mirror of
https://github.com/zeek/zeek.git
synced 2025-10-02 14:48:21 +00:00
function profiling rewritten - more detailed info, supports global profiling
This commit is contained in:
parent
bb3a69ebb3
commit
297adf3486
3 changed files with 896 additions and 124 deletions
|
@ -1,5 +1,7 @@
|
|||
// See the file "COPYING" in the main distribution directory for copyright.
|
||||
|
||||
#include <unistd.h>
|
||||
|
||||
#include "zeek/script_opt/ProfileFunc.h"
|
||||
#include "zeek/Desc.h"
|
||||
#include "zeek/Stmt.h"
|
||||
|
@ -9,27 +11,97 @@
|
|||
namespace zeek::detail {
|
||||
|
||||
|
||||
TraversalCode ProfileFunc::PreStmt(const Stmt* s)
|
||||
// Computes the profiling hash of a Obj based on its (deterministic)
|
||||
// description.
|
||||
p_hash_type p_hash(const Obj* o)
|
||||
{
|
||||
++num_stmts;
|
||||
ODesc d;
|
||||
d.SetDeterminism(true);
|
||||
o->Describe(&d);
|
||||
return p_hash(d.Description());
|
||||
}
|
||||
|
||||
auto tag = s->Tag();
|
||||
std::string script_specific_filename(const StmtPtr& body)
|
||||
{
|
||||
// The specific filename is taken from the location filename, making
|
||||
// it absolute if necessary.
|
||||
auto body_loc = body->GetLocationInfo();
|
||||
auto bl_f = body_loc->filename;
|
||||
ASSERT(bl_f != nullptr);
|
||||
|
||||
if ( compute_hash )
|
||||
UpdateHash(int(tag));
|
||||
|
||||
if ( tag == STMT_INIT )
|
||||
if ( bl_f[0] == '.' &&
|
||||
(bl_f[1] == '/' || (bl_f[1] == '.' && bl_f[2] == '/')) )
|
||||
{
|
||||
for ( const auto& id : s->AsInitStmt()->Inits() )
|
||||
inits.insert(id.get());
|
||||
// Add working directory to avoid collisions over the
|
||||
// same relative name.
|
||||
static std::string working_dir;
|
||||
if ( working_dir.size() == 0 )
|
||||
{
|
||||
char buf[8192];
|
||||
getcwd(buf, sizeof buf);
|
||||
working_dir = buf;
|
||||
}
|
||||
|
||||
// Don't recurse into these, as we don't want to consider
|
||||
// a local that only appears in an initialization as a
|
||||
// relevant local.
|
||||
return TC_ABORTSTMT;
|
||||
return working_dir + "/" + bl_f;
|
||||
}
|
||||
|
||||
switch ( tag ) {
|
||||
return bl_f;
|
||||
}
|
||||
|
||||
p_hash_type script_specific_hash(const StmtPtr& body, p_hash_type generic_hash)
|
||||
{
|
||||
auto bl_f = script_specific_filename(body);
|
||||
return merge_p_hashes(generic_hash, p_hash(bl_f));
|
||||
}
|
||||
|
||||
|
||||
ProfileFunc::ProfileFunc(const Func* func, const StmtPtr& body)
|
||||
{
|
||||
Profile(func->GetType().get(), body);
|
||||
}
|
||||
|
||||
ProfileFunc::ProfileFunc(const Expr* e)
|
||||
{
|
||||
if ( e->Tag() == EXPR_LAMBDA )
|
||||
{
|
||||
auto func = e->AsLambdaExpr();
|
||||
|
||||
for ( auto oid : func->OuterIDs() )
|
||||
captures.insert(oid);
|
||||
|
||||
Profile(func->GetType()->AsFuncType(), func->Ingredients().body);
|
||||
}
|
||||
|
||||
else
|
||||
// We don't have a function type, so do the traversal
|
||||
// directly.
|
||||
e->Traverse(this);
|
||||
}
|
||||
|
||||
void ProfileFunc::Profile(const FuncType* ft, const StmtPtr& body)
|
||||
{
|
||||
num_params = ft->Params()->NumFields();
|
||||
TrackType(ft);
|
||||
body->Traverse(this);
|
||||
}
|
||||
|
||||
TraversalCode ProfileFunc::PreStmt(const Stmt* s)
|
||||
{
|
||||
stmts.push_back(s);
|
||||
|
||||
switch ( s->Tag() ) {
|
||||
case STMT_INIT:
|
||||
for ( const auto& id : s->AsInitStmt()->Inits() )
|
||||
{
|
||||
inits.insert(id.get());
|
||||
TrackType(id->GetType());
|
||||
}
|
||||
|
||||
// Don't traverse further into the statement, since we
|
||||
// don't want to view the identifiers as locals unless
|
||||
// they're also used elsewhere.
|
||||
return TC_ABORTSTMT;
|
||||
|
||||
case STMT_WHEN:
|
||||
++num_when_stmts;
|
||||
|
||||
|
@ -39,7 +111,8 @@ TraversalCode ProfileFunc::PreStmt(const Stmt* s)
|
|||
|
||||
// It doesn't do any harm for us to re-traverse the
|
||||
// conditional, so we don't bother hand-traversing the
|
||||
// rest of the when but just let the usual processing do it.
|
||||
// rest of the "when", but just let the usual processing
|
||||
// do it.
|
||||
break;
|
||||
|
||||
case STMT_FOR:
|
||||
|
@ -67,6 +140,8 @@ TraversalCode ProfileFunc::PreStmt(const Stmt* s)
|
|||
// incomplete list of locals that need to be tracked.
