// See the file "COPYING" in the main distribution directory for copyright. #include #include "config.h" #include "Net.h" #include "NetVar.h" #include "Event.h" #include "ICMP.h" #include ICMP_Analyzer::ICMP_Analyzer(Connection* c) : TransportLayerAnalyzer(AnalyzerTag::ICMP, c) { icmp_conn_val = 0; c->SetInactivityTimeout(icmp_inactivity_timeout); request_len = reply_len = -1; } ICMP_Analyzer::ICMP_Analyzer(AnalyzerTag::Tag tag, Connection* c) : TransportLayerAnalyzer(tag, c) { icmp_conn_val = 0; c->SetInactivityTimeout(icmp_inactivity_timeout); request_len = reply_len = -1; } void ICMP_Analyzer::Done() { TransportLayerAnalyzer::Done(); Unref(icmp_conn_val); matcher_state.FinishEndpointMatcher(); } void ICMP_Analyzer::DeliverPacket(int len, const u_char* data, bool is_orig, int seq, const IP_Hdr* ip, int caplen) { assert(ip); TransportLayerAnalyzer::DeliverPacket(len, data, is_orig, seq, ip, caplen); // We need the min() here because Ethernet frame padding can lead to // caplen > len. if ( packet_contents ) // Subtract off the common part of ICMP header. PacketContents(data + 8, min(len, caplen) - 8); const struct icmp* icmpp = (const struct icmp*) data; if ( ! ignore_checksums && caplen >= len ) { int chksum = 0; switch ( ip->NextProto() ) { case IPPROTO_ICMP: chksum = icmp_checksum(icmpp, len); break; case IPPROTO_ICMPV6: chksum = icmp6_checksum(icmpp, ip, len); break; default: reporter->InternalError("unexpected IP proto in ICMP analyzer: %d", ip->NextProto()); break; } if ( chksum != 0xffff ) { Weird("bad_ICMP_checksum"); return; } } Conn()->SetLastTime(current_timestamp); if ( rule_matcher ) { if ( ! matcher_state.MatcherInitialized(is_orig) ) matcher_state.InitEndpointMatcher(this, ip, len, is_orig, 0); } type = icmpp->icmp_type; code = icmpp->icmp_code; // Move past common portion of ICMP header. data += 8; caplen -= 8; len -= 8; int& len_stat = is_orig ? request_len : reply_len; if ( len_stat < 0 ) len_stat = len; else len_stat += len; if ( ip->NextProto() == IPPROTO_ICMP ) NextICMP4(current_timestamp, icmpp, len, caplen, data, ip); else if ( ip->NextProto() == IPPROTO_ICMPV6 ) NextICMP6(current_timestamp, icmpp, len, caplen, data, ip); else reporter->InternalError("unexpected next protocol in ICMP::DeliverPacket()"); if ( caplen >= len ) ForwardPacket(len, data, is_orig, seq, ip, caplen); if ( rule_matcher ) matcher_state.Match(Rule::PAYLOAD, data, len, is_orig, false, false, true); } void ICMP_Analyzer::NextICMP4(double t, const struct icmp* icmpp, int len, int caplen, const u_char*& data, const IP_Hdr* ip_hdr ) { switch ( icmpp->icmp_type ) { case ICMP_ECHO: case ICMP_ECHOREPLY: Echo(t, icmpp, len, caplen, data, ip_hdr); break; case ICMP_UNREACH: case ICMP_TIMXCEED: Context4(t, icmpp, len, caplen, data, ip_hdr); break; default: ICMPEvent(icmp_sent, icmpp, len, 0, ip_hdr); break; } } void ICMP_Analyzer::NextICMP6(double t, const struct icmp* icmpp, int len, int caplen, const u_char*& data, const IP_Hdr* ip_hdr ) { switch ( icmpp->icmp_type ) { // Echo types. case ICMP6_ECHO_REQUEST: case ICMP6_ECHO_REPLY: Echo(t, icmpp, len, caplen, data, ip_hdr); break; // Error messages all have the same structure for their context, // and are handled by the same function. case ICMP6_PARAM_PROB: case ICMP6_TIME_EXCEEDED: case ICMP6_PACKET_TOO_BIG: case ICMP6_DST_UNREACH: Context6(t, icmpp, len, caplen, data, ip_hdr); break; // Router related messages. case ND_REDIRECT: Redirect(t, icmpp, len, caplen, data, ip_hdr); break; case ND_ROUTER_ADVERT: RouterAdvert(t, icmpp, len, caplen, data, ip_hdr); break; case ND_NEIGHBOR_ADVERT: NeighborAdvert(t, icmpp, len, caplen, data, ip_hdr); break; case ND_NEIGHBOR_SOLICIT: NeighborSolicit(t, icmpp, len, caplen, data, ip_hdr); break; case ND_ROUTER_SOLICIT: RouterSolicit(t, icmpp, len, caplen, data, ip_hdr); break; case ICMP6_ROUTER_RENUMBERING: ICMPEvent(icmp_sent, icmpp, len, 1, ip_hdr); break; #if 0 // Currently not specifically implemented. case MLD_LISTENER_QUERY: case MLD_LISTENER_REPORT: case MLD_LISTENER_REDUCTION: #endif default: // Error messages (i.e., ICMPv6 type < 128) all have // the same structure for their context, and are // handled by the same function. if ( icmpp->icmp_type < 128 ) Context6(t, icmpp, len, caplen, data, ip_hdr); else ICMPEvent(icmp_sent, icmpp, len, 1, ip_hdr); break; } } void ICMP_Analyzer::ICMPEvent(EventHandlerPtr f, const struct icmp* icmpp, int len, int icmpv6, const IP_Hdr* ip_hdr) { if ( ! f ) return; val_list* vl = new val_list; vl->append(BuildConnVal()); vl->append(BuildICMPVal(icmpp, len, icmpv6, ip_hdr)); ConnectionEvent(f, vl); } RecordVal* ICMP_Analyzer::BuildICMPVal(const struct icmp* icmpp, int len, int icmpv6, const IP_Hdr* ip_hdr) { if ( ! icmp_conn_val ) { icmp_conn_val = new RecordVal(icmp_conn); icmp_conn_val->Assign(0, new AddrVal(Conn()->OrigAddr())); icmp_conn_val->Assign(1, new AddrVal(Conn()->RespAddr())); icmp_conn_val->Assign(2, new Val(icmpp->icmp_type, TYPE_COUNT)); icmp_conn_val->Assign(3, new Val(icmpp->icmp_code, TYPE_COUNT)); icmp_conn_val->Assign(4, new Val(len, TYPE_COUNT)); icmp_conn_val->Assign(5, new Val(ip_hdr->TTL(), TYPE_COUNT)); icmp_conn_val->Assign(6, new Val(icmpv6, TYPE_BOOL)); } Ref(icmp_conn_val); return icmp_conn_val; } TransportProto ICMP_Analyzer::GetContextProtocol(const IP_Hdr* ip_hdr, uint32* src_port, uint32* dst_port) { const u_char* transport_hdr; uint32 ip_hdr_len = ip_hdr->HdrLen(); bool ip4 = ip_hdr->IP4_Hdr(); if ( ip4 ) transport_hdr = ((u_char *) ip_hdr->IP4_Hdr() + ip_hdr_len); else transport_hdr = ((u_char *) ip_hdr->IP6_Hdr() + ip_hdr_len); TransportProto proto; switch ( ip_hdr->NextProto() ) { case 1: proto = TRANSPORT_ICMP; break; case 6: proto = TRANSPORT_TCP; break; case 17: proto = TRANSPORT_UDP; break; case 58: proto = TRANSPORT_ICMP; break; default: proto = TRANSPORT_UNKNOWN; break; } switch ( proto ) { case TRANSPORT_ICMP: { const struct icmp* icmpp = (const struct icmp *) transport_hdr; bool is_one_way; // dummy *src_port = ntohs(icmpp->icmp_type); if ( ip4 ) *dst_port = ntohs(ICMP4_counterpart(icmpp->icmp_type, icmpp->icmp_code, is_one_way)); else *dst_port = ntohs(ICMP6_counterpart(icmpp->icmp_type, icmpp->icmp_code, is_one_way)); break; } case TRANSPORT_TCP: { const struct tcphdr* tp = (const struct tcphdr *) transport_hdr; *src_port = ntohs(tp->th_sport); *dst_port = ntohs(tp->th_dport); break; } case TRANSPORT_UDP: { const struct udphdr* up = (const struct udphdr *) transport_hdr; *src_port = ntohs(up->uh_sport); *dst_port = ntohs(up->uh_dport); break; } default: *src_port = *dst_port = ntohs(0); break; } return proto; } RecordVal* ICMP_Analyzer::ExtractICMP4Context(int len, const u_char*& data) { const IP_Hdr ip_hdr_data((const struct ip*) data, false); const IP_Hdr* ip_hdr = &ip_hdr_data; uint32 ip_hdr_len = ip_hdr->HdrLen(); uint32 ip_len, frag_offset; TransportProto proto = TRANSPORT_UNKNOWN; int DF, MF, bad_hdr_len, bad_checksum; IPAddr src_addr, dst_addr; uint32 src_port, dst_port; if ( len < (int)sizeof(struct ip) || ip_hdr_len > uint32(len) ) { // We don't have an entire IP header. bad_hdr_len = 1; ip_len = frag_offset = 0; DF = MF = bad_checksum = 0; src_port = dst_port = 0; } else { bad_hdr_len = 0; ip_len = ip_hdr->TotalLen(); bad_checksum = (ones_complement_checksum((void*) ip_hdr->IP4_Hdr(), ip_hdr_len, 0) != 0xffff); src_addr = ip_hdr->SrcAddr(); dst_addr = ip_hdr->DstAddr(); DF = ip_hdr->DF(); MF = ip_hdr->MF(); frag_offset = ip_hdr->FragOffset(); if ( uint32(len) >= ip_hdr_len + 4 ) proto = GetContextProtocol(ip_hdr, &src_port, &dst_port); else { // 4 above is the magic number meaning that both // port numbers are included in the ICMP. src_port = dst_port = 0; bad_hdr_len = 1; } } RecordVal* iprec = new RecordVal(icmp_context); RecordVal* id_val = new RecordVal(conn_id); id_val->Assign(0, new AddrVal(src_addr)); id_val->Assign(1, new PortVal(src_port, proto)); id_val->Assign(2, new AddrVal(dst_addr)); id_val->Assign(3, new PortVal(dst_port, proto)); iprec->Assign(0, id_val); iprec->Assign(1, new Val(ip_len, TYPE_COUNT)); iprec->Assign(2, new Val(proto, TYPE_COUNT)); iprec->Assign(3, new Val(frag_offset, TYPE_COUNT)); iprec->Assign(4, new Val(bad_hdr_len, TYPE_BOOL)); iprec->Assign(5, new Val(bad_checksum, TYPE_BOOL)); iprec->Assign(6, new Val(MF, TYPE_BOOL)); iprec->Assign(7, new Val(DF, TYPE_BOOL)); return iprec; } RecordVal* ICMP_Analyzer::ExtractICMP6Context(int len, const u_char*& data) { int DF = 0, MF = 0, bad_hdr_len = 0; TransportProto proto = TRANSPORT_UNKNOWN; IPAddr src_addr; IPAddr dst_addr; uint32 ip_len, frag_offset = 0; uint32 src_port, dst_port; if ( len < (int)sizeof(struct ip6_hdr) ) { bad_hdr_len = 1; ip_len = 0; src_port = dst_port = 0; } else { const IP_Hdr ip_hdr_data((const struct ip6_hdr*) data, false, len); const IP_Hdr* ip_hdr = &ip_hdr_data; ip_len = ip_hdr->TotalLen(); src_addr = ip_hdr->SrcAddr(); dst_addr = ip_hdr->DstAddr(); frag_offset = ip_hdr->FragOffset(); MF = ip_hdr->MF(); DF = ip_hdr->DF(); if ( uint32(len) >= uint32(ip_hdr->HdrLen() + 4) ) proto = GetContextProtocol(ip_hdr, &src_port, &dst_port); else { // 4 above is the magic number meaning that both // port numbers are included in the ICMP. src_port = dst_port = 0; bad_hdr_len = 