IsZero() && ! op2->IsZero()) : (! op1->IsZero() || ! op2->IsZero()); result->Assign(i, val_mgr->GetBool(local_result)); } else result->Assign(i, 0); } Unref(v1); Unref(v2); return result; } BitExpr::BitExpr(BroExprTag arg_tag, Expr* arg_op1, Expr* arg_op2) : BinaryExpr(arg_tag, arg_op1, arg_op2) { if ( IsError() ) return; const BroType* t1 = op1->Type(); const BroType* t2 = op2->Type(); TypeTag bt1 = t1->Tag(); if ( IsVector(bt1) ) bt1 = t1->AsVectorType()->YieldType()->Tag(); TypeTag bt2 = t2->Tag(); if ( IsVector(bt2) ) bt2 = t2->AsVectorType()->YieldType()->Tag(); if ( (bt1 == TYPE_COUNT || bt1 == TYPE_COUNTER) && (bt2 == TYPE_COUNT || bt2 == TYPE_COUNTER) ) { if ( bt1 == TYPE_COUNTER && bt2 == TYPE_COUNTER ) ExprError("cannot apply a bitwise operator to two \"counter\" operands"); else if ( is_vector(op1) || is_vector(op2) ) SetType(new VectorType(base_type(TYPE_COUNT))); else SetType(base_type(TYPE_COUNT)); } else if ( bt1 == TYPE_PATTERN ) { if ( bt2 != TYPE_PATTERN ) ExprError("cannot mix pattern and non-pattern operands"); else if ( tag == EXPR_XOR ) ExprError("'^' operator does not apply to patterns"); else SetType(base_type(TYPE_PATTERN)); } else if ( t1->IsSet() && t2->IsSet() ) { if ( same_type(t1, t2) ) SetType(op1->Type()->Ref()); else ExprError("incompatible \"set\" operands"); } else ExprError("requires \"count\" or compatible \"set\" operands"); } EqExpr::EqExpr(BroExprTag arg_tag, Expr* arg_op1, Expr* arg_op2) : BinaryExpr(arg_tag, arg_op1, arg_op2) { if ( IsError() ) return; Canonicize(); const BroType* t1 = op1->Type(); const BroType* t2 = op2->Type(); TypeTag bt1 = t1->Tag(); if ( IsVector(bt1) ) bt1 = t1->AsVectorType()->YieldType()->Tag(); TypeTag bt2 = t2->Tag(); if ( IsVector(bt2) ) bt2 = t2->AsVectorType()->YieldType()->Tag(); if ( is_vector(op1) || is_vector(op2) ) SetType(new VectorType(base_type(TYPE_BOOL))); else SetType(base_type(TYPE_BOOL)); if ( BothArithmetic(bt1, bt2) ) PromoteOps(max_type(bt1, bt2)); else if ( EitherArithmetic(bt1, bt2) && // Allow comparisons with zero. ((bt1 == TYPE_TIME && op2->IsZero()) || (bt2 == TYPE_TIME && op1->IsZero())) ) PromoteOps(TYPE_TIME); else if ( bt1 == bt2 ) { switch ( bt1 ) { case TYPE_BOOL: case TYPE_TIME: case TYPE_INTERVAL: case TYPE_STRING: case TYPE_PORT: case TYPE_ADDR: case TYPE_SUBNET: case TYPE_ERROR: break; case TYPE_ENUM: if ( ! same_type(t1, t2) ) ExprError("illegal enum comparison"); break; case TYPE_TABLE: if ( t1->IsSet() && t2->IsSet() ) { if ( ! same_type(t1, t2) ) ExprError("incompatible sets in comparison"); break; } // FALL THROUGH default: ExprError("illegal comparison"); } } else if ( bt1 == TYPE_PATTERN && bt2 == TYPE_STRING ) ; else ExprError("type clash in comparison"); } void EqExpr::Canonicize() { if ( op2->Type()->Tag() == TYPE_PATTERN ) SwapOps(); else if ( op1->Type()->Tag() == TYPE_PATTERN ) ; else if ( expr_greater(op2, op1) ) SwapOps(); } Val* EqExpr::Fold(Val* v1, Val* v2) const { if ( op1->Type()->Tag() == TYPE_PATTERN ) { RE_Matcher* re = v1->AsPattern(); const BroString* s = v2->AsString(); if ( tag == EXPR_EQ ) return val_mgr->GetBool(re->MatchExactly(s)); else return val_mgr->GetBool(! re->MatchExactly(s)); } else return BinaryExpr::Fold(v1, v2); } RelExpr::RelExpr(BroExprTag arg_tag, Expr* arg_op1, Expr* arg_op2) : BinaryExpr(arg_tag, arg_op1, arg_op2) { if ( IsError() ) return; Canonicize(); const BroType* t1 = op1->Type(); const BroType* t2 = op2->Type(); TypeTag bt1 = t1->Tag(); if ( IsVector(bt1) ) bt1 = t1->AsVectorType()->YieldType()->Tag(); TypeTag bt2 = t2->Tag(); if ( IsVector(bt2) ) bt2 = t2->AsVectorType()->YieldType()->Tag(); if ( is_vector(op1) || is_vector(op2) ) SetType(new VectorType(base_type(TYPE_BOOL))); else SetType(base_type(TYPE_BOOL)); if ( BothArithmetic(bt1, bt2) ) PromoteOps(max_type(bt1, bt2)); else if ( t1->IsSet() && t2->IsSet() ) { if ( ! same_type(t1, t2) ) ExprError("incompatible sets in comparison"); } else if ( bt1 != bt2 ) ExprError("operands must be of the same type"); else if ( bt1 != TYPE_TIME && bt1 != TYPE_INTERVAL && bt1 != TYPE_PORT && bt1 != TYPE_ADDR && bt1 != TYPE_STRING ) ExprError("illegal comparison"); } void RelExpr::Canonicize() { if ( tag == EXPR_GT ) { SwapOps(); tag = EXPR_LT; } else if ( tag == EXPR_GE ) { SwapOps(); tag = EXPR_LE; } } CondExpr::CondExpr(Expr* arg_op1, Expr* arg_op2, Expr* arg_op3) : Expr(EXPR_COND) { op1 = arg_op1; op2 = arg_op2; op3 = arg_op3; TypeTag bt1 = op1->Type()->Tag(); if ( IsVector(bt1) ) bt1 = op1->Type()->AsVectorType()->YieldType()->Tag(); if ( op1->IsError() || op2->IsError() || op3->IsError() ) SetError(); else if ( bt1 != TYPE_BOOL ) ExprError("requires boolean conditional"); else { TypeTag bt2 = op2->Type()->Tag(); if ( is_vector(op2) ) bt2 = op2->Type()->AsVectorType()->YieldType()->Tag(); TypeTag bt3 = op3->Type()->Tag(); if ( IsVector(bt3) ) bt3 = op3->Type()->AsVectorType()->YieldType()->Tag(); if ( is_vector(op1) && ! (is_vector(op2) && is_vector(op3)) ) { ExprError("vector conditional requires vector alternatives"); return; } if ( BothArithmetic(bt2, bt3) ) { TypeTag t = max_type(bt2, bt3); if ( bt2 != t ) op2 = new ArithCoerceExpr(op2, t); if ( bt3 != t ) op3 = new ArithCoerceExpr(op3, t); if ( is_vector(op2) ) SetType(new VectorType(base_type(t))); else SetType(base_type(t)); } else if ( bt2 != bt3 ) ExprError("operands must be of the same type"); else { if ( IsRecord(bt2) && IsRecord(bt3) && ! same_type(op2->Type(), op3->Type()) ) ExprError("operands must be of the same type"); else SetType(op2->Type()->Ref()); } } } CondExpr::~CondExpr() { Unref(op1); Unref(op2); Unref(op3); } Val* CondExpr::Eval(Frame* f) const { if ( ! is_vector(op1) ) { // scalar is easy Val* v = op1->Eval(f); int false_eval = v->IsZero(); Unref(v); return (false_eval ? op3 : op2)->Eval(f); } // Vector case: no mixed scalar/vector cases allowed Val* v1 = op1->Eval(f); if ( ! v1 ) return 0; Val* v2 = op2->Eval(f); if ( ! v2 ) return 0; Val* v3 = op3->Eval(f); if ( ! v3 ) return 0; VectorVal* cond = v1->AsVectorVal(); VectorVal* a = v2->AsVectorVal(); VectorVal* b = v3->AsVectorVal(); if ( cond->Size() != a->Size() || a->Size() != b->Size() ) { RuntimeError("vectors in conditional expression have different sizes"); return 0; } VectorVal* result = new VectorVal(Type()->AsVectorType()); result->Resize(cond->Size()); for ( unsigned int i = 0; i < cond->Size(); ++i ) { Val* local_cond = cond->Lookup(i); if ( local_cond ) result->Assign(i, local_cond->IsZero() ? b->Lookup(i) : a->Lookup(i)); else result->Assign(i, 0); } return result; } int CondExpr::IsPure() const { return op1->IsPure() && op2->IsPure() && op3->IsPure(); } TraversalCode CondExpr::Traverse(TraversalCallback* cb) const { TraversalCode tc = cb->PreExpr(this); HANDLE_TC_EXPR_PRE(tc); tc = op1->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = op2->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = op3->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = cb->PostExpr(this); HANDLE_TC_EXPR_POST(tc); } void CondExpr::ExprDescribe(ODesc* d) const { op1->Describe(d); d->AddSP(" ?"); op2->Describe(d); d->AddSP(" :"); op3->Describe(d); } RefExpr::RefExpr(Expr* arg_op) : UnaryExpr(EXPR_REF, arg_op) { if ( IsError() ) return; if ( ! ::is_assignable(op->Type()) ) ExprError("illegal assignment target"); else SetType(op->Type()->Ref()); } Expr* RefExpr::MakeLvalue() { return this; } void RefExpr::Assign(Frame* f, Val* v) { op->Assign(f, v); } AssignExpr::AssignExpr(Expr* arg_op1, Expr* arg_op2, int arg_is_init, Val* arg_val, attr_list* arg_attrs) : BinaryExpr(EXPR_ASSIGN, arg_is_init ? arg_op1 : arg_op1->MakeLvalue(), arg_op2) { val = 0; is_init = arg_is_init; if ( IsError() ) return; SetType(arg_val ? arg_val->Type()->Ref() : op1->Type()->Ref()); if ( is_init ) { SetLocationInfo(arg_op1->GetLocationInfo(), arg_op2->GetLocationInfo()); return; } // We discard the status from TypeCheck since it has already // generated error messages. (void) TypeCheck(arg_attrs); val = arg_val ? arg_val->Ref() : 0; SetLocationInfo(arg_op1->GetLocationInfo(), arg_op2->GetLocationInfo()); } AssignExpr::~AssignExpr() { Unref(val); } bool AssignExpr::TypeCheck(attr_list* attrs) { TypeTag bt1 = op1->Type()->Tag(); TypeTag bt2 = op2->Type()->Tag(); if ( bt1 == TYPE_LIST && bt2 == TYPE_ANY ) // This is ok because we cannot explicitly declare lists on // the