|
||||
|
||||
auto sw = s->AsSwitchStmt();
|
||||
bool is_type_switch = false;
|
||||
|
||||
for ( auto& c : *sw->Cases() )
|
||||
{
|
||||
auto idl = c->TypeCases();
|
||||
|
@ -74,8 +149,15 @@ TraversalCode ProfileFunc::PreStmt(const Stmt* s)
|
|||
{
|
||||
for ( auto id : *idl )
|
||||
locals.insert(id);
|
||||
|
||||
is_type_switch = true;
|
||||
}
|
||||
}
|
||||
|
||||
if ( is_type_switch )
|
||||
type_switches.insert(sw);
|
||||
else
|
||||
expr_switches.insert(sw);
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -88,37 +170,74 @@ TraversalCode ProfileFunc::PreStmt(const Stmt* s)
|
|||
|
||||
TraversalCode ProfileFunc::PreExpr(const Expr* e)
|
||||
{
|
||||
++num_exprs;
|
||||
exprs.push_back(e);
|
||||
|
||||
auto tag = e->Tag();
|
||||
TrackType(e->GetType());
|
||||
|
||||
if ( compute_hash )
|
||||
UpdateHash(int(tag));
|
||||
|
||||
switch ( tag ) {
|
||||
switch ( e->Tag() ) {
|
||||
case EXPR_CONST:
|
||||
if ( compute_hash )
|
||||
{
|
||||
CheckType(e->GetType());
|
||||
UpdateHash(e->AsConstExpr()->ValuePtr());
|
||||
}
|
||||
constants.push_back(e->AsConstExpr());
|
||||
break;
|
||||
|
||||
case EXPR_NAME:
|
||||
{
|
||||
auto n = e->AsNameExpr();
|
||||
auto id = n->Id();
|
||||
if ( id->IsGlobal() )
|
||||
globals.insert(id);
|
||||
else
|
||||
locals.insert(id);
|
||||
|
||||
if ( compute_hash )
|
||||
if ( id->IsGlobal() )
|
||||
{
|
||||
UpdateHash({NewRef{}, id});
|
||||
CheckType(e->GetType());
|
||||
globals.insert(id);
|
||||
all_globals.insert(id);
|
||||
|
||||
const auto& t = id->GetType();
|
||||
if ( t->Tag() == TYPE_FUNC &&
|
||||
t->AsFuncType()->Flavor() == FUNC_FLAVOR_EVENT )
|
||||
events.insert(id->Name());
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
// This is a tad ugly. Unfortunately due to the
|
||||
// weird way that Zeek function *declarations* work,
|
||||
// there's no reliable way to get the list of
|
||||
// parameters for a function *definition*, since
|
||||
// they can have different names than what's present
|
||||
// in the declaration. So we identify them directly,
|
||||
// by knowing that they come at the beginning of the
|
||||
// frame ... and being careful to avoid misconfusing
|
||||
// a lambda capture with a low frame offset as a
|
||||
// parameter.
|
||||
if ( captures.count(id) == 0 &&
|
||||
id->Offset() < num_params )
|
||||
params.insert(id);
|
||||
|
||||
locals.insert(id);
|
||||
}
|
||||
|
||||
// Turns out that NameExpr's can be constructed using a
|
||||
// different Type* than that of the identifier itself,
|
||||
// so be sure we track the latter too.
|
||||
TrackType(id->GetType());
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case EXPR_FIELD:
|
||||
{
|
||||
auto f = e->AsFieldExpr()->Field();
|
||||
addl_hashes.push_back(p_hash(f));
|
||||
}
|
||||
break;
|
||||
|
||||
case EXPR_ASSIGN:
|
||||
{
|
||||
if ( e->GetOp1()->Tag() == EXPR_REF )
|
||||
{
|
||||
auto lhs = e->GetOp1()->GetOp1();
|
||||
if ( lhs->Tag() == EXPR_NAME )
|
||||
assignees.insert(lhs->AsNameExpr()->Id());
|
||||
}
|
||||
// else this isn't a direct assignment.
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -134,7 +253,7 @@ TraversalCode ProfileFunc::PreExpr(const Expr* e)
|
|||
}
|
||||
|
||||
auto n = f->AsNameExpr();
|
||||
IDPtr func = {NewRef{}, n->Id()};
|
||||
auto func = n->Id();
|
||||
|
||||
if ( ! func->IsGlobal() )
|
||||
{
|
||||
|
@ -142,6 +261,8 @@ TraversalCode ProfileFunc::PreExpr(const Expr* e)
|
|||
return TC_CONTINUE;
|
||||
}
|
||||
|
||||
all_globals.insert(func);
|
||||
|
||||
auto func_v = func->GetVal();
|
||||
if ( func_v )
|
||||
{
|
||||
|
@ -156,28 +277,84 @@ TraversalCode ProfileFunc::PreExpr(const Expr* e)
|
|||
when_calls.insert(bf);
|
||||
}
|
||||
else
|
||||
BiF_calls.insert(func_vf);
|
||||
BiF_globals.insert(func);
|
||||
}
|
||||
else
|
||||
{
|
||||
// We could complain, but for now we don't because
|
||||
// We could complain, but for now we don't, because
|
||||
// if we're invoked prior to full Zeek initialization,
|
||||
// the value might indeed not there.
|
||||
// the value might indeed not there yet.
|
||||
// printf("no function value for global %s\n", func->Name());
|
||||
}
|
||||
|
||||
// Recurse into the arguments.
|
||||
auto args = c->Args();
|
||||
args->Traverse(this);
|
||||
|
||||
// Do the following explicitly, since we won't be recursing
|
||||
// into the LHS global.
|
||||
|
||||
// Note that the type of the expression and the type of the
|
||||
// function can actually be *different* due to the NameExpr
|
||||
// being constructed based on a forward reference and then
|
||||
// the global getting a different (constructed) type when
|
||||
// the function is actually declared. Geez. So hedge our
|
||||
// bets.
|
||||
TrackType(n->GetType());
|
||||
TrackType(func->GetType());
|
||||
|
||||
TrackID(func);
|
||||
|
||||
return TC_ABORTSTMT;
|
||||
}
|
||||
|
||||
case EXPR_EVENT:
|
||||
events.insert(e->AsEventExpr()->Name());
|
||||
{
|
||||
auto ev = e->AsEventExpr()->Name();
|
||||
events.insert(ev);
|
||||
addl_hashes.push_back(p_hash(ev));
|
||||
}
|
||||
break;
|
||||
|
||||
case EXPR_LAMBDA:
|
||||
++num_lambdas;
|
||||
{
|
||||
auto l = e->AsLambdaExpr();
|
||||
lambdas.push_back(l);
|
||||
|
||||
for ( const auto& i : l->OuterIDs() )
|
||||
{
|
||||
locals.insert(i);
|
||||
TrackID(i);
|
||||
|
||||
// See above re EXPR_NAME regarding the following
|
||||
// logic.
|
||||
if ( captures.count(i) == 0 &&
|
||||
i->Offset() < num_params )
|
||||
params.insert(i);
|
||||
}
|
||||
|
||||
// Avoid recursing into the body.
|
||||
return TC_ABORTSTMT;
|
||||
}
|
||||
|
||||
case EXPR_SET_CONSTRUCTOR:
|
||||
{
|
||||
auto sc = static_cast<const SetConstructorExpr*>(e);
|
||||
auto attrs = sc->GetAttrs();
|
||||
|
||||
if ( attrs )
|
||||
constructor_attrs.insert(attrs.get());
|
||||
}
|
||||
break;
|
||||
|
||||
case EXPR_TABLE_CONSTRUCTOR:
|
||||
{
|
||||
auto tc = static_cast<const TableConstructorExpr*>(e);
|
||||
auto attrs = tc->GetAttrs();
|
||||
|
||||
if ( attrs )
|
||||
constructor_attrs.insert(attrs.get());
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
|
@ -187,32 +364,345 @@ TraversalCode ProfileFunc::PreExpr(const Expr* e)
|
|||
return TC_CONTINUE;
|
||||
}
|
||||
|
||||
void ProfileFunc::CheckType(const TypePtr& t)
|
||||
TraversalCode ProfileFunc::PreID(const ID* id)
|
||||
{
|
||||
TrackID(id);
|
||||
|
||||
// There's no need for any further analysis of this ID.