1; } } RecordVal* iprec = new RecordVal(icmp_context); RecordVal* id_val = new RecordVal(conn_id); id_val->Assign(0, new AddrVal(src_addr)); id_val->Assign(1, new PortVal(src_port, proto)); id_val->Assign(2, new AddrVal(dst_addr)); id_val->Assign(3, new PortVal(dst_port, proto)); iprec->Assign(0, id_val); iprec->Assign(1, new Val(ip_len, TYPE_COUNT)); iprec->Assign(2, new Val(proto, TYPE_COUNT)); iprec->Assign(3, new Val(frag_offset, TYPE_COUNT)); iprec->Assign(4, new Val(bad_hdr_len, TYPE_BOOL)); // bad_checksum is always false since IPv6 layer doesn't have a checksum. iprec->Assign(5, new Val(0, TYPE_BOOL)); iprec->Assign(6, new Val(MF, TYPE_BOOL)); iprec->Assign(7, new Val(DF, TYPE_BOOL)); return iprec; } bool ICMP_Analyzer::IsReuse(double /* t */, const u_char* /* pkt */) { return 0; } void ICMP_Analyzer::Describe(ODesc* d) const { d->Add(Conn()->StartTime()); d->Add("("); d->Add(Conn()->LastTime()); d->AddSP(")"); d->Add(Conn()->OrigAddr()); d->Add("."); d->Add(type); d->Add("."); d->Add(code); d->SP(); d->AddSP("->"); d->Add(Conn()->RespAddr()); } void ICMP_Analyzer::UpdateConnVal(RecordVal *conn_val) { int orig_endp_idx = connection_type->FieldOffset("orig"); int resp_endp_idx = connection_type->FieldOffset("resp"); RecordVal *orig_endp = conn_val->Lookup(orig_endp_idx)->AsRecordVal(); RecordVal *resp_endp = conn_val->Lookup(resp_endp_idx)->AsRecordVal(); UpdateEndpointVal(orig_endp, 1); UpdateEndpointVal(resp_endp, 0); // Call children's UpdateConnVal Analyzer::UpdateConnVal(conn_val); } void ICMP_Analyzer::UpdateEndpointVal(RecordVal* endp, int is_orig) { Conn()->EnableStatusUpdateTimer(); int size = is_orig ? request_len : reply_len; if ( size < 0 ) { endp->Assign(0, new Val(0, TYPE_COUNT)); endp->Assign(1, new Val(int(ICMP_INACTIVE), TYPE_COUNT)); } else { endp->Assign(0, new Val(size, TYPE_COUNT)); endp->Assign(1, new Val(int(ICMP_ACTIVE), TYPE_COUNT)); } } unsigned int ICMP_Analyzer::MemoryAllocation() const { return Analyzer::MemoryAllocation() + padded_sizeof(*this) - padded_sizeof(Connection) + (icmp_conn_val ? icmp_conn_val->MemoryAllocation() : 0); } void ICMP_Analyzer::Echo(double t, const struct icmp* icmpp, int len, int caplen, const u_char*& data, const IP_Hdr* ip_hdr) { // For handling all Echo related ICMP messages EventHandlerPtr f = 0; if ( ip_hdr->NextProto() == IPPROTO_ICMPV6 ) f = (icmpp->icmp_type == ICMP6_ECHO_REQUEST) ? icmp_echo_request : icmp_echo_reply; else f = (icmpp->icmp_type == ICMP_ECHO) ? icmp_echo_request : icmp_echo_reply; if ( ! f ) return; int iid = ntohs(icmpp->icmp_hun.ih_idseq.icd_id); int iseq = ntohs(icmpp->icmp_hun.ih_idseq.icd_seq); BroString* payload = new BroString(data, caplen, 0); val_list* vl = new val_list; vl->append(BuildConnVal()); vl->append(BuildICMPVal(icmpp, len, ip_hdr->NextProto() != IPPROTO_ICMP, ip_hdr)); vl->append(new Val(iid, TYPE_COUNT)); vl->append(new Val(iseq, TYPE_COUNT)); vl->append(new StringVal(payload)); ConnectionEvent(f, vl); } void ICMP_Analyzer::RouterAdvert(double t, const struct icmp* icmpp, int len, int caplen, const u_char*& data, const