// See the file "COPYING" in the main distribution directory for copyright. #include "zeek/SmithWaterman.h" #include "zeek/zeek-config.h" #include #include #include "zeek/Reporter.h" #include "zeek/Val.h" #include "zeek/Var.h" #include "zeek/util.h" namespace zeek::detail { Substring::Substring(const Substring& bst) : String((const String&)bst), _num(), _new(bst._new) { for ( const auto& align : bst._aligns ) _aligns.push_back(align); } const Substring& Substring::operator=(const Substring& bst) { String::operator=(bst); _aligns.clear(); for ( const auto& align : bst._aligns ) _aligns.push_back(align); _new = bst._new; return *this; } void Substring::AddAlignment(const String* str, int index) { _aligns.push_back(BSSAlign(str, index)); } bool Substring::DoesCover(const Substring* bst) const { if ( _aligns.size() != bst->_aligns.size() ) return false; auto it_bst = bst->_aligns.begin(); for ( auto it = _aligns.begin(); it != _aligns.end(); ++it, ++it_bst ) { const BSSAlign& a = *it; const BSSAlign& a_bst = *it_bst; if ( a.index > a_bst.index || a.index + Len() < a_bst.index + bst->Len() ) return false; } return true; } VectorVal* Substring::VecToPolicy(Vec* vec) { static auto sw_substring_type = id::find_type("sw_substring"); static auto sw_align_type = id::find_type("sw_align"); static auto sw_align_vec_type = id::find_type("sw_align_vec"); static auto sw_substring_vec_type = id::find_type("sw_substring_vec"); auto result = make_intrusive(sw_substring_vec_type); if ( vec ) { for ( size_t i = 0; i < vec->size(); ++i ) { Substring* bst = (*vec)[i]; auto st_val = make_intrusive(sw_substring_type); st_val->Assign(0, new String(*bst)); auto aligns = make_intrusive(sw_align_vec_type); for ( unsigned int j = 0; j < bst->GetNumAlignments(); ++j ) { const BSSAlign& align = (bst->GetAlignments())[j]; auto align_val = make_intrusive(sw_align_type); align_val->Assign(0, new String(*align.string)); align_val->Assign(1, align.index); aligns->Assign(j, std::move(align_val)); } st_val->Assign(1, std::move(aligns)); st_val->Assign(2, bst->IsNewAlignment()); result->Assign(i, std::move(st_val)); } } return result.release(); } Substring::Vec* Substring::VecFromPolicy(VectorVal* vec) { Vec* result = new Vec(); for ( unsigned int i = 0; i < vec->Size(); ++i ) { auto v = vec->RecordValAt(i); if ( ! v ) continue; const String* str = v->GetFieldAs(0); auto* substr = new Substring(*str); const VectorVal* aligns = v->GetFieldAs(1); for ( unsigned int j = 1; j <= aligns->Size(); ++j ) { const RecordVal* align = aligns->AsVectorVal()->RecordValAt(j); const String* str = align->GetFieldAs(0); int index = align->GetFieldAs(1); substr->AddAlignment(str, index); } bool new_alignment = v->GetFieldAs(2); substr->MarkNewAlignment(new_alignment); result->push_back(substr); } return result; } char* Substring::VecToString(Vec* vec) { std::string result("["); for ( const auto& ss : *vec ) { result += ss->CheckString(); result += ","; } result += "]"; return strdup(result.c_str()); } String::IdxVec* Substring::GetOffsetsVec(const Vec* vec, unsigned int index) { String::IdxVec* result = new String::IdxVec(); for ( const auto& bst : *vec ) { if ( bst->_aligns.size() <= index ) continue; const BSSAlign& align = bst->_aligns[index]; int start = align.index; int end = start + bst->Len(); result->push_back(start); result->push_back(end); } return result; } bool SubstringCmp::operator()(const Substring* bst1, const Substring* bst2) const { if ( _index >= bst1->GetNumAlignments() || _index >= bst2->GetNumAlignments() ) { reporter->Warning("SubstringCmp::operator(): invalid index for input strings.