|
||||
return TC_ABORTSTMT;
|
||||
}
|
||||
|
||||
void ProfileFunc::TrackType(const Type* t)
|
||||
{
|
||||
if ( ! t )
|
||||
return;
|
||||
|
||||
if ( types.count(t) > 0 )
|
||||
// We've already tracke it.
|
||||
return;
|
||||
|
||||
types.insert(t);
|
||||
ordered_types.push_back(t);
|
||||
}
|
||||
|
||||
void ProfileFunc::TrackID(const ID* id)
|
||||
{
|
||||
if ( ! id )
|
||||
return;
|
||||
|
||||
if ( ids.count(id) > 0 )
|
||||
// Already tracked.
|
||||
return;
|
||||
|
||||
ids.insert(id);
|
||||
ordered_ids.push_back(id);
|
||||
}
|
||||
|
||||
|
||||
ProfileFuncs::ProfileFuncs(std::vector<FuncInfo>& funcs, is_compilable_pred pred)
|
||||
{
|
||||
for ( auto& f : funcs )
|
||||
{
|
||||
if ( f.ShouldSkip() )
|
||||
continue;
|
||||
|
||||
auto pf = std::make_unique<ProfileFunc>(f.Func(), f.Body());
|
||||
|
||||
if ( ! pred || (*pred)(pf.get()) )
|
||||
MergeInProfile(pf.get());
|
||||
else
|
||||
f.SetSkip(true);
|
||||
|
||||
f.SetProfile(std::move(pf));
|
||||
func_profs[f.Func()] = f.Profile();
|
||||
}
|
||||
|
||||
// We now have the main (starting) types used by all of the
|
||||
// functions. Recursively compute their hashes.
|
||||
ComputeTypeHashes(main_types);
|
||||
|
||||
// Computing the hashes can have marked expressions (seen in
|
||||
// record attributes) for further analysis. Likewise, when
|
||||
// doing the profile merges above we may have noted lambda
|
||||
// expressions. Analyze these, and iteratively any further
|
||||
// expressions that that analysis uncovers.
|
||||
DrainPendingExprs();
|
||||
|
||||
// We now have all the information we need to form definitive,
|
||||
// deterministic hashes.
|
||||
ComputeBodyHashes(funcs);
|
||||
}
|
||||
|
||||
void ProfileFuncs::MergeInProfile(ProfileFunc* pf)
|
||||
{
|
||||
all_globals.insert(pf->AllGlobals().begin(), pf->AllGlobals().end());
|
||||
globals.insert(pf->Globals().begin(), pf->Globals().end());
|
||||
constants.insert(pf->Constants().begin(), pf->Constants().end());
|
||||
main_types.insert(main_types.end(),
|
||||
pf->OrderedTypes().begin(), pf->OrderedTypes().end());
|
||||
script_calls.insert(pf->ScriptCalls().begin(), pf->ScriptCalls().end());
|
||||
BiF_globals.insert(pf->BiFGlobals().begin(), pf->BiFGlobals().end());
|
||||
events.insert(pf->Events().begin(), pf->Events().end());
|
||||
|
||||
for ( auto& i : pf->Lambdas() )
|
||||
{
|
||||
lambdas.insert(i);
|
||||
pending_exprs.push_back(i);
|
||||
}
|
||||
|
||||
for ( auto& a : pf->ConstructorAttrs() )
|
||||
AnalyzeAttrs(a);
|
||||
}
|
||||
|
||||
void ProfileFuncs::DrainPendingExprs()
|
||||
{
|
||||
while ( pending_exprs.size() > 0 )
|
||||
{
|
||||
// Copy the pending expressions so we can loop over them
|
||||
// while accruing additions.
|
||||
auto pe = pending_exprs;
|
||||
pending_exprs.clear();
|
||||
|
||||
for ( auto e : pe )
|
||||
{
|
||||
auto pf = std::make_shared<ProfileFunc>(e);
|
||||
|
||||
expr_profs[e] = pf;
|
||||
MergeInProfile(pf.get());
|
||||
|
||||
// It's important to compute the hashes over the
|
||||
// ordered types rather than the unordered. If type
|
||||
// T1 depends on a recursive type T2, then T1's hash
|
||||
// will vary with depending on whether we arrive at
|
||||
// T1 via an in-progress traversal of T2 (in which
|
||||
// case T1 will see the "stub" in-progress hash for
|
||||
// T2), or via a separate type T3 (in which case it
|
||||
// will see the full hash).
|
||||
ComputeTypeHashes(pf->OrderedTypes());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ProfileFuncs::ComputeTypeHashes(const std::vector<const Type*>& types)
|
||||
{
|
||||
for ( auto t : types )
|
||||
(void) HashType(t);
|
||||
}
|
||||
|
||||
void ProfileFuncs::ComputeBodyHashes(std::vector<FuncInfo>& funcs)
|
||||
{
|
||||
for ( auto& f : funcs )
|
||||
if ( ! f.ShouldSkip() )
|
||||
ComputeProfileHash(f.Profile());
|
||||
|
||||
for ( auto& l : lambdas )
|
||||
ComputeProfileHash(ExprProf(l));
|
||||
}
|
||||
|
||||
void ProfileFuncs::ComputeProfileHash(std::shared_ptr<ProfileFunc> pf)
|
||||
{
|
||||
p_hash_type h = 0;
|
||||
|
||||
// We add markers between each class of hash component, to
|
||||
// prevent collisions due to elements with simple hashes
|
||||
// (such as Stmt's or Expr's that are only represented by
|
||||
// the hash of their tag).