IP_Hdr* ip_hdr) { EventHandlerPtr f = icmp_router_advertisement; uint32 reachable = 0, retrans = 0; if ( caplen >= (int)sizeof(reachable) ) memcpy(&reachable, data, sizeof(reachable)); if ( caplen >= (int)sizeof(reachable) + (int)sizeof(retrans) ) memcpy(&retrans, data + sizeof(reachable), sizeof(retrans)); val_list* vl = new val_list; vl->append(BuildConnVal()); vl->append(BuildICMPVal(icmpp, len, 1, ip_hdr)); vl->append(new Val(icmpp->icmp_num_addrs, TYPE_COUNT)); // Cur Hop Limit vl->append(new Val(icmpp->icmp_wpa & 0x80, TYPE_BOOL)); // Managed vl->append(new Val(icmpp->icmp_wpa & 0x40, TYPE_BOOL)); // Other vl->append(new Val(icmpp->icmp_wpa & 0x20, TYPE_BOOL)); // Home Agent vl->append(new Val((icmpp->icmp_wpa & 0x18)>>3, TYPE_COUNT)); // Pref vl->append(new Val(icmpp->icmp_wpa & 0x04, TYPE_BOOL)); // Proxy vl->append(new Val(icmpp->icmp_wpa & 0x02, TYPE_COUNT)); // Reserved vl->append(new IntervalVal((double)ntohs(icmpp->icmp_lifetime), Seconds)); vl->append(new IntervalVal((double)ntohl(reachable), Milliseconds)); vl->append(new IntervalVal((double)ntohl(retrans), Milliseconds)); int opt_offset = sizeof(reachable) + sizeof(retrans); vl->append(BuildNDOptionsVal(caplen - opt_offset, data + opt_offset)); ConnectionEvent(f, vl); } void ICMP_Analyzer::NeighborAdvert(double t, const struct icmp* icmpp, int len, int caplen, const u_char*& data, const IP_Hdr* ip_hdr) { EventHandlerPtr f = icmp_neighbor_advertisement; IPAddr tgtaddr; if ( caplen >= (int)sizeof(in6_addr) ) tgtaddr = IPAddr(*((const in6_addr*)data)); val_list* vl = new val_list; vl->append(BuildConnVal()); vl->append(BuildICMPVal(icmpp, len, 1, ip_hdr)); vl->append(new Val(icmpp->icmp_num_addrs & 0x80, TYPE_BOOL)); // Router vl->append(new Val(icmpp->icmp_num_addrs & 0x40, TYPE_BOOL)); // Solicited vl->append(new Val(icmpp->icmp_num_addrs & 0x20, TYPE_BOOL)); // Override vl->append(new AddrVal(tgtaddr)); int opt_offset = sizeof(in6_addr); vl->append(BuildNDOptionsVal(caplen - opt_offset, data + opt_offset)); ConnectionEvent(f, vl); } void ICMP_Analyzer::NeighborSolicit(double t, const struct icmp* icmpp, int len, int caplen, const u_char*& data, const IP_Hdr* ip_hdr) { EventHandlerPtr f = icmp_neighbor_solicitation; IPAddr tgtaddr; if ( caplen >= (int)sizeof(in6_addr) ) tgtaddr = IPAddr(*((const in6_addr*)data)); val_list* vl = new val_list; vl->append(BuildConnVal()); vl->append(BuildICMPVal(icmpp, len, 1, ip_hdr)); vl->append(new AddrVal(tgtaddr)); int opt_offset = sizeof(in6_addr); vl->append(BuildNDOptionsVal(caplen - opt_offset, data + opt_offset)); ConnectionEvent(f, vl); } void ICMP_Analyzer::Redirect(double t, const struct icmp* icmpp, int len, int caplen, const u_char*& data, const IP_Hdr* ip_hdr) { EventHandlerPtr f = icmp_redirect; IPAddr tgtaddr, dstaddr; if ( caplen >= (int)sizeof(in6_addr) ) tgtaddr = IPAddr(*((const in6_addr*)data)); if ( caplen >= 2 * (int)sizeof(in6_addr) ) dstaddr = IPAddr(*((const in6_addr*)(data + sizeof(in6_addr)))); val_list* vl = new val_list; vl->append(BuildConnVal()); vl->append(BuildICMPVal(icmpp, len, 