script level. return true; if ( ((bt1 == TYPE_ENUM) ^ (bt2 == TYPE_ENUM)) ) { ExprError("can't convert to/from enumerated type"); return false; } if ( IsArithmetic(bt1) ) return TypeCheckArithmetics(bt1, bt2); if ( bt1 == TYPE_TIME && IsArithmetic(bt2) && op2->IsZero() ) { // Allow assignments to zero as a special case. op2 = new ArithCoerceExpr(op2, bt1); return true; } if ( bt1 == TYPE_TABLE && bt2 == bt1 && op2->Type()->AsTableType()->IsUnspecifiedTable() ) { op2 = new TableCoerceExpr(op2, op1->Type()->AsTableType()); return true; } if ( bt1 == TYPE_TABLE && op2->Tag() == EXPR_LIST ) { attr_list* attr_copy = 0; if ( attrs ) { attr_copy = new attr_list(attrs->length()); std::copy(attrs->begin(), attrs->end(), std::back_inserter(*attr_copy)); } bool empty_list_assignment = (op2->AsListExpr()->Exprs().length() == 0); if ( op1->Type()->IsSet() ) op2 = new SetConstructorExpr(op2->AsListExpr(), attr_copy); else op2 = new TableConstructorExpr(op2->AsListExpr(), attr_copy); if ( ! empty_list_assignment && ! same_type(op1->Type(), op2->Type()) ) { if ( op1->Type()->IsSet() ) ExprError("set type mismatch in assignment"); else ExprError("table type mismatch in assignment"); return false; } return true; } if ( bt1 == TYPE_VECTOR ) { if ( bt2 == bt1 && op2->Type()->AsVectorType()->IsUnspecifiedVector() ) { op2 = new VectorCoerceExpr(op2, op1->Type()->AsVectorType()); return true; } if ( op2->Tag() == EXPR_LIST ) { op2 = new VectorConstructorExpr(op2->AsListExpr(), op1->Type()); return true; } } if ( op1->Type()->Tag() == TYPE_RECORD && op2->Type()->Tag() == TYPE_RECORD ) { if ( same_type(op1->Type(), op2->Type()) ) { RecordType* rt1 = op1->Type()->AsRecordType(); RecordType* rt2 = op2->Type()->AsRecordType(); // Make sure the attributes match as well. for ( int i = 0; i < rt1->NumFields(); ++i ) { const TypeDecl* td1 = rt1->FieldDecl(i); const TypeDecl* td2 = rt2->FieldDecl(i); if ( same_attrs(td1->attrs, td2->attrs) ) // Everything matches. return true; } } // Need to coerce. op2 = new RecordCoerceExpr(op2, op1->Type()->AsRecordType()); return true; } if ( ! same_type(op1->Type(), op2->Type()) ) { if ( bt1 == TYPE_TABLE && bt2 == TYPE_TABLE ) { if ( op2->Tag() == EXPR_SET_CONSTRUCTOR ) { // Some elements in constructor list must not match, see if // we can create a new constructor now that the expected type // of LHS is known and let it do coercions where possible. SetConstructorExpr* sce = dynamic_cast(op2); if ( ! sce ) { ExprError("Failed typecast to SetConstructorExpr"); return false; } ListExpr* ctor_list = dynamic_cast(sce->Op()); if ( ! ctor_list ) { ExprError("Failed typecast to ListExpr"); return false; } attr_list* attr_copy = 0; if ( sce->Attrs() ) { attr_list* a = sce->Attrs()->Attrs(); attrs = new attr_list(a->length()); std::copy(a->begin(), a->end(), std::back_inserter(*attrs)); } int errors_before = reporter->Errors(); op2 = new SetConstructorExpr(ctor_list, attr_copy, op1->Type()); int errors_after = reporter->Errors(); if ( errors_after > errors_before ) { ExprError("type clash in assignment"); return false; } return true; } } ExprError("type clash in assignment"); return false; } return true; } bool AssignExpr::TypeCheckArithmetics(TypeTag bt1, TypeTag bt2) { if ( ! IsArithmetic(bt2) ) { char err[512]; snprintf(err, sizeof(err), "assignment of non-arithmetic value to arithmetic (%s/%s)", type_name(bt1), type_name(bt2)); ExprError(err); return false; } if ( bt1 == TYPE_DOUBLE ) { PromoteOps(TYPE_DOUBLE); return true; } if ( bt2 == TYPE_DOUBLE ) { Warn("dangerous assignment of double to integral"); op2 = new ArithCoerceExpr(op2, bt1); bt2 = op2->Type()->Tag(); } if ( bt1 == TYPE_INT ) PromoteOps(TYPE_INT); else { if ( bt2 == TYPE_INT ) { Warn("dangerous assignment of integer to count"); op2 = new ArithCoerceExpr(op2, bt1); bt2 = op2->Type()->Tag(); } // Assignment of count to counter or vice // versa is allowed, and requires no // coercion. } return true; } Val* AssignExpr::Eval(Frame* f) const { if ( is_init ) { RuntimeError("illegal assignment in initialization"); return 0; } Val* v = op2->Eval(f); if ( v ) { op1->Assign(f, v); return val ? val->Ref() : v->Ref(); } else return 0; } BroType* AssignExpr::InitType() const { if ( op1->Tag() != EXPR_LIST ) { Error("bad initializer"); return 0; } BroType* tl = op1->Type(); if ( tl->Tag() != TYPE_LIST ) Internal("inconsistent list expr in AssignExpr::InitType"); return new TableType(tl->Ref()->AsTypeList(), op2->Type()->Ref()); } void AssignExpr::EvalIntoAggregate(const BroType* t, Val* aggr, Frame* f) const { if ( IsError() ) return; TypeDecl td(0, 0); if ( IsRecordElement(&td) ) { if ( t->Tag() != TYPE_RECORD ) { RuntimeError("not a record initializer"); return; } const RecordType* rt = t->AsRecordType(); int field = rt->FieldOffset(td.id); if ( field < 0 ) { RuntimeError("no such field"); return; } RecordVal* aggr_r = aggr->AsRecordVal(); Val* v = op2->Eval(f); if ( v ) aggr_r->Assign(field, v); return; } if ( op1->Tag() != EXPR_LIST ) RuntimeError("bad table insertion"); TableVal* tv = aggr->AsTableVal(); Val* index = op1->Eval(f); Val* v = check_and_promote(op2->Eval(f), t->YieldType(), 1); if ( ! index || ! v ) return; if ( ! tv->Assign(index, v) ) RuntimeError("type clash in table assignment"); Unref(index); } Val* AssignExpr::InitVal(const BroType* t, Val* aggr) const { if ( ! aggr ) { Error("assignment in initialization"); return 0; } if ( IsError() ) return 0; TypeDecl td(0, 0); if ( IsRecordElement(&td) ) { if ( t->Tag() != TYPE_RECORD ) { Error("not a record initializer", t); return 0; } const RecordType* rt = t->AsRecordType(); int field = rt->FieldOffset(td.id); if ( field < 0 ) { Error("no such field"); return 0; } if ( aggr->Type()->Tag() != TYPE_RECORD ) Internal("bad aggregate in AssignExpr::InitVal"); RecordVal* aggr_r = aggr->AsRecordVal(); Val* v = op2->InitVal(rt->FieldType(td.id), 0); if ( ! v ) return 0; aggr_r->Assign(field, v); return v; } else if ( op1->Tag() == EXPR_LIST ) { if ( t->Tag() != TYPE_TABLE ) { Error("not a table initialization", t); return 0; } if ( aggr->Type()->Tag() != TYPE_TABLE ) Internal("bad aggregate in AssignExpr::InitVal"); TableVal* tv = aggr->AsTableVal(); const TableType* tt = tv->Type()->AsTableType(); const BroType* yt = tv->Type()->YieldType(); Val* index = op1->InitVal(tt->Indices(), 0); Val* v = op2->InitVal(yt, 0); if ( ! index || ! v ) return 0; if ( ! tv->ExpandAndInit(index, v) ) { Unref(index); Unref(tv); return 0; } Unref(index); return tv; } else { Error("illegal initializer"); return 0; } } int AssignExpr::IsRecordElement(TypeDecl* td) const { if ( op1->Tag() == EXPR_NAME ) { if ( td ) { const NameExpr* n = (const NameExpr*) op1; td->type = op2->Type()->Ref(); td->id = copy_string(n->Id()->Name()); } return 1; } else return 0; } int AssignExpr::IsPure() const { return 0; } IndexSliceAssignExpr::IndexSliceAssignExpr(Expr* op1, Expr* op2, int is_init) : AssignExpr(op1, op2, is_init) { } Val* IndexSliceAssignExpr::Eval(Frame* f) const { if ( is_init ) { RuntimeError("illegal assignment in initialization"); return 0; } Val* v = op2->Eval(f); if ( v ) { op1->Assign(f, v); Unref(v); } return 0; } IndexExpr::IndexExpr(Expr* arg_op1, ListExpr* arg_op2, bool arg_is_slice) : BinaryExpr(EXPR_INDEX, arg_op1, arg_op2), is_slice(arg_is_slice) { if ( IsError() ) return; if ( is_slice ) { if ( ! IsString(op1->Type()->Tag()) && ! IsVector(op1->Type()->Tag()) ) ExprError("slice notation indexing only supported for strings and vectors currently"); } else if ( IsString(op1->Type()->Tag()) ) { if ( arg_op2->Exprs().length() != 1 ) ExprError("invalid string index expression"); } if ( IsError() ) return; int match_type = op1->Type()->MatchesIndex(arg_op2); if ( match_type == DOES_NOT_MATCH_INDEX ) { std::string error_msg = fmt("expression with type '%s' is not a type that can be indexed", type_name(op1->Type()->Tag())); SetError(error_msg.data()); } else if ( ! op1->Type()->YieldType() ) { if ( IsString(op1->Type()->Tag()) && match_type == MATCHES_INDEX_SCALAR ) SetType(base_type(TYPE_STRING)); else // It's a set - so indexing it yields void. We don't // directly generate an error message, though, since this // expression might be part of an add/delete statement, // rather than yielding a value. SetType(base_type(TYPE_VOID)); } else if ( match_type == MATCHES_INDEX_SCALAR ) SetType(op1->Type()->YieldType()->Ref()); else if ( match_type == MATCHES_INDEX_VECTOR ) SetType(new VectorType(op1->Type()->YieldType()->Ref())); else ExprError("Unknown MatchesIndex() return value"); } int IndexExpr::CanAdd() const { if ( IsError() ) return 1; // avoid cascading the error report // "add" only allowed if our type is "set". return op1->Type()->IsSet(); } int IndexExpr::CanDel() const { if ( IsError() ) return 1; // avoid cascading the error report return op1->Type()->Tag() == TYPE_TABLE; } void IndexExpr::Add(Frame* f) { if ( IsError() ) return; Val* v1 = op1->Eval(f); if ( ! v1 ) return; Val* v2 = op2->Eval(f); if ( ! v2 ) { Unref(v1); return; } v1->AsTableVal()->Assign(v2, 0); Unref(v1); Unref(v2); } void IndexExpr::Delete(Frame* f) { if ( IsError() ) return; Val* v1 = op1->Eval(f); if ( ! v1 ) return; Val* v2 = op2->Eval(f); if ( ! v2 ) { Unref(v1); return; } Unref(v1->AsTableVal()->Delete(v2)); Unref(v1); Unref(v2); } Expr* IndexExpr::MakeLvalue() { if ( IsString(op1->Type()->Tag()) ) ExprError("cannot assign to string index expression"); return new RefExpr(this); } Val* IndexExpr::Eval(Frame* f) const { Val* v1 = op1->Eval(f); if ( ! v1 ) return 0; Val* v2 = op2->Eval(f); if ( ! v2 ) { Unref(v1); return 0; } Val* result; Val* indv = v2->AsListVal()->Index(0); if ( is_vector(indv) ) { VectorVal* v_v1 = v1->AsVectorVal(); VectorVal* v_v2 = indv->AsVectorVal(); VectorVal* v_result = new VectorVal(Type()->AsVectorType()); result = v_result; // Booleans select each element (or not). if ( IsBool(v_v2->Type()->YieldType()->Tag()) ) { if ( v_v1->Size() != v_v2->Size() ) { RuntimeError("size mismatch, boolean index and vector"); Unref(v_result); return 0; } for ( unsigned int i = 0; i < v_v2->Size(); ++i ) { if ( v_v2->Lookup(i)->AsBool() ) v_result->Assign(v_result->Size() + 1, v_v1->Lookup(i)); } } else { // The elements are indices. // ### Should handle negative indices here like // S does, i.e., by excluding those elements. // Probably only do this if *all* are negative. v_result->Resize(v_v2->Size()); for ( unsigned int i = 0; i < v_v2->Size(); ++i ) v_result->Assign(i, v_v1->Lookup(v_v2->Lookup(i)->CoerceToInt())); } } else result = Fold(v1, v2); Unref(v1); Unref(v2); return result; } static int get_slice_index(int idx, int len) { if ( abs(idx) > len ) idx = idx > 0 ? len : 0; // Clamp maximum positive/negative indices. else if ( idx < 0 ) idx += len; // Map to a positive index. return idx; } Val* IndexExpr::Fold(Val* v1, Val* v2) const { if ( IsError() ) return 0; Val* v = 0; switch ( v1->Type()->Tag() ) { case TYPE_VECTOR: { VectorVal* vect = v1->AsVectorVal(); const ListVal* lv = v2->AsListVal(); if ( lv->Length() == 1 ) v = vect->Lookup(v2); else { int len = vect->Size(); VectorVal* result = new VectorVal(vect->Type()->AsVectorType()); bro_int_t first = get_slice_index(lv->Index(0)->CoerceToInt(), len); bro_int_t last = get_slice_index(lv->Index(1)->CoerceToInt(), len); int sub_length = last - first; if ( sub_length >= 0 ) { result->Resize(sub_length); for ( int idx = first; idx < last; idx++ ) result->Assign(idx - first, vect->Lookup(idx)->Ref()); } return result; } } break; case TYPE_TABLE: v = v1->AsTableVal()->Lookup(v2); // Then, we jump into the TableVal here. break; case TYPE_STRING: { const ListVal* lv = v2->AsListVal(); const BroString* s = v1->AsString(); int len = s->Len(); BroString* substring = 0; if ( lv->Length() == 1 ) { bro_int_t idx = lv->Index(0)->AsInt(); if ( idx < 0 ) idx += len; // Out-of-range index will return null pointer. substring = s->GetSubstring(idx, 1); } else { bro_int_t first = get_slice_index(lv->Index(0)->AsInt(), len); bro_int_t last = get_slice_index(lv->Index(1)->AsInt(), len); int substring_len = last - first; if ( substring_len < 0 ) substring = 0; else substring = s->GetSubstring(first, substring_len); } return new StringVal(substring ? substring : new BroString("")); } default: RuntimeError("type cannot be indexed"); break; } if ( v ) return v->Ref(); RuntimeError("no such index"); return 0; } void IndexExpr::Assign(Frame* f, Val* v) { if ( IsError() ) { Unref(v); return; } Val* v1 = op1->Eval(f); if ( ! v1 ) { Unref(v); return; } Val* v2 = op2->Eval(f); if ( ! v1 || ! v2 ) { Unref(v1); Unref(v2); Unref(v); return; } switch ( v1->Type()->Tag() ) { case TYPE_VECTOR: { const ListVal* lv = v2->AsListVal(); VectorVal* v1_vect = v1->AsVectorVal(); if ( lv->Length() > 1 ) { auto len = v1_vect->Size(); bro_int_t first = get_slice_index(lv->Index(0)->CoerceToInt(), len); bro_int_t last = get_slice_index(lv->Index(1)->CoerceToInt(), len); // Remove the elements from the vector within the slice for ( auto idx = first; idx < last; idx++ ) v1_vect->Remove(first); // Insert the new elements starting at the first position VectorVal* v_vect = v->AsVectorVal(); for ( auto idx = 0u; idx < v_vect->Size(); idx++, first++ ) v1_vect->Insert(first, v_vect->Lookup(idx)->Ref()); } else if ( ! v1_vect->Assign(v2, v) ) { if ( v ) { ODesc d; v->Describe(&d); auto vt = v->Type(); auto vtt = vt->Tag(); std::string tn = vtt == TYPE_RECORD ? vt->GetName() : type_name(vtt); RuntimeErrorWithCallStack(fmt( "vector index assignment failed for invalid type '%s', value: %s", tn.data(), d.Description())); } else RuntimeErrorWithCallStack("assignment failed with null value"); } break; } case TYPE_TABLE: if ( ! v1->AsTableVal()->Assign(v2, v) ) { if ( v ) { ODesc d; v->Describe(&d); auto vt = v->Type(); auto vtt = vt->Tag(); std::string tn = vtt == TYPE_RECORD ? vt->GetName() : type_name(vtt); RuntimeErrorWithCallStack(fmt( "table index assignment failed for invalid type '%s', value: %s", tn.data(), d.Description())); } else RuntimeErrorWithCallStack("assignment failed with null value"); } break; case TYPE_STRING: RuntimeErrorWithCallStack("assignment via string index accessor not allowed"); break; default: RuntimeErrorWithCallStack("bad index expression type in assignment"); break; } Unref(v1); Unref(v2); Unref(v); } void IndexExpr::ExprDescribe(ODesc* d) const { op1->Describe(d); if ( d->IsReadable() ) d->Add("["); op2->Describe(d); if ( d->IsReadable() ) d->Add("]"); } TraversalCode IndexExpr::Traverse(TraversalCallback* cb) const { TraversalCode tc = cb->PreExpr(this); HANDLE_TC_EXPR_PRE(tc); tc = op1->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = op2->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = cb->PostExpr(this); HANDLE_TC_EXPR_POST(tc); } FieldExpr::FieldExpr(Expr* arg_op, const char* arg_field_name) : UnaryExpr(EXPR_FIELD, arg_op) { field_name = copy_string(arg_field_name); td = 0; field = 0; if ( IsError() ) return; if ( ! IsRecord(op->Type()->Tag()) ) ExprError("not a record"); else { RecordType* rt = op->Type()->AsRecordType(); field = rt->FieldOffset(field_name); if ( field < 0 ) ExprError("no such field in record"); else { SetType(rt->FieldType(field)->Ref()); td = rt->FieldDecl(field); if ( rt->IsFieldDeprecated(field) ) reporter->Warning("%s", rt->GetFieldDeprecationWarning(field, false).c_str()); } } } FieldExpr::~FieldExpr() { delete [] field_name; } Expr* FieldExpr::MakeLvalue() { return new RefExpr(this); } int FieldExpr::CanDel() const { return td->FindAttr(ATTR_DEFAULT) || td->FindAttr(ATTR_OPTIONAL); } void FieldExpr::Assign(Frame* f, Val* v) { if ( IsError() ) { Unref(v); return; } Val* op_v = op->Eval(f); if ( op_v ) { RecordVal* r = op_v->AsRecordVal(); r->Assign(field, v); Unref(r); } else Unref(v); } void FieldExpr::Delete(Frame* f) { Assign(f, 0); } Val* FieldExpr::Fold(Val* v) const { Val* result = v->AsRecordVal()->Lookup(field); if ( result ) return result->Ref(); // Check for &default. const Attr* def_attr = td ? td->FindAttr(ATTR_DEFAULT) : 0; if ( def_attr ) return def_attr->AttrExpr()->Eval(0); else { RuntimeError("field value missing"); assert(false); return 0; // Will never get here, but compiler can't tell. } } void FieldExpr::ExprDescribe(ODesc* d) const { op->Describe(d); if ( d->IsReadable() ) d->Add("$"); if ( IsError() ) d->Add(""); else if ( d->IsReadable() ) d->Add(field_name); else d->Add(field); } HasFieldExpr::HasFieldExpr(Expr* arg_op, const char* arg_field_name) : UnaryExpr(EXPR_HAS_FIELD, arg_op) { field_name = arg_field_name; field = 0; if ( IsError() ) return; if ( ! IsRecord(op->Type()->Tag()) ) ExprError("not a record"); else { RecordType* rt = op->Type()->AsRecordType(); field = rt->FieldOffset(field_name); if ( field < 0 ) ExprError("no such field in record"); else if ( rt->IsFieldDeprecated(field) ) reporter->Warning("%s", rt->GetFieldDeprecationWarning(field, true).c_str()); SetType(base_type(TYPE_BOOL)); } } HasFieldExpr::~HasFieldExpr() { delete field_name; } Val* HasFieldExpr::Fold(Val* v) const { RecordVal* rec_to_look_at; rec_to_look_at = v->AsRecordVal(); if ( ! rec_to_look_at ) return val_mgr->GetBool(0); RecordVal* r = rec_to_look_at->Ref()->AsRecordVal(); Val* ret = val_mgr->GetBool(r->Lookup(field) != 0); Unref(r); return ret; } void HasFieldExpr::ExprDescribe(ODesc* d) const { op->Describe(d); if ( d->IsReadable() ) d->Add("?