|
||||
h = merge_p_hashes(h, p_hash("stmts"));
|
||||
for ( auto i : pf->Stmts() )
|
||||
h = merge_p_hashes(h, p_hash(i->Tag()));
|
||||
|
||||
h = merge_p_hashes(h, p_hash("exprs"));
|
||||
for ( auto i : pf->Exprs() )
|
||||
h = merge_p_hashes(h, p_hash(i->Tag()));
|
||||
|
||||
h = merge_p_hashes(h, p_hash("ids"));
|
||||
for ( auto i : pf->OrderedIdentifiers() )
|
||||
h = merge_p_hashes(h, p_hash(i->Name()));
|
||||
|
||||
h = merge_p_hashes(h, p_hash("constants"));
|
||||
for ( auto i : pf->Constants() )
|
||||
h = merge_p_hashes(h, p_hash(i->Value()));
|
||||
|
||||
h = merge_p_hashes(h, p_hash("types"));
|
||||
for ( auto i : pf->OrderedTypes() )
|
||||
h = merge_p_hashes(h, HashType(i));
|
||||
|
||||
h = merge_p_hashes(h, p_hash("lambdas"));
|
||||
for ( auto i : pf->Lambdas() )
|
||||
h = merge_p_hashes(h, p_hash(i));
|
||||
|
||||
h = merge_p_hashes(h, p_hash("addl"));
|
||||
for ( auto i : pf->AdditionalHashes() )
|
||||
h = merge_p_hashes(h, i);
|
||||
|
||||
pf->SetHashVal(h);
|
||||
}
|
||||
|
||||
p_hash_type ProfileFuncs::HashType(const Type* t)
|
||||
{
|
||||
if ( ! t )
|
||||
return 0;
|
||||
|
||||
if ( type_hashes.count(t) > 0 )
|
||||
// We've already done this Type*.
|
||||
return type_hashes[t];
|
||||
|
||||
auto& tn = t->GetName();
|
||||
if ( tn.size() > 0 && seen_types.count(tn) > 0 )
|
||||
// No need to hash this in again, as we've already done so.
|
||||
return;
|
||||
if ( tn.size() > 0 && seen_type_names.count(tn) > 0 )
|
||||
{
|
||||
// We've already done a type with the same name, even
|
||||
// though with a different Type*. Reuse its results.
|
||||
auto seen_t = seen_type_names[tn];
|
||||
auto h = type_hashes[seen_t];
|
||||
|
||||
if ( seen_type_ptrs.count(t.get()) > 0 )
|
||||
// We've seen the raw pointer, even though it doesn't have
|
||||
// a name.
|
||||
return;
|
||||
type_hashes[t] = h;
|
||||
type_to_rep[t] = type_to_rep[seen_t];
|
||||
|
||||
seen_types.insert(tn);
|
||||
seen_type_ptrs.insert(t.get());
|
||||
return h;
|
||||
}
|
||||
|
||||
UpdateHash(t);
|
||||
auto h = p_hash(t->Tag());
|
||||
|
||||
// Enter an initial value for this type's hash. We'll update it
|
||||
// at the end, but having it here first will prevent recursive
|
||||
// records from leading to infinite recursion as we traverse them.
|
||||
// It's okay that the initial value is degenerate, because if we access
|
||||
// it during the traversal that will only happen due to a recursive
|
||||
// type, in which case the other elements of that type will serve
|
||||
// to differentiate its hash.
|
||||
type_hashes[t] = h;
|
||||
|
||||
switch ( t->Tag() ) {
|
||||
case TYPE_ADDR:
|
||||
case TYPE_ANY:
|
||||
case TYPE_BOOL:
|
||||
case TYPE_COUNT:
|
||||
case TYPE_DOUBLE:
|
||||
case TYPE_ENUM:
|
||||
case TYPE_ERROR:
|
||||
case TYPE_INT:
|
||||
case TYPE_INTERVAL:
|
||||
case TYPE_OPAQUE:
|
||||
case TYPE_PATTERN:
|
||||
case TYPE_PORT:
|
||||
case TYPE_STRING:
|
||||
case TYPE_SUBNET:
|
||||
case TYPE_TIME:
|
||||
case TYPE_TIMER:
|
||||
case TYPE_UNION:
|
||||
case TYPE_VOID:
|
||||
h = merge_p_hashes(h, p_hash(t));
|
||||
break;
|
||||
|
||||
case TYPE_RECORD:
|
||||
{
|
||||
const auto& ft = t->AsRecordType();
|
||||
auto n = ft->NumFields();
|
||||
|
||||
h = merge_p_hashes(h, p_hash("record"));
|
||||
h = merge_p_hashes(h, p_hash(n));
|
||||
|
||||
for ( auto i = 0; i < n; ++i )
|
||||
{
|
||||
const auto& f = ft->FieldDecl(i);
|
||||
h = merge_p_hashes(h, p_hash(f->id));
|
||||
h = merge_p_hashes(h, HashType(f->type));
|
||||
|
||||
// We don't hash the field name, as in some contexts
|
||||
// those are ignored.
|
||||
|
||||
if ( f->attrs )
|
||||
{
|
||||
h = merge_p_hashes(h, p_hash(f->attrs));
|
||||
AnalyzeAttrs(f->attrs.get());
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case TYPE_TABLE:
|
||||
{
|
||||
auto tbl = t->AsTableType();
|
||||
h = merge_p_hashes(h, p_hash("table"));
|
||||
h = merge_p_hashes(h, p_hash("indices"));
|
||||
h = merge_p_hashes(h, HashType(tbl->GetIndices()));
|
||||
h = merge_p_hashes(h, p_hash("tbl-yield"));
|
||||
h = merge_p_hashes(h, HashType(tbl->Yield()));
|
||||
}
|
||||
break;
|
||||
|
||||
case TYPE_FUNC:
|
||||
{
|
||||
auto ft = t->AsFuncType();
|
||||
auto flv = ft->FlavorString();
|
||||
h = merge_p_hashes(h, p_hash(flv));
|
||||
h = merge_p_hashes(h, p_hash("params"));
|
||||
h = merge_p_hashes(h, HashType(ft->Params()));
|
||||
h = merge_p_hashes(h, p_hash("func-yield"));
|
||||
h = merge_p_hashes(h, HashType(ft->Yield()));
|
||||
}
|
||||
break;
|
||||
|
||||
case TYPE_LIST:
|
||||
{
|
||||
auto& tl = t->AsTypeList()->GetTypes();
|
||||
|
||||
h = merge_p_hashes(h, p_hash("list"));
|
||||
h = merge_p_hashes(h, p_hash(tl.size()));
|
||||
|
||||
for ( const auto& tl_i : tl )
|
||||
h = merge_p_hashes(h, HashType(tl_i));
|
||||
}
|
||||
break;
|
||||
|
||||
case TYPE_VECTOR:
|
||||
h = merge_p_hashes(h, p_hash("vec"));
|
||||
h = merge_p_hashes(h, HashType(t->AsVectorType()->Yield()));
|
||||
break;
|
||||
|
||||
case TYPE_FILE:
|
||||
h = merge_p_hashes(h, p_hash("file"));
|
||||
h = merge_p_hashes(h, HashType(t->AsFileType()->Yield()));
|
||||
break;
|
||||
|
||||
case TYPE_TYPE:
|
||||
h = merge_p_hashes(h, p_hash("type"));
|
||||
h = merge_p_hashes(h, HashType(t->AsTypeType()->GetType()));
|
||||
break;
|
||||
}
|
||||
|
||||
void ProfileFunc::UpdateHash(const IntrusivePtr<zeek::Obj>& o)
|
||||
type_hashes[t] = h;
|
||||
|
||||
if ( type_hash_reps.count(h) == 0 )
|
||||
{ // No previous rep, so use this Type* for that.