\n"); return false; } if ( bst1->GetAlignments()[_index].index <= bst2->GetAlignments()[_index].index ) return true; return false; } // A node in Smith-Waterman's dynamic programming matrix. Each node // contains the byte it represents in the case of a match, the score // at this point, and a pointer to the previous cell. Previous means // one up and left in case of a match, or a jump somewhere above and // left in case of a gap. // struct SWNode { // ID field for the cell, for debugging purposes. int id; u_char swn_byte; bool swn_byte_assigned; bool swn_visited; // The score in this cell. The cell with the globally best score // marks the end of the alignment. int swn_score; // Pointer to previous match, walking back yields subsequence. SWNode* swn_prev; }; // A matrix of Smith-Waterman nodes. // class SWNodeMatrix { public: SWNodeMatrix(const String* s1, const String* s2) : _s1(s1), _s2(s2), _rows(s1->Len() + 1), _cols(s2->Len() + 1) { _nodes = new SWNode[_cols * _rows]; memset(_nodes, 0, sizeof(SWNode) * _cols * _rows); } ~SWNodeMatrix() { delete[] _nodes; } SWNode* operator()(int row, int col) { // Make sure access is in allowed range. if ( row < 0 || row >= _rows ) return nullptr; if ( col < 0 || col >= _cols ) return nullptr; return &(_nodes[row * _cols + col]); } const String* GetRowsString() const { return _s1; } const String* GetColsString() const { return _s2; } int GetHeight() const { return _rows; } int GetWidth() const { return _cols; } // Quick helper function that calculates the coordinates of a // node in the matrix via pointer arithmetic. // void GetNodeIndices(SWNode* node, int& row, int& col) { SWNode* base = &_nodes[0]; int offset = (node - base); col = (offset % _cols); row = (offset / _cols); } private: const String* _s1; const String* _s2; int _rows, _cols; SWNode* _nodes; }; // Returns the common subsequence starting from a given node. // @result: vector holding results on return. // @matrix: SW matrix. // @node: starting node. // @params: SW parameters. // static void sw_collect_single(Substring::Vec* result, SWNodeMatrix& matrix, SWNode* node, SWParams& params) { std::string substring(""); int row = 0, col = 0; while ( node ) { // printf("NODE: %i\n", node->id); node->swn_visited = true; // Once we hit a gap, terminate the string and prepend // it to our result vector, IF it has at least the length // requested through the params._min_toklen parameter. // if ( node->swn_byte_assigned ) { matrix.GetNodeIndices(node, row, col); substring += node->swn_byte; // printf("SUBSTRING: %s\n", substring.c_str()); } else { // printf("GAP\n"); if ( substring.size() >= params._min_toklen ) { reverse(substring.begin(), substring.end()); auto* bst = new Substring(substring); bst->AddAlignment(matrix.GetRowsString(), row - 1); bst->AddAlignment(matrix.GetColsString(), col - 1); result->push_back(bst); } substring = ""; } node = node->swn_prev; } // Anything left over now is the first string of an alignment and is // manually added and marked as the beginning of a new alignment. // if ( substring.size() > 0 ) { reverse(substring.begin(), substring.end()); auto* bst = new Substring(substring); bst->AddAlignment(matrix.GetRowsString(), row - 1); bst->AddAlignment(matrix.GetColsString(), col - 1); result->push_back(bst); } if ( result->size() > 0 ) result->back()->MarkNewAlignment(true); } // Returns repeated common-subsequence alignments. // @result: vector holding results on return. // @matrix: SW matrix. // @params: SW parameters. // // The approach taken is to essentially follow back from all starting points of // common subsequences while tracking which nodes were visited earlier and which // substrings are redundant (i.e., fully covered by a larger common substring). // static void sw_collect_multiple(Substring::Vec* result, SWNodeMatrix& matrix, SWParams& params) { std::vector als; for ( int i = matrix.GetHeight() - 1; i > 0; --i ) { for ( int j = matrix.GetWidth() - 1; j > 0; --j ) { SWNode* node = matrix(i, j); if ( ! (node->swn_byte_assigned && ! node->swn_visited) ) continue; auto* new_al = new Substring::Vec(); sw_collect_single(new_al, matrix, node, params); for ( auto& old_al : als ) { if ( old_al == nullptr ) continue; for ( const auto& old_ss : *old_al ) { for ( const auto& new_ss : *new_al ) { if ( old_ss->DoesCover(new_ss) ) { util::delete_each(new_al); delete new_al; new_al = nullptr; goto end_loop; } if ( new_ss->DoesCover(old_ss) ) { util::delete_each(old_al); delete old_al; old_al = nullptr; goto end_loop; } } } } end_loop: if ( new_al ) als.push_back(new_al); } } for ( const auto& al : als ) { if ( al == nullptr ) continue; for ( const auto& bst : *al ) result->push_back(bst); delete