$"); if ( IsError() ) d->Add(""); else if ( d->IsReadable() ) d->Add(field_name); else d->Add(field); } RecordConstructorExpr::RecordConstructorExpr(ListExpr* constructor_list) : UnaryExpr(EXPR_RECORD_CONSTRUCTOR, constructor_list) { if ( IsError() ) return; // Spin through the list, which should be comprised only of // record-field-assign expressions, and build up a // record type to associate with this constructor. const expr_list& exprs = constructor_list->Exprs(); type_decl_list* record_types = new type_decl_list(exprs.length()); for ( const auto& e : exprs ) { if ( e->Tag() != EXPR_FIELD_ASSIGN ) { Error("bad type in record constructor", e); SetError(); continue; } FieldAssignExpr* field = (FieldAssignExpr*) e; BroType* field_type = field->Type()->Ref(); char* field_name = copy_string(field->FieldName()); record_types->push_back(new TypeDecl(field_type, field_name)); } SetType(new RecordType(record_types)); } RecordConstructorExpr::~RecordConstructorExpr() { } Val* RecordConstructorExpr::InitVal(const BroType* t, Val* aggr) const { Val* v = Eval(0); if ( v ) { RecordVal* rv = v->AsRecordVal(); RecordVal* ar = rv->CoerceTo(t->AsRecordType(), aggr); if ( ar ) { Unref(rv); return ar; } } Error("bad record initializer"); return 0; } Val* RecordConstructorExpr::Fold(Val* v) const { ListVal* lv = v->AsListVal(); RecordType* rt = type->AsRecordType(); if ( lv->Length() != rt->NumFields() ) RuntimeErrorWithCallStack("inconsistency evaluating record constructor"); RecordVal* rv = new RecordVal(rt); for ( int i = 0; i < lv->Length(); ++i ) rv->Assign(i, lv->Index(i)->Ref()); return rv; } void RecordConstructorExpr::ExprDescribe(ODesc* d) const { d->Add("["); op->Describe(d); d->Add("]"); } TableConstructorExpr::TableConstructorExpr(ListExpr* constructor_list, attr_list* arg_attrs, BroType* arg_type) : UnaryExpr(EXPR_TABLE_CONSTRUCTOR, constructor_list) { attrs = 0; if ( IsError() ) return; if ( arg_type ) { if ( ! arg_type->IsTable() ) { Error("bad table constructor type", arg_type); SetError(); return; } SetType(arg_type->Ref()); } else { if ( constructor_list->Exprs().length() == 0 ) SetType(new TableType(new TypeList(base_type(TYPE_ANY)), 0)); else { SetType(init_type(constructor_list)); if ( ! type ) SetError(); else if ( type->Tag() != TYPE_TABLE || type->AsTableType()->IsSet() ) SetError("values in table(...) constructor do not specify a table"); } } attrs = arg_attrs ? new Attributes(arg_attrs, type, false, false) : 0; type_list* indices = type->AsTableType()->Indices()->Types(); const expr_list& cle = constructor_list->Exprs(); // check and promote all index expressions in ctor list for ( const auto& expr : cle ) { if ( expr->Tag() != EXPR_ASSIGN ) continue; Expr* idx_expr = expr->AsAssignExpr()->Op1(); if ( idx_expr->Tag() != EXPR_LIST ) continue; expr_list& idx_exprs = idx_expr->AsListExpr()->Exprs(); if ( idx_exprs.length() != indices->length() ) continue; loop_over_list(idx_exprs, j) { Expr* idx = idx_exprs[j]; if ( check_and_promote_expr(idx, (*indices)[j]) ) { if ( idx != idx_exprs[j] ) idx_exprs.replace(j, idx); continue; } ExprError("inconsistent types in table constructor"); } } } Val* TableConstructorExpr::Eval(Frame* f) const { if ( IsError() ) return 0; Val* aggr = new TableVal(Type()->AsTableType(), attrs); const expr_list& exprs = op->AsListExpr()->Exprs(); for ( const auto& expr : exprs ) expr->EvalIntoAggregate(type, aggr, f); aggr->AsTableVal()->InitDefaultFunc(f); return aggr; } Val* TableConstructorExpr::InitVal(const BroType* t, Val* aggr) const { if ( IsError() ) return 0; TableType* tt = Type()->AsTableType(); TableVal* tval = aggr ? aggr->AsTableVal() : new TableVal(tt, attrs); const expr_list& exprs = op->AsListExpr()->Exprs(); for ( const auto& expr : exprs ) expr->EvalIntoAggregate(t, tval, 0); return tval; } void TableConstructorExpr::ExprDescribe(ODesc* d) const { d->Add("table("); op->Describe(d); d->Add(")"); } SetConstructorExpr::SetConstructorExpr(ListExpr* constructor_list, attr_list* arg_attrs, BroType* arg_type) : UnaryExpr(EXPR_SET_CONSTRUCTOR, constructor_list) { attrs = 0; if ( IsError() ) return; if ( arg_type ) { if ( ! arg_type->IsSet() ) { Error("bad set constructor type", arg_type); SetError(); return; } SetType(arg_type->Ref()); } else { if ( constructor_list->Exprs().length() == 0 ) SetType(new ::SetType(new TypeList(base_type(TYPE_ANY)), 0)); else SetType(init_type(constructor_list)); } if ( ! type ) SetError(); else if ( type->Tag() != TYPE_TABLE || ! type->AsTableType()->IsSet() ) SetError("values in set(...) constructor do not specify a set"); attrs = arg_attrs ? new Attributes(arg_attrs, type, false, false) : 0; type_list* indices = type->AsTableType()->Indices()->Types(); expr_list& cle = constructor_list->Exprs(); if ( indices->length() == 1 ) { if ( ! check_and_promote_exprs_to_type(constructor_list, (*indices)[0]) ) ExprError("inconsistent type in set constructor"); } else if ( indices->length() > 1 ) { // Check/promote each expression in composite index. loop_over_list(cle, i) { Expr* ce = cle[i]; ListExpr* le = ce->AsListExpr(); if ( ce->Tag() == EXPR_LIST && check_and_promote_exprs(le, type->AsTableType()->Indices()) ) { if ( le != cle[i] ) cle.replace(i, le); continue; } ExprError("inconsistent types in set constructor"); } } } Val* SetConstructorExpr::Eval(Frame* f) const { if ( IsError() ) return 0; TableVal* aggr = new TableVal(type->AsTableType(), attrs); const expr_list& exprs = op->AsListExpr()->Exprs(); for ( const auto& expr : exprs ) { Val* element = expr->Eval(f); aggr->Assign(element, 0); Unref(element); } return aggr; } Val* SetConstructorExpr::InitVal(const BroType* t, Val* aggr) const { if ( IsError() ) return 0; const BroType* index_type = t->AsTableType()->Indices(); TableType* tt = Type()->AsTableType(); TableVal* tval = aggr ? aggr->AsTableVal() : new TableVal(tt, attrs); const expr_list& exprs = op->AsListExpr()->Exprs(); for ( const auto& e : exprs ) { Val* element = check_and_promote(e->Eval(0), index_type, 1); if ( ! element || ! tval->Assign(element, 0) ) { Error(fmt("initialization type mismatch in set"), e); return 0; } Unref(element); } return tval; } void SetConstructorExpr::ExprDescribe(ODesc* d) const { d->Add("set("); op->Describe(d); d->Add(")"); } VectorConstructorExpr::VectorConstructorExpr(ListExpr* constructor_list, BroType* arg_type) : UnaryExpr(EXPR_VECTOR_CONSTRUCTOR, constructor_list) { if ( IsError() ) return; if ( arg_type ) { if ( arg_type->Tag() != TYPE_VECTOR ) { Error("bad vector constructor type", arg_type); SetError(); return; } SetType(arg_type->Ref()); } else { if ( constructor_list->Exprs().length() == 0 ) { // vector(). // By default, assign VOID type here. A vector with // void type set is seen as an unspecified vector. SetType(new ::VectorType(base_type(TYPE_VOID))); return; } BroType* t = merge_type_list(constructor_list); if ( t ) { SetType(new VectorType(t->Ref())); Unref(t); } else { SetError(); return; } } if ( ! check_and_promote_exprs_to_type(constructor_list, type->AsVectorType()->YieldType()) ) ExprError("inconsistent types in vector constructor"); } Val* VectorConstructorExpr::Eval(Frame* f) const { if ( IsError() ) return 0; VectorVal* vec = new VectorVal(Type()->AsVectorType()); const expr_list& exprs = op->AsListExpr()->Exprs(); loop_over_list(exprs, i) { Expr* e = exprs[i]; Val* v = e->Eval(f); if ( ! vec->Assign(i, v) ) { RuntimeError(fmt("type mismatch at index %d", i)); return 0; } } return vec; } Val* VectorConstructorExpr::InitVal(const BroType* t, Val* aggr) const { if ( IsError() ) return 0; VectorType* vt = Type()->AsVectorType(); VectorVal* vec = aggr ? aggr->AsVectorVal() : new VectorVal(vt); const expr_list& exprs = op->AsListExpr()->Exprs(); loop_over_list(exprs, i) { Expr* e = exprs[i]; Val* v = check_and_promote(e->Eval(0), t->YieldType(), 1); if ( ! v || ! vec->Assign(i, v) ) { Error(fmt("initialization type mismatch at index %d", i), e); if ( ! aggr ) Unref(vec); return 0; } } return vec; } void VectorConstructorExpr::ExprDescribe(ODesc* d) const { d->Add("vector("); op->Describe(d); d->Add(")"); } FieldAssignExpr::FieldAssignExpr(const char* arg_field_name, Expr* value) : UnaryExpr(EXPR_FIELD_ASSIGN, value), field_name(arg_field_name) { op->Ref(); SetType(value->Type()->Ref()); } void FieldAssignExpr::EvalIntoAggregate(const BroType* t, Val* aggr, Frame* f) const { if ( IsError() ) return; RecordVal* rec = aggr->AsRecordVal(); const RecordType* rt = t->AsRecordType(); Val* v = op->Eval(f); if ( v ) { int idx = rt->FieldOffset(field_name.c_str()); if ( idx < 0 ) reporter->InternalError("Missing record field: %s", field_name.c_str()); rec->Assign(idx, v); } } int FieldAssignExpr::IsRecordElement(TypeDecl* td) const { if ( td ) { td->type = op->Type()->Ref(); td->id = copy_string(field_name.c_str()); } return 1; } void FieldAssignExpr::ExprDescribe(ODesc* d) const { d->Add("$"); d->Add(FieldName()); d->Add("="); op->Describe(d); } ArithCoerceExpr::ArithCoerceExpr(Expr* arg_op, TypeTag t) : UnaryExpr(EXPR_ARITH_COERCE, arg_op) { if ( IsError() ) return; TypeTag bt = op->Type()->Tag(); TypeTag vbt = bt; if ( IsVector(bt) ) { SetType(new VectorType(base_type(t))); vbt = op->Type()->AsVectorType()->YieldType()->Tag(); } else SetType(base_type(t)); if ( (bt == TYPE_ENUM) != (t == TYPE_ENUM) ) ExprError("can't convert to/from enumerated type"); else if ( ! IsArithmetic(t) && ! IsBool(t) && t != TYPE_TIME && t != TYPE_INTERVAL ) ExprError("bad coercion"); else if ( ! IsArithmetic(bt) && ! IsBool(bt) && ! IsArithmetic(vbt) && ! IsBool(vbt) ) ExprError("bad coercion value"); } Val* ArithCoerceExpr::FoldSingleVal(Val* v, InternalTypeTag t) const { switch ( t ) { case TYPE_INTERNAL_DOUBLE: return new Val(v->CoerceToDouble(), TYPE_DOUBLE); case TYPE_INTERNAL_INT: return val_mgr->GetInt(v->CoerceToInt()); case TYPE_INTERNAL_UNSIGNED: return val_mgr->GetCount(v->CoerceToUnsigned()); default: RuntimeErrorWithCallStack("bad type in CoerceExpr::Fold"); return 0; } } Val* ArithCoerceExpr::Fold(Val* v) const { InternalTypeTag t = type->InternalType(); if ( ! is_vector(v) ) { // Our result type might be vector, in which case this // invocation is being done per-element rather than on // the whole vector. Correct the type tag if necessary. if ( type->Tag() == TYPE_VECTOR ) t = Type()->AsVectorType()->YieldType()->InternalType(); return FoldSingleVal(v, t); } t = Type()->AsVectorType()->YieldType()->InternalType(); VectorVal* vv = v->AsVectorVal(); VectorVal* result = new VectorVal(Type()->AsVectorType()); for ( unsigned int i = 0; i < vv->Size(); ++i ) { Val* elt = vv->Lookup(i); if ( elt ) result->Assign(i, FoldSingleVal(elt, t)); else result->Assign(i, 0); } return result; } RecordCoerceExpr::RecordCoerceExpr(Expr* op, RecordType* r) : UnaryExpr(EXPR_RECORD_COERCE, op) { map_size = 0; map = 0; if ( IsError() ) return; SetType(r->Ref()); if ( Type()->Tag() != TYPE_RECORD ) ExprError("coercion to non-record"); else if ( op->Type()->Tag() != TYPE_RECORD ) ExprError("coercion of non-record to record"); else { RecordType* t_r = type->AsRecordType(); RecordType* sub_r = op->Type()->AsRecordType(); map_size = t_r->NumFields(); map = new int[map_size]; int i; for ( i = 0; i < map_size; ++i ) map[i] = -1; // -1 = field is not mapped for ( i = 0; i < sub_r->NumFields(); ++i ) { int t_i = t_r->FieldOffset(sub_r->FieldName(i)); if ( t_i < 0 ) { ExprError(fmt("orphaned field \"%s\" in record coercion", sub_r->FieldName(i))); break; } BroType* sub_t_i = sub_r->FieldType(i); BroType* sup_t_i = t_r->FieldType(t_i); if ( ! same_type(sup_t_i, sub_t_i) ) { auto is_arithmetic_promotable = [](BroType* sup, BroType* sub) -> bool { auto sup_tag = sup->Tag(); auto sub_tag = sub->Tag(); if ( ! BothArithmetic(sup_tag, sub_tag) ) return false; if ( sub_tag == TYPE_DOUBLE && IsIntegral(sup_tag) ) return false; if ( sub_tag == TYPE_INT && sup_tag == TYPE_COUNT ) return false; return true; }; auto is_record_promotable = [](BroType* sup, BroType* sub) -> bool { if ( sup->Tag() != TYPE_RECORD ) return false; if ( sub->Tag() != TYPE_RECORD ) return false; return record_promotion_compatible(sup->AsRecordType(), sub->AsRecordType()); }; if ( ! is_arithmetic_promotable(sup_t_i, sub_t_i) && ! is_record_promotable(sup_t_i, sub_t_i) ) { string error_msg = fmt( "type clash for field \"%s\"", sub_r->FieldName(i)); Error(error_msg.c_str(), sub_t_i); SetError(); break; } } map[t_i] = i; } if ( IsError() ) return; for ( i = 0; i < map_size; ++i ) { if ( map[i] == -1 ) { if ( ! t_r->FieldDecl(i)->FindAttr(ATTR_OPTIONAL) ) { string error_msg = fmt( "non-optional field \"%s\" missing", t_r->FieldName(i)); Error(error_msg.c_str()); SetError(); break; } } else if ( t_r->IsFieldDeprecated(i) ) reporter->Warning("%s", t_r->GetFieldDeprecationWarning(i, false).c_str()); } } } RecordCoerceExpr::~RecordCoerceExpr() { delete [] map; } Val* RecordCoerceExpr::InitVal(const BroType* t, Val* aggr) const { Val* v = Eval(0); if ( v ) { RecordVal* rv = v->AsRecordVal(); RecordVal* ar = rv->CoerceTo(t->AsRecordType(), aggr); if ( ar ) { Unref(rv); return ar; } } Error("bad record initializer"); return 0; } Val* RecordCoerceExpr::Fold(Val* v) const { RecordVal* val = new RecordVal(Type()->AsRecordType()); RecordVal* rv = v->AsRecordVal(); for ( int i = 0; i < map_size; ++i ) { if ( map[i] >= 0 ) { Val* rhs = rv->Lookup(map[i]); if ( ! rhs ) { const Attr* def = rv->Type()->AsRecordType()->FieldDecl( map[i])->FindAttr(ATTR_DEFAULT); if ( def ) rhs = def->AttrExpr()->Eval(0); } if ( rhs ) rhs = rhs->Ref(); assert(rhs || Type()->AsRecordType()->FieldDecl(i)->FindAttr(ATTR_OPTIONAL)); if ( ! rhs ) { // Optional field is missing. val->Assign(i, 0); continue; } BroType* rhs_type = rhs->Type(); RecordType* val_type = val->Type()->AsRecordType(); BroType* field_type = val_type->FieldType(i); if ( rhs_type->Tag() == TYPE_RECORD && field_type->Tag() == TYPE_RECORD && ! same_type(rhs_type, field_type) ) { Val* new_val = rhs->AsRecordVal()->CoerceTo( field_type->AsRecordType()); if ( new_val ) { Unref(rhs); rhs = new_val; } } else if ( BothArithmetic(rhs_type->Tag(), field_type->Tag()) && ! same_type(rhs_type, field_type) ) { if ( Val* new_val = check_and_promote(rhs, field_type, false, op->GetLocationInfo()) ) { // Don't call unref here on rhs because check_and_promote already called it. rhs = new_val; } else { Unref(val); RuntimeError("Failed type conversion"); } } val->Assign(i, rhs); } else { const Attr* def = Type()->AsRecordType()->FieldDecl(i)->FindAttr(ATTR_DEFAULT); if ( def ) { Val* def_val = def->AttrExpr()->Eval(0); BroType* def_type = def_val->Type(); BroType* field_type = Type()->AsRecordType()->FieldType(i); if ( def_type->Tag() == TYPE_RECORD && field_type->Tag() == TYPE_RECORD && ! same_type(def_type, field_type) ) { Val* tmp = def_val->AsRecordVal()->CoerceTo( field_type->AsRecordType()); if ( tmp ) { Unref(def_val); def_val = tmp; } } val->Assign(i, def_val); } else val->Assign(i, 0); } } return val; } TableCoerceExpr::TableCoerceExpr(Expr* op, TableType* r) : UnaryExpr(EXPR_TABLE_COERCE, op) { if ( IsError() ) return; SetType(r->Ref()); if ( Type()->Tag() != TYPE_TABLE ) ExprError("coercion to non-table"); else if ( op->Type()->Tag() != TYPE_TABLE ) ExprError("coercion of non-table/set to table/set"); } TableCoerceExpr::~TableCoerceExpr() { } Val* TableCoerceExpr::Fold(Val* v) const { TableVal* tv = v->AsTableVal(); if ( tv->Size() > 0 ) RuntimeErrorWithCallStack("coercion of non-empty table/set"); return new TableVal(Type()->AsTableType(), tv->Attrs()); } VectorCoerceExpr::VectorCoerceExpr(Expr* op, VectorType* v) : UnaryExpr(EXPR_VECTOR_COERCE, op) { if ( IsError() ) return; SetType(v->Ref()); if ( Type()->Tag() != TYPE_VECTOR ) ExprError("coercion to non-vector"); else if ( op->Type()->Tag() != TYPE_VECTOR ) ExprError("coercion of non-vector to vector"); } VectorCoerceExpr::~VectorCoerceExpr() { } Val* VectorCoerceExpr::Fold(Val* v) const { VectorVal* vv = v->AsVectorVal(); if ( vv->Size() > 0 ) RuntimeErrorWithCallStack("coercion of non-empty vector"); return new VectorVal(Type()->Ref()->AsVectorType()); } FlattenExpr::FlattenExpr(Expr* arg_op) : UnaryExpr(EXPR_FLATTEN, arg_op) { if ( IsError() ) return; BroType* t = op->Type(); if ( t->Tag() != TYPE_RECORD ) Internal("bad type in FlattenExpr::FlattenExpr"); RecordType* rt = t->AsRecordType(); num_fields = rt->NumFields(); TypeList* tl = new TypeList(); for ( int i = 0; i < num_fields; ++i ) tl->Append(rt->FieldType(i)->Ref()); Unref(rt); SetType(tl); } Val* FlattenExpr::Fold(Val* v) const { RecordVal* rv = v->AsRecordVal(); ListVal* l = new ListVal(TYPE_ANY); for ( int i = 0; i < num_fields; ++i ) { Val* fv = rv->Lookup(i); if ( fv ) { l->Append(fv->Ref()); continue; } const RecordType* rv_t = rv->Type()->AsRecordType(); const Attr* fa = rv_t->FieldDecl(i)->FindAttr(ATTR_DEFAULT); if ( fa ) l->Append(fa->AttrExpr()->Eval(0)); else RuntimeError("missing field value"); } return l; } ScheduleTimer::ScheduleTimer(EventHandlerPtr arg_event, val_list* arg_args, double t, TimerMgr* arg_tmgr) : Timer(t, TIMER_SCHEDULE), event(arg_event), args(std::move(*arg_args)), tmgr(arg_tmgr) { delete arg_args; } ScheduleTimer::~ScheduleTimer() { } void ScheduleTimer::Dispatch(double /* t */, int /* is_expire */) { mgr.QueueEvent(event, std::move(args), SOURCE_LOCAL, 0, tmgr); } ScheduleExpr::ScheduleExpr(Expr* arg_when, EventExpr* arg_event) : Expr(EXPR_SCHEDULE) { when = arg_when; event = arg_event; if ( IsError() || when->IsError() || event->IsError() ) return; TypeTag bt = when->Type()->Tag(); if ( bt != TYPE_TIME && bt != TYPE_INTERVAL ) ExprError("schedule expression requires a time or time interval"); else SetType(base_type(TYPE_TIMER)); } ScheduleExpr::~ScheduleExpr() { Unref(when); Unref(event); } int ScheduleExpr::IsPure() const { return 0; } Val* ScheduleExpr::Eval(Frame* f) const { if ( terminating ) return 0; Val* when_val = when->Eval(f); if ( ! when_val ) return 0; double dt = when_val->InternalDouble(); if ( when->Type()->Tag() == TYPE_INTERVAL ) dt += network_time; val_list* args = eval_list(f, event->Args()); if ( args ) { TimerMgr* tmgr = mgr.CurrentTimerMgr(); if ( ! tmgr ) tmgr = timer_mgr; tmgr->Add(new ScheduleTimer(event->Handler(), args, dt, tmgr)); } Unref(when_val); return 0; } TraversalCode ScheduleExpr::Traverse(TraversalCallback* cb) const { TraversalCode tc = cb->PreExpr(this); HANDLE_TC_EXPR_PRE(tc); tc = when->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = event->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = cb->PostExpr(this); HANDLE_TC_EXPR_POST(tc); } void ScheduleExpr::ExprDescribe(ODesc* d) const { if ( d->IsReadable() ) d->AddSP("schedule"); when->Describe(d); d->SP(); if ( d->IsReadable() ) { d->Add("{"); d->PushIndent(); event->Describe(d); d->PopIndent(); d->Add("}"); } else event->Describe(d); } InExpr::InExpr(Expr* arg_op1, Expr* arg_op2) : BinaryExpr(EXPR_IN, arg_op1, arg_op2) { if ( IsError() ) return; if ( op1->Type()->Tag() == TYPE_PATTERN ) { if ( op2->Type()->Tag() != TYPE_STRING ) { op2->Type()->Error("pattern requires string index", op1); SetError(); } else SetType(base_type(TYPE_BOOL)); } else if ( op1->Type()->Tag() == TYPE_RECORD ) { if ( op2->Type()->Tag() != TYPE_TABLE ) { op2->Type()->Error("table/set required"); SetError(); } else { const BroType* t1 = op1->Type(); const TypeList* it = op2->Type()->AsTableType()->Indices(); if ( ! same_type(t1, it) ) { t1->Error("indexing mismatch", op2->Type()); SetError(); } else SetType(base_type(TYPE_BOOL)); } } else if ( op1->Type()->Tag() == TYPE_STRING && op2->Type()->Tag() == TYPE_STRING ) SetType(base_type(TYPE_BOOL)); else { // Check for: in // in set[subnet] // in table[subnet] of ... if ( op1->Type()->Tag() == TYPE_ADDR ) { if ( op2->Type()->Tag() == TYPE_SUBNET ) { SetType(base_type(TYPE_BOOL)); return; } if ( op2->Type()->Tag() == TYPE_TABLE && op2->Type()->AsTableType()->IsSubNetIndex() ) { SetType(base_type(TYPE_BOOL)); return; } } if ( op1->Tag() != EXPR_LIST ) op1 = new ListExpr(op1); ListExpr* lop1 = op1->AsListExpr(); if ( ! op2->Type()->MatchesIndex(lop1) ) SetError("not an index type"); else { op1 = lop1; SetType(base_type(TYPE_BOOL)); } } } Val* InExpr::Fold(Val* v1, Val* v2) const { if ( v1->Type()->Tag() == TYPE_PATTERN ) { RE_Matcher* re = v1->AsPattern(); const BroString* s = v2->AsString(); return val_mgr->GetBool(re->MatchAnywhere(s) != 0); } if ( v2->Type()->Tag() == TYPE_STRING ) { const BroString* s1 = v1->AsString(); const BroString* s2 = v2->AsString(); // Could do better here e.g. Boyer-Moore if done repeatedly. return val_mgr->GetBool(strstr_n(s2->Len(), s2->Bytes(), s1->Len(), reinterpret_cast(s1->CheckString())) != -1); } if ( v1->Type()->Tag() == TYPE_ADDR && v2->Type()->Tag() == TYPE_SUBNET ) return val_mgr->GetBool(v2->AsSubNetVal()->Contains(v1->AsAddr())); Val* res; if ( is_vector(v2) ) res = v2->AsVectorVal()->Lookup(v1); else res = v2->AsTableVal()->Lookup(v1, false); if ( res ) return val_mgr->GetBool(1); else return val_mgr->GetBool(0); } CallExpr::CallExpr(Expr* arg_func, ListExpr* arg_args, bool in_hook) : Expr(EXPR_CALL) { func = arg_func; args = arg_args; if ( func->IsError() || args->IsError() ) { SetError(); return; } BroType* func_type = func->Type(); if ( ! IsFunc(func_type->Tag()) ) { func->Error("not a function"); SetError(); return; } if ( func_type->AsFuncType()->Flavor() == FUNC_FLAVOR_HOOK && ! in_hook ) { func->Error("hook cannot be called directly, use hook operator"); SetError(); return; } if ( ! func_type->MatchesIndex(args) ) SetError("argument type mismatch in function call"); else { BroType* yield = func_type->YieldType(); if ( ! yield ) { switch ( func_type->AsFuncType()->Flavor() ) { case FUNC_FLAVOR_FUNCTION: Error("function has no yield type"); SetError(); break; case FUNC_FLAVOR_EVENT: Error("event called in expression, use event statement instead"); SetError(); break; case FUNC_FLAVOR_HOOK: Error("hook has no yield type"); SetError(); break; default: Error("invalid function flavor"); SetError(); break; } } else SetType(yield->Ref()); // Check for call to built-ins that can be statically // analyzed. Val* func_val; if ( func->Tag() == EXPR_NAME && // This is cheating, but without it processing gets // quite confused regarding "value used but not set" // run-time errors when we apply this analysis during // parsing. Really we should instead do it after we've // parsed the entire set of scripts. streq(((NameExpr*) func)->Id()->Name(), "fmt") && // The following is needed because fmt might not yet // be bound as a name. did_builtin_init && (func_val = func->Eval(0)) ) { ::Func* f = func_val->AsFunc(); if ( f->GetKind() == Func::BUILTIN_FUNC && ! check_built_in_call((BuiltinFunc*) f, this) ) SetError(); } } } CallExpr::~CallExpr() { Unref(func); Unref(args); } int CallExpr::IsPure() const { if ( IsError() ) return 1; if ( ! func->IsPure() ) return 0; Val* func_val = func->Eval(0); if ( ! func_val ) return 0; ::Func* f = func_val->AsFunc(); // Only recurse for built-in functions, as recursing on script // functions can lead to infinite recursion if the function being // called here happens to be recursive (either directly // or indirectly). int pure = 0; if ( f->GetKind() == Func::BUILTIN_FUNC ) pure = f->IsPure() && args->IsPure(); Unref(func_val); return pure; } Val* CallExpr::Eval(Frame* f) const { if ( IsError() ) return 0; // If we are inside a trigger condition, we may have already been // called, delayed, and then produced a result which is now cached. // Check for that. if ( f ) { trigger::Trigger* trigger = f->GetTrigger(); if ( trigger ) { Val* v = trigger->Lookup(this); if ( v ) { DBG_LOG(DBG_NOTIFIERS, "%s: provides cached function result", trigger->Name()); return v->Ref(); } } } Val* ret = 0; Val* func_val = func->Eval(f); val_list* v = eval_list(f, args); if ( func_val && v ) { const ::Func* func = func_val->AsFunc(); const CallExpr* current_call = f ? f->GetCall() : 0; if ( f ) f->SetCall(this); ret = func->Call(v, f); if ( f ) f->SetCall(current_call); // Don't Unref() the arguments, as Func::Call already did that. delete v; } else delete_vals(v); Unref(func_val); return ret; } TraversalCode CallExpr::Traverse(TraversalCallback* cb) const { TraversalCode tc = cb->PreExpr(this); HANDLE_TC_EXPR_PRE(tc); tc = func->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = args->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = cb->PostExpr(this); HANDLE_TC_EXPR_POST(tc); } void CallExpr::ExprDescribe(ODesc* d) const { func->Describe(d); if ( d->IsReadable() || d->IsPortable() ) { d->Add("("); args->Describe(d); d->Add(")"); } else args->Describe(d); } LambdaExpr::LambdaExpr(std::unique_ptr arg_ing, id_list arg_outer_ids) : Expr(EXPR_LAMBDA) { ingredients = std::move(arg_ing); outer_ids = std::move(arg_outer_ids); SetType(ingredients->id->Type()->Ref()); // Install a dummy version of the function globally for use only // when broker provides a closure. ::Ref(ingredients->body); BroFunc* dummy_func = new BroFunc( ingredients->id, ingredients->body, ingredients->inits, ingredients->frame_size, ingredients->priority); dummy_func->SetOuterIDs(outer_ids); // Get the body's "string" representation. ODesc d; dummy_func->Describe(&d); for ( ; ; ) { uint64_t h[2]; internal_md5(d.Bytes(), d.Len(), reinterpret_cast(h)); my_name = "lambda_<" + std::to_string(h[0]) + ">"; auto fullname = make_full_var_name(current_module.data(), my_name.data()); auto id = global_scope()->Lookup(fullname); if ( id ) // Just try again to make a unique lambda name. If two peer // processes need to agree on the same lambda name, this assumes // they're loading the same scripts and thus have the same hash // collisions. d.Add(" "); else break; } // Install that in the global_scope ID* id = install_ID(my_name.c_str(), current_module.c_str(), true, false); // Update lamb's name dummy_func->SetName(my_name.c_str()); Val* v = new Val(dummy_func); Unref(dummy_func); id->SetVal(v); // id will unref v when its done. id->SetType(ingredients->id->Type()->Ref()); id->SetConst(); } Val* LambdaExpr::Eval(Frame* f) const { ::Ref(ingredients->body); BroFunc* lamb = new BroFunc( ingredients->id, ingredients->body, ingredients->inits, ingredients->frame_size, ingredients->priority); lamb->AddClosure(outer_ids, f); // Set name to corresponding dummy func. // Allows for lookups by the receiver. lamb->SetName(my_name.c_str()); auto rval = new Val(lamb); Unref(lamb); return rval; } void LambdaExpr::ExprDescribe(ODesc* d) const { d->Add(expr_name(Tag())); ingredients->body->Describe(d); } TraversalCode LambdaExpr::Traverse(TraversalCallback* cb) const { TraversalCode tc = cb->PreExpr(this); HANDLE_TC_EXPR_PRE(tc); tc = ingredients->body->Traverse(cb); HANDLE_TC_STMT_PRE(tc); tc = cb->PostExpr(this); HANDLE_TC_EXPR_POST(tc); } EventExpr::EventExpr(const char* arg_name, ListExpr* arg_args) : Expr(EXPR_EVENT) { name = arg_name; args = arg_args; EventHandler* h = event_registry->Lookup(name); if ( ! h ) { h = new EventHandler(name.c_str()); event_registry->Register(h); } h->SetUsed(); handler = h; if ( args->IsError() ) { SetError(); return; } FuncType* func_type = h->FType(); if ( ! func_type ) { Error("not an event"); SetError(); return; } if ( ! func_type->MatchesIndex(args) ) SetError("argument type mismatch in event invocation"); else { if ( func_type->YieldType() ) { Error("function invoked as an event"); SetError(); } } } EventExpr::~EventExpr() { Unref(args); } Val* EventExpr::Eval(Frame* f) const { if ( IsError() ) return 0; val_list* v = eval_list(f, args); mgr.QueueEvent(handler, std::move(*v)); delete v; return 0; } TraversalCode EventExpr::Traverse(TraversalCallback* cb) const { TraversalCode tc = cb->PreExpr(this); HANDLE_TC_EXPR_PRE(tc); tc = args->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); tc = cb->PostExpr(this); HANDLE_TC_EXPR_POST(tc); } void EventExpr::ExprDescribe(ODesc* d) const { d->Add(name.c_str()); if ( d->IsReadable() || d->IsPortable() ) { d->Add("("); args->Describe(d); d->Add(")"); } else args->Describe(d); } ListExpr::ListExpr() : Expr(EXPR_LIST) { SetType(new TypeList()); } ListExpr::ListExpr(Expr* e) : Expr(EXPR_LIST) { SetType(new TypeList()); Append(e); } ListExpr::~ListExpr() { for ( const auto& expr: exprs ) Unref(expr); } void ListExpr::Append(Expr* e) { exprs.push_back(e); ((TypeList*) type)->Append(e->Type()->Ref()); } int ListExpr::IsPure() const { for ( const auto& expr : exprs ) if ( ! expr->IsPure() ) return 0; return 1; } int ListExpr::AllConst() const { for ( const auto& expr : exprs ) if ( ! expr->IsConst() ) return 0; return 1; } Val* ListExpr::Eval(Frame* f) const { ListVal* v = new ListVal(TYPE_ANY); for ( const auto& expr : exprs ) { Val* ev = expr->Eval(f); if ( ! ev ) { RuntimeError("uninitialized list value"); Unref(v); return 0; } v->Append(ev); } return v; } BroType* ListExpr::InitType() const { if ( exprs.length() == 0 ) { Error("empty list in untyped initialization"); return 0; } if ( exprs[0]->IsRecordElement(0) ) { type_decl_list* types = new type_decl_list(exprs.length()); for ( const auto& expr : exprs ) { TypeDecl* td = new TypeDecl(0, 0); if ( ! expr->IsRecordElement(td) ) { expr->Error("record element expected"); delete td; delete types; return 0; } types->push_back(td); } return new RecordType(types); } else { TypeList* tl = new TypeList(); for ( const auto& e : exprs ) { BroType* ti = e->Type(); // Collapse any embedded sets or lists. if ( ti->IsSet() || ti->Tag() == TYPE_LIST ) { TypeList* til = ti->IsSet() ? ti->AsSetType()->Indices() : ti->AsTypeList(); if ( ! til->IsPure() || ! til->AllMatch(til->PureType(), 1) ) tl->Append(til->Ref()); else tl->Append(til->PureType()->Ref()); } else tl->Append(ti->Ref()); } return tl; } } Val* ListExpr::InitVal(const BroType* t, Val* aggr) const { // While fairly similar to the EvalIntoAggregate() code, // we keep this separate since it also deals with initialization // idioms such as embedded aggregates and cross-product // expansion. if ( IsError() ) return 0; // Check whether each element of this list itself matches t, // in which case we should expand as a ListVal. if ( ! aggr && type->AsTypeList()->AllMatch(t, 1) ) { ListVal* v = new ListVal(TYPE_ANY); const type_list* tl = type->AsTypeList()->Types(); if ( exprs.length() != tl->length() ) { Error("index mismatch", t); Unref(v); return 0; } loop_over_list(exprs, i) { Val* vi = exprs[i]->InitVal((*tl)[i], 0); if ( ! vi ) { Unref(v); return 0; } v->Append(vi); } return v; } if ( t->Tag() == TYPE_LIST ) { if ( aggr ) { Error("bad use of list in initialization", t); return 0; } const type_list* tl = t->AsTypeList()->Types(); if ( exprs.length() != tl->length() ) { Error("index mismatch", t); return 0; } ListVal* v = new ListVal(TYPE_ANY); loop_over_list(exprs, i) { Val* vi = exprs[i]->InitVal((*tl)[i], 0); if ( ! vi ) { Unref(v); return 0; } v->Append(vi); } return v; } if ( t->Tag() != TYPE_RECORD && t->Tag() != TYPE_TABLE && t->Tag() != TYPE_VECTOR ) { if ( exprs.length() == 1 ) // Allow "global x:int = { 5 }" return exprs[0]->InitVal(t, aggr); else { Error("aggregate initializer for scalar type", t); return 0; } } if ( ! aggr ) Internal("missing aggregate in ListExpr::InitVal"); if ( t->IsSet() ) return AddSetInit(t, aggr); if ( t->Tag() == TYPE_VECTOR ) { // v: vector = [10, 20, 30]; VectorVal* vec = aggr->AsVectorVal(); loop_over_list(exprs, i) { Expr* e = exprs[i]; check_and_promote_expr(e, vec->Type()->AsVectorType()->YieldType()); Val* v = e->Eval(0); if ( ! vec->Assign(i, v) ) { e->Error(fmt("type mismatch at index %d", i)); return 0; } } return aggr; } // If we got this far, then it's either a table or record // initialization. Both of those involve AssignExpr's, which // know how to add themselves to a table or record. Another // possibility is an expression that evaluates itself to a // table, which we can then add to the aggregate. for ( const auto& e : exprs ) { if ( e->Tag() == EXPR_ASSIGN || e->Tag() == EXPR_FIELD_ASSIGN ) { if ( ! e->InitVal(t, aggr) ) return 0; } else { if ( t->Tag() == TYPE_RECORD ) { e->Error("bad record initializer", t); return 0; } Val* v = e->Eval(0); if ( ! same_type(v->Type(), t) ) { v->Type()->Error("type clash in table initializer", t); return 0; } if ( ! v->AsTableVal()->AddTo(aggr->AsTableVal(), 1) ) return 0; } } return aggr; } Val* ListExpr::AddSetInit(const BroType* t, Val* aggr) const { if ( aggr->Type()->Tag() != TYPE_TABLE ) Internal("bad aggregate in ListExpr::InitVal"); TableVal* tv = aggr->AsTableVal(); const TableType* tt = tv->Type()->AsTableType(); const TypeList* it = tt->Indices(); for ( const auto& expr : exprs ) { Val* element; if ( expr->Type()->IsSet() ) // A set to flatten. element = expr->Eval(0); else if ( expr->Type()->Tag() == TYPE_LIST ) element = expr->InitVal(it, 0); else element = expr->InitVal((*it->Types())[0], 0); if ( ! element ) return 0; if ( element->Type()->IsSet() ) { if ( ! same_type(element->Type(), t) ) { element->Error("type clash in set initializer", t); return 0; } if ( ! element->AsTableVal()->AddTo(tv, 1) ) return 0; continue; } if ( expr->Type()->Tag() == TYPE_LIST ) element = check_and_promote(element, it, 1); else element = check_and_promote(element, (*it->Types())[0], 1); if ( ! element ) return 0; if ( ! tv->ExpandAndInit(element, 0) ) { Unref(element); Unref(tv); return 0; } Unref(element); } return tv; } void ListExpr::ExprDescribe(ODesc* d) const { d->AddCount(exprs.length()); loop_over_list(exprs, i) { if ( (d->IsReadable() || d->IsPortable()) && i > 0 ) d->Add(", "); exprs[i]->Describe(d); } } Expr* ListExpr::MakeLvalue() { for ( const auto & expr : exprs ) if ( expr->Tag() != EXPR_NAME ) ExprError("can only assign to list of identifiers"); return new RefExpr(this); } void ListExpr::Assign(Frame* f, Val* v) { ListVal* lv = v->AsListVal(); if ( exprs.length() != lv->Vals()->length() ) RuntimeError("mismatch in list lengths"); loop_over_list(exprs, i) exprs[i]->Assign(f, (*lv->Vals())[i]->Ref()); Unref(lv); Unref(v); } TraversalCode ListExpr::Traverse(TraversalCallback* cb) const { TraversalCode tc = cb->PreExpr(this); HANDLE_TC_EXPR_PRE(tc); for ( const auto& expr : exprs ) { tc = expr->Traverse(cb); HANDLE_TC_EXPR_PRE(tc); } tc = cb->PostExpr(this); HANDLE_TC_EXPR_POST(tc); } RecordAssignExpr::RecordAssignExpr(Expr* record, Expr* init_list, int is_init) { const expr_list& inits = init_list->AsListExpr()->Exprs(); RecordType* lhs = record->Type()->AsRecordType(); // The inits have two forms: // 1) other records -- use all matching field names+types // 2) a string indicating the field name, then (as the next element) // the value to use for that field. for ( const auto& init : inits ) { if ( init->Type()->Tag() == TYPE_RECORD ) { RecordType* t = init->Type()->AsRecordType(); for ( int j = 0; j < t->NumFields(); ++j ) { const char* field_name = t->FieldName(j); int field = lhs->FieldOffset(field_name); if ( field >= 0 && same_type(lhs->FieldType(field), t->FieldType(j)) ) { FieldExpr* fe_lhs = new FieldExpr(record, field_name); FieldExpr* fe_rhs = new FieldExpr(init, field_name); Append(get_assign_expr(fe_lhs->Ref(), fe_rhs->Ref(), is_init)); } } } else if ( init->Tag() == EXPR_FIELD_ASSIGN ) { FieldAssignExpr* rf = (FieldAssignExpr*) init; rf->Ref(); const char* field_name = ""; // rf->FieldName(); if ( lhs->HasField(field_name) ) { FieldExpr* fe_lhs = new FieldExpr(record, field_name); Expr* fe_rhs = rf->Op(); Append(get_assign_expr(fe_lhs->Ref(), fe_rhs, is_init)); } else { string s = "No such field '"; s += field_name; s += "'"; init_list->SetError(s.c_str()); } } else { init_list->SetError("bad record initializer"); return; } } } CastExpr::CastExpr(Expr* arg_op, BroType* t) : UnaryExpr(EXPR_CAST, arg_op) { auto stype = Op()->Type(); ::Ref(t); SetType(t); if ( ! can_cast_value_to_type(stype, t) ) ExprError("cast not supported"); } Val* CastExpr::Eval(Frame* f) const { if ( IsError() ) return 0; Val* v = op->Eval(f); if ( ! v ) return 0; Val* nv = cast_value_to_type(v, Type()); if ( nv ) { Unref(v); return nv; } ODesc d; d.Add("invalid cast of value with type '"); v->Type()->Describe(&d); d.Add("' to type '"); Type()->Describe(&d); d.Add("'"); if ( same_type(v->Type(), bro_broker::DataVal::ScriptDataType()) && ! v->AsRecordVal()->Lookup(0) ) d.Add(" (nil $data field)"); Unref(v); RuntimeError(d.Description()); return 0; // not reached. } void CastExpr::ExprDescribe(ODesc* d) const { Op()->Describe(d); d->Add(" as "); Type()->Describe(d); } IsExpr::IsExpr(Expr* arg_op, BroType* arg_t) : UnaryExpr(EXPR_IS, arg_op) { t = arg_t; ::Ref(t); SetType(base_type(TYPE_BOOL)); } IsExpr::~IsExpr() { Unref(t); } Val* IsExpr::Fold(Val* v) const { if ( IsError() ) return 0; if ( can_cast_value_to_type(v, t) ) return val_mgr->GetBool(1); else return val_mgr->GetBool(0); } void IsExpr::ExprDescribe(ODesc* d) const { Op()->Describe(d); d->Add(" is "); t->Describe(d); } Expr* get_assign_expr(Expr* op1, Expr* op2, int is_init) { if ( op1->Type()->Tag() == TYPE_RECORD && op2->Type()->Tag() == TYPE_LIST ) return new RecordAssignExpr(op1, op2, is_init); else if ( op1->Tag() == EXPR_INDEX && op1->AsIndexExpr()->IsSlice() ) return new IndexSliceAssignExpr(op1, op2, is_init); else return new AssignExpr(op1, op2, is_init); } int check_and_promote_expr(Expr*& e, BroType* t) { BroType* et = e->Type(); TypeTag e_tag = et->Tag(); TypeTag t_tag = t->Tag(); if ( t->Tag() == TYPE_ANY ) return 1; if ( EitherArithmetic(t_tag, e_tag) ) { if ( e_tag == t_tag ) return 1; if ( ! BothArithmetic(t_tag, e_tag) ) { t->Error("arithmetic mixed with non-arithmetic", e); return 0; } TypeTag mt = max_type(t_tag, e_tag); if ( mt != t_tag ) { t->Error("over-promotion of arithmetic value", e); return 0; } e = new ArithCoerceExpr(e, t_tag); return 1; } if ( t->Tag() == TYPE_RECORD && et->Tag() == TYPE_RECORD ) { RecordType* t_r = t->AsRecordType(); RecordType* et_r = et->AsRecordType(); if ( same_type(t, et) ) { // Make sure the attributes match as well. for ( int i = 0; i < t_r->NumFields(); ++i ) { const TypeDecl* td1 = t_r->FieldDecl(i); const TypeDecl* td2 = et_r->FieldDecl(i); if ( same_attrs(td1->attrs, td2->attrs) ) // Everything matches perfectly. return 1; } } if ( record_promotion_compatible(t_r, et_r) ) { e = new RecordCoerceExpr(e, t_r); return 1; } t->Error("incompatible record types", e); return 0; } if ( ! same_type(t, et) ) { if ( t->Tag() == TYPE_TABLE && et->Tag() == TYPE_TABLE && et->AsTableType()->IsUnspecifiedTable() ) { e = new TableCoerceExpr(e, t->AsTableType()); return 1; } if ( t->Tag() == TYPE_VECTOR && et->Tag() == TYPE_VECTOR && et->AsVectorType()->IsUnspecifiedVector() ) { e = new VectorCoerceExpr(e, t->AsVectorType()); return 1; } t->Error("type clash", e); return 0; } return 1; } int check_and_promote_exprs(ListExpr*& elements, TypeList* types) { expr_list& el = elements->Exprs(); const type_list* tl = types->Types(); if ( tl->length() == 1 && (*tl)[0]->Tag() == TYPE_ANY ) return 1; if ( el.length() != tl->length() ) { types->Error("indexing mismatch", elements); return 0; } loop_over_list(el, i) { Expr* e = el[i]; if ( ! check_and_promote_expr(e, (*tl)[i]) ) { e->Error("type mismatch", (*tl)[i]); return 0; } if ( e != el[i] ) el.replace(i, e); } return 1; } int check_and_promote_args(ListExpr*& args, RecordType* types) { expr_list& el = args->Exprs(); int ntypes = types->NumFields(); // give variadic BIFs automatic pass if ( ntypes == 1 && types->FieldDecl(0)->type->Tag() == TYPE_ANY ) return 1; if ( el.length() < ntypes ) { expr_list def_elements; // Start from rightmost parameter, work backward to fill in missing // arguments using &default expressions. for ( int i = ntypes - 1; i >= el.length(); --i ) { TypeDecl* td = types->FieldDecl(i); Attr* def_attr = td->attrs ? td->attrs->FindAttr(ATTR_DEFAULT) : 0; if ( ! def_attr ) { types->Error("parameter mismatch", args); return 0; } def_elements.push_front(def_attr->AttrExpr()); } for ( const auto& elem : def_elements ) el.push_back(elem->Ref()); } TypeList* tl = new TypeList(); for ( int i = 0; i < types->NumFields(); ++i ) tl->Append(types->FieldType(i)->Ref()); int rval = check_and_promote_exprs(args, tl); Unref(tl); return rval; } int check_and_promote_exprs_to_type(ListExpr*& elements, BroType* type) { expr_list& el = elements->Exprs(); if ( type->Tag() == TYPE_ANY ) return 1; loop_over_list(el, i) { Expr* e = el[i]; if ( ! check_and_promote_expr(e, type) ) { e->Error("type mismatch", type); return 0; } if ( e != el[i] ) el.replace(i, e); } return 1; } val_list* eval_list(Frame* f, const ListExpr* l) { const expr_list& e = l->Exprs(); val_list* v = new val_list(e.length()); bool success = true; for ( const auto& expr : e ) { Val* ev = expr->Eval(f); if ( ! ev ) { success = false; break; } v->push_back(ev); } if ( ! success ) { // Failure. for ( const auto& val : *v ) Unref(val); delete v; return 0; } else return v; } int expr_greater(const Expr* e1, const Expr* e2) { return int(e1->Tag()) > int(e2->Tag()); }