|
||||
type_hash_reps[h] = t;
|
||||
type_to_rep[t] = t;
|
||||
rep_types.push_back(t);
|
||||
}
|
||||
else
|
||||
type_to_rep[t] = type_hash_reps[h];
|
||||
|
||||
if ( tn.size() > 0 )
|
||||
seen_type_names[tn] = t;
|
||||
|
||||
return h;
|
||||
}
|
||||
|
||||
void ProfileFuncs::AnalyzeAttrs(const Attributes* Attrs)
|
||||
{
|
||||
ODesc d;
|
||||
o->Describe(&d);
|
||||
std::string desc(d.Description());
|
||||
auto h = std::hash<std::string>{}(desc);
|
||||
MergeInHash(h);
|
||||
}
|
||||
auto attrs = Attrs->GetAttrs();
|
||||
|
||||
for ( const auto& a : attrs )
|
||||
{
|
||||
const Expr* e = a->GetExpr().get();
|
||||
|
||||
if ( e )
|
||||
{
|
||||
pending_exprs.push_back(e);
|
||||
if ( e->Tag() == EXPR_LAMBDA )
|
||||
lambdas.insert(e->AsLambdaExpr());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace zeek::detail
|
||||
|
|
|
@ -1,49 +1,170 @@
|
|||
// See the file "COPYING" in the main distribution directory for copyright.
|
||||
|
||||
// Class for traversing a function body's AST to build up a profile
|
||||
// of its various elements.
|
||||
// Classes for traversing functions and their body ASTs to build up profiles
|
||||
// of the various elements (types, globals, locals, lambdas, etc.) that appear.
|
||||
// These profiles enable script optimization to make decisions regarding
|
||||
// compilability and how to efficiently provide run-time components.
|
||||
// For all of the following, we use the term "function" to refer to a single
|
||||
// ScriptFunc/body pair, so an event handler or hook with multiple bodies
|
||||
// is treated as multiple distinct "function"'s.
|
||||
//
|
||||
// One key element of constructing profiles concerns computing hashes over
|
||||
// both the Zeek scripting types present in the functions, and over entire
|
||||
// functions (which means computing hashes over each of the function's
|
||||
// components). Hashes need to be (1) distinct (collision-free in practice)
|
||||
// and (2) deterministic (across Zeek invocations, the same components always
|
||||
// map to the same hashes). We need these properties because we use hashes
|
||||
// to robustly identify identical instances of the same function, for example
|
||||
// so we can recognize that an instance of the function definition seen in
|
||||
// a script matches a previously compiled function body, so we can safely
|
||||
// replace the function's AST with the compiled version).
|
||||
//
|
||||
// We profile functions collectively (via the ProfileFuncs class), rather
|
||||
// than in isolation, because doing so (1) allows us to share expensive
|
||||
// profiling steps (in particular, computing the hashes of types, as some
|
||||
// of the Zeek script records get huge, and occur frequently), and (2) enables
|
||||
// us to develop a global picture of all of the components germane to a set
|
||||
// of functions. The global profile is built up in terms of individual
|
||||
// profiles (via the ProfileFunc class), which identify each function's
|
||||
// basic components, and then using these as starting points to build out
|
||||
// the global profile and compute the hashes of functions and types.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "zeek/Expr.h"
|
||||
#include "zeek/Stmt.h"
|
||||
#include "zeek/Traverse.h"
|
||||
#include "zeek/script_opt/ScriptOpt.h"
|
||||
|
||||
namespace zeek::detail {
|
||||
|
||||
// The type used to represent hashes. We use the mnemonic "p_hash" as
|
||||
// short for "profile hash", to avoid confusion with hashes used elsehwere
|
||||
// in Zeek (which are for the most part keyed, a property we explicitly
|
||||
// do not want).
|
||||
using p_hash_type = unsigned long long;
|
||||
|
||||
// Helper functions for computing/managing hashes.
|
||||
|
||||
inline p_hash_type p_hash(int val)
|
||||
{ return std::hash<int>{}(val); }
|
||||
|
||||
inline p_hash_type p_hash(std::string val)
|
||||
{ return std::hash<std::string>{}(val); }
|
||||
|
||||
inline p_hash_type p_hash(const char* val)
|
||||
{ return p_hash(std::string(val)); }
|
||||
|
||||
extern p_hash_type p_hash(const Obj* o);
|
||||
inline p_hash_type p_hash(const IntrusivePtr<Obj>& o)
|
||||
{ return p_hash(o.get()); }
|
||||
|
||||
inline p_hash_type merge_p_hashes(p_hash_type h1, p_hash_type h2)
|
||||
{
|
||||
// Taken from Boost. See for example
|
||||
// https://www.boost.org/doc/libs/1_35_0/doc/html/boost/hash_combine_id241013.html
|
||||
// or
|
||||
// https://stackoverflow.com/questions/4948780/magic-number-in-boosthash-combine
|
||||
return h1 ^ (h2 + 0x9e3779b9 + (h1 << 6) + (h1 >> 2));
|
||||
}
|
||||
|
||||
// Returns a filename associated with the given function body. Used to
|
||||
// provide distinctness to identical function bodies seen in separate,
|
||||
// potentially conflicting incremental compilations. This is only germane
|
||||
// for allowing incremental compilation of subsets of the test suite, so
|
||||
// if we decide to forgo that capability, we can remove this.
|
||||
extern std::string script_specific_filename(const StmtPtr& body);
|
||||
|
||||
// Returns a incremental-compilation-specific hash for the given function
|
||||
// body, given it's non-specific hash is "generic_hash".
|
||||
extern p_hash_type script_specific_hash(const StmtPtr& body, p_hash_type generic_hash);
|
||||
|
||||
|
||||
// Class for profiling the components of a single function (or expression).
|
||||
class ProfileFunc : public TraversalCallback {
|
||||
public:
|
||||
// If the argument is true, then we compute a hash over the function's
|
||||
// AST to (pseudo-)uniquely identify it.
|
||||
ProfileFunc(bool _compute_hash = false)
|
||||
{ compute_hash = _compute_hash; }
|
||||
// Constructor used for the usual case of profiling a script
|
||||
// function and one of its bodies.