al; } } // The main Smith-Waterman algorithm. // Substring::Vec* smith_waterman(const String* s1, const String* s2, SWParams& params) { auto* result = new Substring::Vec(); if ( ! s1 || s1->Len() < int(params._min_toklen) || ! s2 || s2->Len() < int(params._min_toklen) ) return result; // Length of both strings, plus one because SW needs // an extra row and column. // int i, len1 = s1->Len() + 1; int j, len2 = s2->Len() + 1; int row = 0, col = 0; byte_vec string1 = s1->Bytes(); byte_vec string2 = s2->Bytes(); SWNodeMatrix matrix(s1, s2); // dynamic programming matrix. SWNode* node_max = nullptr; // pointer to the best score's node SWNode* node_br_max = nullptr; // pointer to lowest-right matching node // The highest score in the matrix, globally. We initialize to 1 // because we are only interested in real scores (initializing to // -infty would mean 0 is larger, and would complicate the link // structure in the matrix). // int matrix_max = 1; int br_max_r = 0; int br_max_b = 0; // Matrix initialization ---------------------------------------------- // Assign IDs to each cell -- this is only for debugging purposes // and can go later. int counter = 1; for ( i = 1; i < len1; ++i ) for ( j = 1; j < len2; ++j ) matrix(i, j)->id = counter++; // Subsequence calculation -------------------------------------------- for ( i = 1; i < len1; ++i ) { for ( j = 1; j < len2; ++j ) { // Current node, top/left neighbours. // SWNode* current = matrix(i, j); SWNode* node_tl = matrix(i - 1, j - 1); SWNode* node_l = matrix(i, j - 1); SWNode* node_t = matrix(i - 1, j); // Scores of neighbouring nodes. // int score_t = node_t->swn_score; int score_l = node_l->swn_score; int score_tl = node_tl->swn_score; // If strings at current indices match, assign new // score to current node. Minus-one adjustments // are necessary since matrix has one extra // row + column. // if ( string1[i - 1] == string2[j - 1] ) { // We have a match: improve previous score. // score_tl += 1; // If we're continuing a chain of matches, rate // higher. This favours longer consecutive // substrings. // if ( node_tl->swn_byte_assigned ) score_tl += 99; // Store the byte we've matched in the node for // easier access. // current->swn_byte = string1[i - 1]; current->swn_byte_assigned = true; } // Pick the score among the neighbours that is now highest. // This is the core of Smith-Waterman. // if ( current->swn_byte_assigned ) current->swn_score = score_tl; else current->swn_score = std::max(std::max(score_t, score_l), score_tl); // Establish predecessor chain according to neighbor // with best score. // if ( current->swn_score == score_tl && current->swn_byte_assigned ) { // If we had matched bytes (*and* it's the // best neighbor), marke the node accordingly // if ( i >= br_max_b && j >= br_max_r ) { node_br_max = current; br_max_b = i; br_max_r = j; } current->swn_prev = node_tl; } else if ( current->swn_score == score_t ) current->swn_prev = node_t; else current->swn_prev = node_l; // Check if we have a new global maximum -- we // specifically track the node that is the global // maximum so we now from where to backtrack at // the end of the matrix iteration. // if ( current->swn_score > matrix_max ) { node_max = current; matrix_max = current->swn_score; } #if 0 printf("%4i/%.5i%c/%.5i[%c%c] ", current->swn_score, current->id, current->swn_byte_assigned ? '*' : ' ', current->swn_prev ? current->swn_prev->id : 0, string1[i-1], string2[j-1]); #endif // printf("%.5i ", current->swn_score); } #if 0 printf("\n"); #endif } // Result generation. // How we do this depends on the mode we operate in. In SW_SINGLE, we // follow the path from the best node until there is no predecessor // (that is, when we hit a node in row 0), and stop. In SW_MULTIPLE, // we collect all non-redundant common subsequences. if ( params._sw_variant == SW_MULTIPLE ) sw_collect_multiple(result, matrix, params); else sw_collect_single(result, matrix, node_max, params); if ( len1 > len2 ) sort(result->begin(), result->end(), SubstringCmp(0)); else sort(result->begin(), result->end(), SubstringCmp(1)); return result; } } // namespace zeek::detail