1, ip_hdr)); vl->append(new AddrVal(tgtaddr)); vl->append(new AddrVal(dstaddr)); int opt_offset = 2 * sizeof(in6_addr); vl->append(BuildNDOptionsVal(caplen - opt_offset, data + opt_offset)); ConnectionEvent(f, vl); } void ICMP_Analyzer::RouterSolicit(double t, const struct icmp* icmpp, int len, int caplen, const u_char*& data, const IP_Hdr* ip_hdr) { EventHandlerPtr f = icmp_router_solicitation; val_list* vl = new val_list; vl->append(BuildConnVal()); vl->append(BuildICMPVal(icmpp, len, 1, ip_hdr)); vl->append(BuildNDOptionsVal(caplen, data)); ConnectionEvent(f, vl); } void ICMP_Analyzer::Context4(double t, const struct icmp* icmpp, int len, int caplen, const u_char*& data, const IP_Hdr* ip_hdr) { EventHandlerPtr f = 0; switch ( icmpp->icmp_type ) { case ICMP_UNREACH: f = icmp_unreachable; break; case ICMP_TIMXCEED: f = icmp_time_exceeded; break; } if ( f ) { val_list* vl = new val_list; vl->append(BuildConnVal()); vl->append(BuildICMPVal(icmpp, len, 0, ip_hdr)); vl->append(new Val(icmpp->icmp_code, TYPE_COUNT)); vl->append(ExtractICMP4Context(caplen, data)); ConnectionEvent(f, vl); } } void ICMP_Analyzer::Context6(double t, const struct icmp* icmpp, int len, int caplen, const u_char*& data, const IP_Hdr* ip_hdr) { EventHandlerPtr f = 0; switch ( icmpp->icmp_type ) { case ICMP6_DST_UNREACH: f = icmp_unreachable; break; case ICMP6_PARAM_PROB: f = icmp_parameter_problem; break; case ICMP6_TIME_EXCEEDED: f = icmp_time_exceeded; break; case ICMP6_PACKET_TOO_BIG: f = icmp_packet_too_big; break; default: f = icmp_error_message; break; } if ( f ) { val_list* vl = new val_list; vl->append(BuildConnVal()); vl->append(BuildICMPVal(icmpp, len, 1, ip_hdr)); vl->append(new Val(icmpp->icmp_code, TYPE_COUNT)); vl->append(ExtractICMP6Context(caplen, data)); ConnectionEvent(f, vl); } } VectorVal* ICMP_Analyzer::BuildNDOptionsVal(int caplen, const u_char* data) { static RecordType* icmp6_nd_option_type = 0; static RecordType* icmp6_nd_prefix_info_type = 0; if ( ! icmp6_nd_option_type ) { icmp6_nd_option_type = internal_type("icmp6_nd_option")->AsRecordType(); icmp6_nd_prefix_info_type = internal_type("icmp6_nd_prefix_info")->AsRecordType(); } VectorVal* vv = new VectorVal( internal_type("icmp6_nd_options")->AsVectorType()); while ( caplen > 0 ) { // Must have at least type & length to continue parsing options. if ( caplen < 2 ) { Weird("truncated_ICMPv6_ND_options"); break; } uint8 type = *((const uint8*)data); uint8 length = *((const uint8*)(data + 1)); if ( length == 0 ) { Weird("zero_length_ICMPv6_ND_option"); break; } RecordVal* rv = new RecordVal(icmp6_nd_option_type); rv->Assign(0, new Val(type, TYPE_COUNT)); rv->Assign(1, new Val(length, TYPE_COUNT)); // adjust length to be in units of bytes, exclude type/length fields length = length * 8 - 2; data += 2; caplen -= 2; bool set_payload_field = false; // Only parse out known options that are there in full. switch ( type ) { case 1: case 2: // Source/Target Link-layer Address option { if ( caplen >= length ) { BroString* link_addr = new BroString(data, length, 0); rv->Assign(2, new StringVal(link_addr)); } else set_payload_field = true; } break; case 3: // Prefix Information option { if ( caplen >= 30 ) { RecordVal* info = new RecordVal(icmp6_nd_prefix_info_type); uint8 prefix_len = *((const uint8*)(data)); bool L_flag = (*((const uint8*)(data + 1)) & 0x80) != 0; bool A_flag = (*((const uint8*)(data + 1)) & 0x40) != 0; uint32 valid_life = *((const uint32*)(data + 2)); uint32 prefer_life = *((const uint32*)(data + 6)); in6_addr prefix = *((const in6_addr*)(data + 14)); info->Assign(0, new Val(prefix_len, TYPE_COUNT)); info->Assign(1, new Val(L_flag, TYPE_BOOL)); info->Assign(2, new Val(A_flag, TYPE_BOOL)); info->Assign(3, new IntervalVal((double)ntohl(valid_life), Seconds)); info->Assign(4, new IntervalVal((double)ntohl(prefer_life), Seconds)); info->Assign(5, new AddrVal(IPAddr(prefix))); rv->Assign(3, info); } else set_payload_field = true; } break; case 4: // Redirected Header option { if ( caplen >= length ) { const u_char* hdr = data + 6; rv->Assign(4, ExtractICMP6Context(length - 6, hdr)); } else set_payload_field = true; } break; case 5: // MTU option { if ( caplen >= 6 ) rv->Assign(5, new Val(ntohl(*((const uint32*)(data + 2))), TYPE_COUNT)); else set_payload_field = true; } break; default: { set_payload_field = true; } break; } if ( set_payload_field ) { BroString* payload = new BroString(data, min((int)length, caplen), 0); rv->Assign(6, new StringVal(payload)); } data += length; caplen -= length; vv->Assign(vv->Size(), rv, 0); } return vv; } int ICMP4_counterpart(int icmp_type, int icmp_code, bool& is_one_way) { is_one_way = false; // Return the counterpart type if one exists. This allows us // to track corresponding ICMP requests/replies. // Note that for the two-way ICMP messages, icmp_code is // always 0 (RFC 792). switch ( icmp_type ) { case ICMP_ECHO: return ICMP_ECHOREPLY; case ICMP_ECHOREPLY: return ICMP_ECHO; case ICMP_TSTAMP: return ICMP_TSTAMPREPLY; case ICMP_TSTAMPREPLY: return ICMP_TSTAMP; case ICMP_IREQ: return ICMP_IREQREPLY; case ICMP_IREQREPLY: return ICMP_IREQ; case ICMP_ROUTERSOLICIT: return ICMP_ROUTERADVERT; case ICMP_MASKREQ: return ICMP_MASKREPLY; case ICMP_MASKREPLY: return ICMP_MASKREQ; default: is_one_way = true; return icmp_code; } } int ICMP6_counterpart(int icmp_type, int icmp_code, bool& is_one_way) { is_one_way = false; switch ( icmp_type ) { case ICMP6_ECHO_REQUEST: return ICMP6_ECHO_REPLY; case ICMP6_ECHO_REPLY: return ICMP6_ECHO_REQUEST; case ND_ROUTER_SOLICIT: return ND_ROUTER_ADVERT; case ND_ROUTER_ADVERT: return ND_ROUTER_SOLICIT; case ND_NEIGHBOR_SOLICIT: return ND_NEIGHBOR_ADVERT; case ND_NEIGHBOR_ADVERT: return ND_NEIGHBOR_SOLICIT; case MLD_LISTENER_QUERY: return MLD_LISTENER_REPORT; case MLD_LISTENER_REPORT: return MLD_LISTENER_QUERY; // ICMP node information query and response respectively (not defined in // icmp6.h) case 139: return 140; case 140: return 139; // Home Agent Address Discovery Request Message and reply case 144: return 145; case 145: return 144; // TODO: Add further counterparts. default: is_one_way = true; return icmp_code; } }