|
||||
ProfileFunc(const Func* func, const StmtPtr& body);
|
||||
|
||||
// Constructor for profiling an AST expression. This exists
|
||||
// to support (1) profiling lambda expressions, and (2) traversing
|
||||
// attribute expressions (such as &default=expr) to discover what
|
||||
// components they include.
|
||||
ProfileFunc(const Expr* func);
|
||||
|
||||
// See the comments for the associated member variables for each
|
||||
// of these accessors.
|
||||
const std::unordered_set<const ID*>& Globals() const
|
||||
{ return globals; }
|
||||
const std::unordered_set<const ID*>& AllGlobals() const
|
||||
{ return all_globals; }
|
||||
const std::unordered_set<const ID*>& Locals() const
|
||||
{ return locals; }
|
||||
const std::unordered_set<const ID*>& Params() const
|
||||
{ return params; }
|
||||
const std::unordered_set<const ID*>& Assignees() const
|
||||
{ return assignees; }
|
||||
const std::unordered_set<const ID*>& Inits() const
|
||||
{ return inits; }
|
||||
const std::vector<const Stmt*>& Stmts() const
|
||||
{ return stmts; }
|
||||
const std::vector<const Expr*>& Exprs() const
|
||||
{ return exprs; }
|
||||
const std::vector<const LambdaExpr*>& Lambdas() const
|
||||
{ return lambdas; }
|
||||
const std::vector<const ConstExpr*>& Constants() const
|
||||
{ return constants; }
|
||||
const std::unordered_set<const ID*>& UnorderedIdentifiers() const
|
||||
{ return ids; }
|
||||
const std::vector<const ID*>& OrderedIdentifiers() const
|
||||
{ return ordered_ids; }
|
||||
const std::unordered_set<const Type*>& UnorderedTypes() const
|
||||
{ return types; }
|
||||
const std::vector<const Type*>& OrderedTypes() const
|
||||
{ return ordered_types; }
|
||||
const std::unordered_set<ScriptFunc*>& ScriptCalls() const
|
||||
{ return script_calls; }
|
||||
const std::unordered_set<Func*>& BiFCalls() const
|
||||
{ return BiF_calls; }
|
||||
const std::unordered_set<const ID*>& BiFGlobals() const
|
||||
{ return BiF_globals; }
|
||||
const std::unordered_set<ScriptFunc*>& WhenCalls() const
|
||||
{ return when_calls; }
|
||||
const std::unordered_set<const char*>& Events() const
|
||||
const std::unordered_set<std::string>& Events() const
|
||||
{ return events; }
|
||||
const std::unordered_set<const Attributes*>& ConstructorAttrs() const
|
||||
{ return constructor_attrs; }
|
||||
const std::unordered_set<const SwitchStmt*>& ExprSwitches() const
|
||||
{ return expr_switches; }
|
||||
const std::unordered_set<const SwitchStmt*>& TypeSwitches() const
|
||||
{ return type_switches; }
|
||||
|
||||
bool DoesIndirectCalls() { return does_indirect_calls; }
|
||||
|
||||
std::size_t HashVal() { return hash_val; }
|
||||
int NumParams() const { return num_params; }
|
||||
int NumLambdas() const { return lambdas.size(); }
|
||||
int NumWhenStmts() const { return num_when_stmts; }
|
||||
|
||||
int NumStmts() { return num_stmts; }
|
||||
int NumWhenStmts() { return num_when_stmts; }
|
||||
int NumExprs() { return num_exprs; }
|
||||
int NumLambdas() { return num_lambdas; }
|
||||
const std::vector<p_hash_type>& AdditionalHashes() const
|
||||
{ return addl_hashes; }
|
||||
|
||||
// Set this function's hash to the given value; retrieve that value.
|
||||
void SetHashVal(p_hash_type hash) { hash_val = hash; }
|
||||
p_hash_type HashVal() const { return hash_val; }
|
||||
|
||||
protected:
|
||||
// Construct the profile for the given function signature and body.
|
||||
void Profile(const FuncType* ft, const StmtPtr& body);
|
||||
|
||||
TraversalCode PreStmt(const Stmt*) override;
|
||||
TraversalCode PreExpr(const Expr*) override;
|
||||
TraversalCode PreID(const ID*) override;
|
||||
|
||||
// Take note of the presence of a given type.
|
||||
void TrackType(const Type* t);
|
||||
void TrackType(const TypePtr& t) { TrackType(t.get()); }
|
||||
|
||||
// Take note of the presence of an identifier.
|
||||
void TrackID(const ID* id);
|
||||
|
||||
// Globals seen in the function.
|
||||
//
|
||||
|
@ -51,79 +172,248 @@ protected:
|
|||
// called in a call.
|
||||
std::unordered_set<const ID*> globals;
|
||||
|
||||
// Same, but also includes globals only seen as called functions.
|
||||
std::unordered_set<const ID*> all_globals;
|
||||
|
||||
// Locals seen in the function.
|
||||
std::unordered_set<const ID*> locals;
|
||||
|
||||
// Same for locals seen in initializations, so we can find
|
||||
// unused aggregates.
|
||||
// The function's parameters. Empty if our starting point was
|
||||
// profiling an expression.
|
||||
std::unordered_set<const ID*> params;
|
||||
|
||||
// How many parameters the function has. The default value flags
|
||||
// that we started the profile with an expression rather than a
|
||||
// function.
|
||||
int num_params = -1;
|
||||
|
||||
// Identifiers (globals, locals, parameters) that are assigned to.
|
||||
// Does not include implicit assignments due to initializations,
|
||||
// which are instead captured in "inits".
|
||||
std::unordered_set<const ID*> assignees;
|
||||
|
||||
// Same for locals seen in initializations, so we can find,
|
||||
// for example, unused aggregates.
|
||||
std::unordered_set<const ID*> inits;
|
||||
|
||||
// Statements seen in the function. Does not include indirect
|
||||
// statements, such as those in lambda bodies.
|
||||
std::vector<const Stmt*> stmts;
|
||||
|
||||
// Expressions seen in the function. Does not include indirect
|
||||
// expressions (such as those appearing in attributes of types).
|
||||
std::vector<const Expr*> exprs;
|
||||
|
||||
// Lambdas seen in the function. We don't profile lambda bodies,
|
||||
// but rather make them available for separate profiling if
|
||||
// appropriate.
|
||||
std::vector<const LambdaExpr*> lambdas;
|
||||
|
||||
// If we're profiling a lambda function, this holds the captures.
|
||||
std::unordered_set<const ID*> captures;
|
||||
|
||||
// Constants seen in the function.
|
||||
std::vector<const ConstExpr*> constants;
|
||||
|
||||
// Identifiers seen in the function.
|
||||
std::unordered_set<const ID*> ids;
|
||||
|
||||
// The same, but in a deterministic order.
|
||||
std::vector<const ID*> ordered_ids;
|
||||
|
||||
// Types seen in the function. A set rather than a vector because
|
||||
// the same type can be seen numerous times.
|
||||
std::unordered_set<const Type*> types;
|
||||
|
||||
// The same, but in a deterministic order, with duplicates removed.
|
||||
std::vector<const Type*> ordered_types;
|
||||
|
||||
// Script functions that this script calls.
|
||||
std::unordered_set<ScriptFunc*> script_calls;
|
||||
|
||||
// Same for BiF's.
|
||||
std::unordered_set<Func*> BiF_calls;
|
||||
// Same for BiF's, though for them we record the corresponding global
|
||||
// rather than the BuiltinFunc*.
|
||||
std::unordered_set<const ID*> BiF_globals;
|
||||
|
||||
// Script functions appearing in "when" clauses.
|
||||
std::unordered_set<ScriptFunc*> when_calls;
|
||||
|
||||
// Names of generated events.
|
||||
std::unordered_set<const char*> events;
|
||||
std::unordered_set<std::string> events;
|
||||
|
||||
// Attributes seen in set or table constructors.
|
||||
std::unordered_set<const Attributes*> constructor_attrs;
|
||||
|
||||
// Switch statements with either expression cases or type cases.
|
||||
std::unordered_set<const SwitchStmt*> expr_switches;
|
||||
std::unordered_set<const SwitchStmt*> type_switches;
|
||||
|
||||
// True if the function makes a call through an expression rather
|
||||
// than simply a function's (global) name.
|
||||
bool does_indirect_calls = false;
|
||||
|
||||
// Hash value. Only valid if constructor requested it.
|
||||
std::size_t hash_val = 0;
|
||||
// Additional values present in the body that should be factored
|
||||
// into its hash.
|
||||
std::vector<p_hash_type> addl_hashes;
|
||||
|
||||
// How many statements / when statements / lambda expressions /
|
||||
// expressions appear in the function body.
|
||||
int num_stmts = 0;
|
||||
// Associated hash value.
|
||||
p_hash_type hash_val = 0;
|
||||
|
||||
// How many when statements appear in the function body. We could
|
||||
// track these individually, but to date all that's mattered is
|
||||
// whether a given body contains any.
|
||||
int num_when_stmts = 0;
|
||||
int num_lambdas = 0;
|
||||
int num_exprs = 0;
|
||||
|
||||
// Whether we're separately processing a "when" condition to
|
||||
// mine out its script calls.
|
||||
bool in_when = false;
|
||||
};
|
||||
|
||||
// We only compute a hash over the function if requested, since
|
||||
// it's somewhat expensive.
|
||||
bool compute_hash;
|
||||
// Function pointer for a predicate that determines whether a given
|
||||
// profile is compilable. Alternatively we could derive subclasses
|
||||
// from ProfileFuncs and use a virtual method for this, but that seems
|
||||
// heavier-weight for what's really a simple notion.
|
||||
typedef bool (*is_compilable_pred)(const ProfileFunc*);
|
||||
|
||||
// The following are for computing a consistent hash that isn't
|
||||
// too profligate in how much it needs to compute over.
|
||||
// Collectively profile an entire collection of functions.
|
||||
class ProfileFuncs {
|
||||
public:
|
||||
// Updates entries in "funcs" to include profiles. If pred is
|
||||
// non-nil, then it is called for each profile to see whether it's
|
||||
// compilable, and, if not, the FuncInfo is marked as ShouldSkip().
|
||||
ProfileFuncs(std::vector<FuncInfo>& funcs,
|
||||
is_compilable_pred pred = nullptr);
|
||||
|
||||
// Checks whether we've already noted this type, and, if not,
|
||||
// updates the hash with it.
|
||||
void CheckType(const TypePtr& t);
|
||||
// The following accessors provide a global profile across all of
|
||||
// the (non-skipped) functions in "funcs". See the comments for
|
||||
// the associated member variables for documentation.
|
||||
const std::unordered_set<const ID*>& Globals() const
|
||||
{ return globals; }
|
||||
const std::unordered_set<const ID*>& AllGlobals() const
|
||||
{ return all_globals; }
|
||||
const std::unordered_set<const ConstExpr*>& Constants() const
|
||||
{ return constants; }
|
||||
const std::vector<const Type*>& MainTypes() const
|
||||
{ return main_types; }
|
||||
const std::vector<const Type*>& RepTypes() const
|
||||
{ return rep_types; }
|
||||
const std::unordered_set<ScriptFunc*>& ScriptCalls() const
|
||||
{ return script_calls; }
|
||||
const std::unordered_set<const ID*>& BiFGlobals() const
|
||||
{ return BiF_globals; }
|
||||
const std::unordered_set<const LambdaExpr*>& Lambdas() const
|
||||
{ return lambdas; }
|
||||
const std::unordered_set<std::string>& Events() const
|
||||
{ return events; }
|
||||
|
||||
void UpdateHash(int val)
|
||||
std::shared_ptr<ProfileFunc> FuncProf(const ScriptFunc* f)
|
||||
{ return func_profs[f]; }
|
||||
|
||||
// This is only externally germane for LambdaExpr's.
|
||||
std::shared_ptr<ProfileFunc> ExprProf(const Expr* e)
|
||||
{ return expr_profs[e]; }
|
||||
|
||||
// Returns the "representative" Type* for the hash associated with
|
||||
// the parameter (which might be the parameter itself).
|
||||
const Type* TypeRep(const Type* orig)
|
||||
{
|
||||
auto h = std::hash<int>{}(val);
|
||||
MergeInHash(h);
|
||||
ASSERT(type_to_rep.count(orig) > 0);
|
||||
return type_to_rep[orig];
|
||||
}
|
||||
|
||||
void UpdateHash(const IntrusivePtr<Obj>& o);
|
||||
// Returns the hash associated with the given type, computing it
|
||||
// if necessary.
|
||||
p_hash_type HashType(const TypePtr& t) { return HashType(t.get()); }
|
||||
p_hash_type HashType(const Type* t);
|
||||
|
||||
void MergeInHash(std::size_t h)
|
||||
{
|
||||
// Taken from Boost. See for example
|
||||
// https://www.boost.org/doc/libs/1_35_0/doc/html/boost/hash_combine_id241013.html
|
||||
// or
|
||||
// https://stackoverflow.com/questions/4948780/magic-number-in-boosthash-combine
|
||||
hash_val ^= h + 0x9e3779b9 + (hash_val << 6) + (hash_val >> 2);
|
||||
}
|
||||
protected:
|
||||
// Incorporate the given function profile into the global profile.
|
||||
void MergeInProfile(ProfileFunc* pf);
|
||||
|
||||
// Types that we've already processed. Hashing types can be
|
||||
// quite expensive since some of the common Zeek record types
|
||||
// (e.g., notices) are huge, so useful to not do them more than
|
||||
// once. We track two forms, one by name (if available) and one
|
||||
// by raw pointer (if not). Doing so allows us to track named
|
||||
// sub-records but also records that have no names.
|
||||
std::unordered_set<std::string> seen_types;
|
||||
std::unordered_set<const Type*> seen_type_ptrs;
|
||||
// When traversing types, Zeek records can have attributes that in
|
||||
// turn have expressions associated with them. The expressions can
|
||||
// in turn have types, which might be records with further attribute
|
||||
// expressions, etc. This method iteratively processes the list
|
||||
// expressions we need to analyze until no new ones are added.
|
||||
void DrainPendingExprs();
|
||||
|
||||
// Compute hashes for the given set of types. Potentially recursive
|
||||
// upon discovering additional types.
|
||||
void ComputeTypeHashes(const std::vector<const Type*>& types);
|
||||
|
||||
// Compute hashes to associate with each function
|
||||
void ComputeBodyHashes(std::vector<FuncInfo>& funcs);
|
||||
|
||||
// Compute the hash associated with a single function profile.
|
||||
void ComputeProfileHash(std::shared_ptr<ProfileFunc> pf);
|
||||
|
||||
// Analyze the expressions and lambdas appearing in a set of
|
||||
// attributes.
|
||||
void AnalyzeAttrs(const Attributes* Attrs);
|
||||
|
||||
// Globals seen across the functions, other than those solely seen
|
||||
// as the function being called in a call.
|
||||
std::unordered_set<const ID*> globals;
|
||||
|
||||
// Same, but also includes globals only seen as called functions.
|
||||
std::unordered_set<const ID*> all_globals;
|
||||
|
||||
// Constants seen across the functions.
|
||||
std::unordered_set<const ConstExpr*> constants;
|
||||
|
||||
// Types seen across the functions. Does not include subtypes.
|
||||
// Deterministically ordered.
|
||||
std::vector<const Type*> main_types;
|
||||
|
||||
// "Representative" types seen across the functions. Includes
|
||||
// subtypes. These all have unique hashes, and are returned by
|
||||
// calls to TypeRep(). Deterministically ordered.
|
||||
std::vector<const Type*> rep_types;
|
||||
|
||||
// Maps a type to its representative (which might be itself).
|
||||
std::unordered_map<const Type*, const Type*> type_to_rep;
|
||||
|
||||
// Script functions that get called.
|
||||
std::unordered_set<ScriptFunc*> script_calls;
|
||||
|
||||
// Same for BiF's.
|
||||
std::unordered_set<const ID*> BiF_globals;
|
||||
|
||||
// And for lambda's.
|
||||
std::unordered_set<const LambdaExpr*> lambdas;
|
||||
|
||||
// Names of generated events.
|
||||
std::unordered_set<std::string> events;
|
||||
|
||||
// Maps script functions to associated profiles. This isn't
|
||||
// actually well-defined in the case of event handlers and hooks,
|
||||
// which can have multiple bodies. However, this is only used
|
||||
// in the context of analyzing a single-bodied function.
|
||||
std::unordered_map<const ScriptFunc*, std::shared_ptr<ProfileFunc>> func_profs;
|
||||
|
||||
// Maps expressions to their profiles. This is only germane
|
||||
// externally for LambdaExpr's, but internally it abets memory
|
||||
// management.
|
||||
std::unordered_map<const Expr*, std::shared_ptr<ProfileFunc>> expr_profs;
|
||||
|
||||
// These remaining member variables are only used internally,
|
||||
// not provided via accessors:
|
||||
|
||||
// Maps types to their hashes.
|
||||
std::unordered_map<const Type*, p_hash_type> type_hashes;
|
||||
|
||||
// An inverse mapping, to a representative for each distinct hash.
|
||||
std::unordered_map<p_hash_type, const Type*> type_hash_reps;
|
||||
|
||||
// For types with names, tracks the ones we've already hashed,
|
||||
// so we can avoid work for distinct pointers that refer to the
|
||||
// same underlying type.
|
||||
std::unordered_map<std::string, const Type*> seen_type_names;
|
||||
|
||||
// Expressions that we've discovered that we need to further
|
||||
// profile. These can arise for example due to lambdas or
|
||||
// record attributes.
|
||||
std::vector<const Expr*> pending_exprs;
|
||||
};
|
||||
|
||||
|
||||
|
|
|
@ -80,7 +80,7 @@ void optimize_func(ScriptFunc* f, std::shared_ptr<ProfileFunc> pf,
|
|||
|
||||
if ( analysis_options.optimize_AST )
|
||||
{
|
||||
pf = std::make_shared<ProfileFunc>(false);
|
||||
pf = std::make_shared<ProfileFunc>(f, body);
|
||||
body->Traverse(pf.get());
|
||||
|
||||
RD_Decorate reduced_rds(pf);
|
||||
|
@ -110,7 +110,7 @@ void optimize_func(ScriptFunc* f, std::shared_ptr<ProfileFunc> pf,
|
|||
}
|
||||
|
||||
// Profile the new body.
|
||||
pf = std::make_shared<ProfileFunc>();
|
||||
pf = std::make_shared<ProfileFunc>(f, body);
|
||||
body->Traverse(pf.get());
|
||||
|
||||
// Compute its reaching definitions.
|
||||
|
@ -202,15 +202,7 @@ void analyze_scripts()
|
|||
|
||||
// Now that everything's parsed and BiF's have been initialized,
|
||||
// profile the functions.
|
||||
std::unordered_map<const ScriptFunc*, std::shared_ptr<ProfileFunc>>
|
||||
func_profs;
|
||||
|
||||
for ( auto& f : funcs )
|
||||
{
|
||||
f.SetProfile(std::make_shared<ProfileFunc>(true));
|
||||
f.Body()->Traverse(f.Profile().get());
|
||||
func_profs[f.Func()] = f.Profile();
|
||||
}
|
||||
auto pfs = std::make_unique<ProfileFuncs>(funcs);
|
||||
|
||||
// Figure out which functions either directly or indirectly
|
||||
// appear in "when" clauses.
|
||||
|
@ -253,7 +245,7 @@ void analyze_scripts()
|
|||
{
|
||||
when_funcs.insert(wf);
|
||||
|
||||
for ( auto& wff : func_profs[wf]->ScriptCalls() )
|
||||
for ( auto& wff : pfs->FuncProf(wf)->ScriptCalls() )
|
||||
{
|
||||
if ( when_funcs.count(wff) > 0 )
|
||||
// We've already processed this
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue