Apply requested changes:

- file dpd.sig and TODO comments for signature protocol detection removed
- missing doc field filled in events.bif
- rename OpCode and ReqCode fields into op_code and req_code respectively
- removed unnecessary child method in NTP.h/.cc
- main.zeek and ntp-protocol.pac reformatted
This commit is contained in:
Mauro Palumbo 2019-06-14 12:30:29 +02:00
parent b130cc7931
commit 32663cec04
8 changed files with 229 additions and 248 deletions

View file

@ -4995,7 +4995,7 @@ export {
## 6 set trap address/port command/response
## 7 trap response
## Other values are reserved.
OpCode : count;
op_code : count;
## The response bit. Set to zero for commands, one for responses.
resp_bit : bool;
## The error bit. Set to zero for normal response, one for error response.
@ -5029,7 +5029,7 @@ export {
## An implementation-specific code which specifies the
## operation to be (which has been) performed and/or the
## format and semantics of the data included in the packet.
ReqCode : count;
req_code : count;
## The authenticated bit. If set, this packet is authenticated.
auth_bit : bool;
## For a multipacket response, contains the sequence

View file

@ -1,2 +1 @@
@load ./main
#@load-sigs ./dpd.sig

View file

@ -1,12 +0,0 @@
signature dpd_ntp {
ip-proto == udp
# ## TODO: Define the payload. When Bro sees this regex, on
# ## any port, it will enable your analyzer on that
# ## connection.
# ## payload /^NTP/
enable "ntp"
}

View file

@ -1,138 +1,137 @@
module NTP;
# TODO: The recommended method to do dynamic protocol detection
# (DPD) is with the signatures in dpd.sig.
# For the time being, we use port detection.
const ports = { 123/udp };
redef likely_server_ports += { ports };
export {
redef enum Log::ID += { LOG };
redef enum Log::ID += { LOG };
type Info: record {
## Timestamp for when the event happened.
ts: time &log;
## Unique ID for the connection.
uid: string &log;
## The connection's 4-tuple of endpoint addresses/ports.
id: conn_id &log;
type Info: record {
## Timestamp for when the event happened.
ts: time &log;
## Unique ID for the connection.
uid: string &log;
## The connection's 4-tuple of endpoint addresses/ports.
id: conn_id &log;
## The NTP version number (1, 2, 3, 4)
version: count &log;
## The NTP mode being used
mode: count &log;
## The stratum (primary server, secondary server, etc.)
stratum: count &log;
## The maximum interval between successive messages
poll: interval &log;
## The precision of the system clock
precision: interval &log;
## Total round-trip delay to the reference clock
root_delay: interval &log;
## Total dispersion to the reference clock
root_disp: interval &log;
## For stratum 0, 4 character string used for debugging
kiss_code: string &optional &log;
## For stratum 1, ID assigned to the reference clock by IANA
ref_id: string &optional &log;
## Above stratum 1, when using IPv4, the IP address of the reference clock
ref_addr: addr &optional &log;
## Above stratum 1, when using IPv6, the first four bytes of the MD5 hash of the
## IPv6 address of the reference clock
ref_v6_hash_prefix: string &optional &log;
## Time when the system clock was last set or correct
ref_time: time &log;
## Time at the client when the request departed for the NTP server
org_time: time &log;
## Time at the server when the request arrived from the NTP client
rec_time: time &log;
## Time at the server when the response departed for the NTP client
xmt_time: time &log;
## Key used to designate a secret MD5 key
key_id: count &optional &log;
## MD5 hash computed over the key followed by the NTP packet header and extension fields
digest: string &optional &log;
## Number of extension fields (which are not currently parsed)
num_exts: count &default=0 &log;
version: count &log;
## The NTP mode being used
mode: count &log;
## The stratum (primary server, secondary server, etc.)
stratum: count &log;
## The maximum interval between successive messages
poll: interval &log;
## The precision of the system clock
precision: interval &log;
## Total round-trip delay to the reference clock
root_delay: interval &log;
## Total dispersion to the reference clock
root_disp: interval &log;
## For stratum 0, 4 character string used for debugging
kiss_code: string &optional &log;
## For stratum 1, ID assigned to the reference clock by IANA
ref_id: string &optional &log;
## Above stratum 1, when using IPv4, the IP address of the reference clock
ref_addr: addr &optional &log;
## Above stratum 1, when using IPv6, the first four bytes of the MD5 hash of the
## IPv6 address of the reference clock
ref_v6_hash_prefix: string &optional &log;
## Time when the system clock was last set or correct
ref_time: time &log;
## Time at the client when the request departed for the NTP server
org_time: time &log;
## Time at the server when the request arrived from the NTP client
rec_time: time &log;
## Time at the server when the response departed for the NTP client
xmt_time: time &log;
## Key used to designate a secret MD5 key
key_id: count &optional &log;
## MD5 hash computed over the key followed by the NTP packet header and extension fields
digest: string &optional &log;
## Number of extension fields (which are not currently parsed)
num_exts: count &default=0 &log;
## An integer specifying the command function. Values currently defined includes:
## 1 read status command/response
## 2 read variables command/response
## 3 write variables command/response
## 4 read clock variables command/response
## 5 write clock variables command/response
## 6 set trap address/port command/response
## 7 trap response
## Other values are reserved.
OpCode : count &log;
## The response bit. Set to zero for commands, one for responses.
resp_bit : bool &log;
## The error bit. Set to zero for normal response, one for error response.
err_bit : bool &log;
## The more bit. Set to zero for last fragment, one for all others.
more_bit : bool &log;
## The sequence number of the command or response
sequence : count &log;
## The current status of the system, peer or clock
status : count &log;
## A 16-bit integer identifying a valid association
association_id : count &log;
## This is an integer identifying the cryptographic
## key used to generate the message-authentication code
ctrl_key_id : count &optional &log;
## This is a crypto-checksum computed by the encryption procedure
crypto_checksum : string &optional &log;
## An integer specifying the command function. Values currently defined includes:
## 1 read status command/response
## 2 read variables command/response
## 3 write variables command/response
## 4 read clock variables command/response
## 5 write clock variables command/response
## 6 set trap address/port command/response
## 7 trap response
## Other values are reserved.
op_code : count &log;
## The response bit. Set to zero for commands, one for responses.
resp_bit : bool &log;
## The error bit. Set to zero for normal response, one for error response.
err_bit : bool &log;
## The more bit. Set to zero for last fragment, one for all others.
more_bit : bool &log;
## The sequence number of the command or response
sequence : count &log;
## The current status of the system, peer or clock
status : count &log;
## A 16-bit integer identifying a valid association
association_id : count &log;
## This is an integer identifying the cryptographic
## key used to generate the message-authentication code
ctrl_key_id : count &optional &log;
## This is a crypto-checksum computed by the encryption procedure
crypto_checksum : string &optional &log;
## An implementation-specific code which specifies the
## operation to be (which has been) performed and/or the
## format and semantics of the data included in the packet.
ReqCode : count &log;
## The authenticated bit. If set, this packet is authenticated.
auth_bit : bool &log;
## For a multipacket response, contains the sequence
## number of this packet. 0 is the first in the sequence,
## 127 (or less) is the last. The More Bit must be set in
## all packets but the last.
sequence : count &log;
## The number of the implementation this request code
## is defined by. An implementation number of zero is used
## for requst codes/data formats which all implementations
## agree on. Implementation number 255 is reserved (for
## extensions, in case we run out).
implementation : count &log;
## Must be 0 for a request. For a response, holds an error
## code relating to the request. If nonzero, the operation
## requested wasn't performed.
##
## 0 - no error
## 1 - incompatible implementation number
## 2 - unimplemented request code
## 3 - format error (wrong data items, data size, packet size etc.)
## 4 - no data available (e.g. request for details on unknown peer)
## 5-6 I don't know
## 7 - authentication failure (i.e. permission denied)
err : count &log;
req_code : count &log;
## The authenticated bit. If set, this packet is authenticated.
auth_bit : bool &log;
## For a multipacket response, contains the sequence
## number of this packet. 0 is the first in the sequence,
## 127 (or less) is the last. The More Bit must be set in
## all packets but the last.
sequence : count &log;
## The number of the implementation this request code
## is defined by. An implementation number of zero is used
## for requst codes/data formats which all implementations
## agree on. Implementation number 255 is reserved (for
## extensions, in case we run out).
implementation : count &log;
## Must be 0 for a request. For a response, holds an error
## code relating to the request. If nonzero, the operation
## requested wasn't performed.
##
## 0 - no error
## 1 - incompatible implementation number
## 2 - unimplemented request code
## 3 - format error (wrong data items, data size, packet size etc.)
## 4 - no data available (e.g. request for details on unknown peer)
## 5-6 I don't know
## 7 - authentication failure (i.e. permission denied)
err : count &log;
};
## Event that can be handled to access the NTP record as it is sent on
## to the logging framework.
global log_ntp: event(rec: Info);
## Event that can be handled to access the NTP record as it is sent on
## to the logging framework.
global log_ntp: event(rec: Info);
}
redef record connection += {
ntp: Info &optional;
ntp: Info &optional;
};
event ntp_message(c: connection, is_orig: bool, msg: NTP::Message) &priority=5
{
{
local info: Info;
info$ts = network_time();
info$uid = c$uid;
info$id = c$id;
info$version = msg$version;
info$mode = msg$mode;
info$ts = network_time();
info$uid = c$uid;
info$id = c$id;
info$version = msg$version;
info$mode = msg$mode;
if ( msg$mode < 6 ) {
if ( msg$mode < 6 )
{
info$stratum = msg$std_msg$stratum;
info$poll = msg$std_msg$poll;
info$precision = msg$std_msg$precision;
@ -141,69 +140,70 @@ event ntp_message(c: connection, is_orig: bool, msg: NTP::Message) &priority=5
if ( msg$std_msg?$kiss_code)
info$kiss_code = msg$std_msg$kiss_code;
if ( msg$std_msg?$ref_id)
info$ref_id = msg$std_msg$ref_id;
if ( msg$std_msg?$ref_addr)
info$ref_addr = msg$std_msg$ref_addr;
if ( msg$std_msg?$ref_v6_hash_prefix)
info$ref_v6_hash_prefix = msg$std_msg$ref_v6_hash_prefix;
if ( msg$std_msg?$ref_id)
info$ref_id = msg$std_msg$ref_id;
if ( msg$std_msg?$ref_addr)
info$ref_addr = msg$std_msg$ref_addr;
if ( msg$std_msg?$ref_v6_hash_prefix)
info$ref_v6_hash_prefix = msg$std_msg$ref_v6_hash_prefix;
info$ref_time = msg$std_msg$ref_time;
info$org_time = msg$std_msg$org_time;
info$rec_time = msg$std_msg$rec_time;
info$xmt_time = msg$std_msg$xmt_time;
info$ref_time = msg$std_msg$ref_time;
info$org_time = msg$std_msg$org_time;
info$rec_time = msg$std_msg$rec_time;
info$xmt_time = msg$std_msg$xmt_time;
if ( msg$std_msg?$key_id)
info$key_id = msg$std_msg$key_id;
if ( msg$std_msg?$digest)
info$digest = msg$std_msg$digest;
if ( msg$std_msg?$key_id)
info$key_id = msg$std_msg$key_id;
if ( msg$std_msg?$digest)
info$digest = msg$std_msg$digest;
info$num_exts = msg$std_msg$num_exts;
}
}
if ( msg$mode==6 ) {
info$OpCode = msg$control_msg$OpCode;
info$resp_bit = msg$control_msg$resp_bit;
info$err_bit = msg$control_msg$err_bit;
info$more_bit = msg$control_msg$more_bit;
info$sequence = msg$control_msg$sequence;
info$status = msg$control_msg$status;
info$association_id = msg$control_msg$association_id;
if ( msg$mode==6 )
{
info$op_code = msg$control_msg$op_code;
info$resp_bit = msg$control_msg$resp_bit;
info$err_bit = msg$control_msg$err_bit;
info$more_bit = msg$control_msg$more_bit;
info$sequence = msg$control_msg$sequence;
info$status = msg$control_msg$status;
info$association_id = msg$control_msg$association_id;
if ( msg$control_msg?$key_id)
info$ctrl_key_id = msg$control_msg$key_id;
if ( msg$control_msg?$crypto_checksum)
info$crypto_checksum = msg$control_msg$crypto_checksum;
if ( msg$control_msg?$key_id)
info$ctrl_key_id = msg$control_msg$key_id;
if ( msg$control_msg?$crypto_checksum)
info$crypto_checksum = msg$control_msg$crypto_checksum;
}
}
if ( msg$mode==7 )
{
info$req_code = msg$mode7_msg$req_code;
info$auth_bit = msg$mode7_msg$auth_bit;
info$sequence = msg$mode7_msg$sequence;
info$implementation = msg$mode7_msg$implementation;
info$err = msg$mode7_msg$err;
}
if ( msg$mode==7 ) {
info$ReqCode = msg$mode7_msg$ReqCode;
info$auth_bit = msg$mode7_msg$auth_bit;
info$sequence = msg$mode7_msg$sequence;
info$implementation = msg$mode7_msg$implementation;
info$err = msg$mode7_msg$err;
}
# Copy the present packet info into the connection record
# Copy the present packet info into the connection record
# If more ntp packets are sent on the same connection, the newest one
# will overwrite the previous
c$ntp = info;
# Add the service to the Conn::LOG
add c$service["ntp"];
}
}
event ntp_message(c: connection, is_orig: bool, msg: NTP::Message) &priority=-5
{
# Log every ntp packet into ntp.log
Log::write(NTP::LOG, c$ntp);
}
{
# Log every ntp packet into ntp.log
Log::write(NTP::LOG, c$ntp);
}
event zeek_init() &priority=5
{
Analyzer::register_for_ports(Analyzer::ANALYZER_NTP, ports);
{
Analyzer::register_for_ports(Analyzer::ANALYZER_NTP, ports);
Log::create_stream(NTP::LOG, [$columns = Info, $ev = log_ntp]);
}
Log::create_stream(NTP::LOG, [$columns = Info, $ev = log_ntp]);
}

View file

@ -17,11 +17,6 @@ NTP_Analyzer::~NTP_Analyzer()
delete interp;
}
void NTP_Analyzer::Done()
{
Analyzer::Done();
}
void NTP_Analyzer::DeliverPacket(int len, const u_char* data,
bool orig, uint64 seq, const IP_Hdr* ip, int caplen)
{

View file

@ -16,7 +16,6 @@ public:
~NTP_Analyzer() override;
// Overriden from Analyzer.
void Done() override;
void DeliverPacket(int len, const u_char* data, bool orig,
uint64 seq, const IP_Hdr* ip, int caplen) override;

View file

@ -6,7 +6,7 @@
##
## c: The connection record describing the corresponding UDP flow.
##
## is_orig:
## is_orig: True if the message was sent by the originator.
##
## msg: The parsed NTP message.
##

View file

@ -3,52 +3,52 @@
type NTP_PDU(is_orig: bool) = record {
# The first byte of the NTP header contains the leap indicator,
# the version and the mode
first_byte : uint8;
# Modes 1-5 are standard NTP time sync
standard_modes : case (mode>=1 && mode<=5) of {
true -> std : NTP_std_msg;
false -> emp : empty;
};
modes_6_7 : case (mode) of {
first_byte : uint8;
# Modes 1-5 are standard NTP time sync
standard_modes : case (mode>=1 && mode<=5) of {
true -> std : NTP_std_msg;
false -> emp : empty;
};
modes_6_7 : case (mode) of {
# mode 6 is for control messages (format is different from modes 6-7)
6 -> control : NTP_control_msg;
6 -> control : NTP_control_msg;
# mode 7 is reserved or private (and implementation dependent). For example used for some commands such as MONLIST
7 -> mode7 : NTP_mode7_msg;
default -> unknown : bytestring &restofdata;
};
7 -> mode7 : NTP_mode7_msg;
default -> unknown : bytestring &restofdata;
};
} &let {
leap : uint8 = (first_byte & 0xc0)>>6; # First 2 bits of 8-bits value
version : uint8 = (first_byte & 0x38)>>3; # Bits 3-5 of 8-bits value
mode : uint8 = (first_byte & 0x07); # Bits 6-8 of 8-bits value
leap : uint8 = (first_byte & 0xc0)>>6; # First 2 bits of 8-bits value
version : uint8 = (first_byte & 0x38)>>3; # Bits 3-5 of 8-bits value
mode : uint8 = (first_byte & 0x07); # Bits 6-8 of 8-bits value
} &byteorder=bigendian &exportsourcedata;
# This is the most common type of message, corresponding to modes 1-5
# This kind of msg are used for normal operation of syncronization
# See RFC 5905 for details
type NTP_std_msg = record {
stratum : uint8;
poll : int8;
precision : int8;
stratum : uint8;
poll : int8;
precision : int8;
root_delay : NTP_Short_Time;
root_dispersion: NTP_Short_Time;
reference_id : bytestring &length=4;
reference_ts : NTP_Time;
root_delay : NTP_Short_Time;
root_dispersion : NTP_Short_Time;
reference_id : bytestring &length=4;
reference_ts : NTP_Time;
origin_ts : NTP_Time;
receive_ts : NTP_Time;
transmit_ts : NTP_Time;
extensions : case (has_exts) of {
true -> exts : Extension_Field[] &until($input.length() > 24);
false -> nil : empty;
} &requires(has_exts);
mac_fields : case (mac_len) of {
20 -> mac : NTP_MAC;
24 -> mac_ext : NTP_MAC_ext;
default -> nil2 : empty;
} &requires(mac_len);
origin_ts : NTP_Time;
receive_ts : NTP_Time;
transmit_ts : NTP_Time;
extensions : case (has_exts) of {
true -> exts : Extension_Field[] &until($input.length() > 24);
false -> nil : empty;
} &requires(has_exts);
mac_fields : case (mac_len) of {
20 -> mac : NTP_MAC;
24 -> mac_ext : NTP_MAC_ext;
default -> nil2 : empty;
} &requires(mac_len);
} &let {
length = sourcedata.length();
length = sourcedata.length();
has_exts: bool = (length - offsetof(extensions)) > 24;
mac_len: uint32 = (length - offsetof(mac_fields));
} &byteorder=bigendian &exportsourcedata;
@ -56,24 +56,24 @@ type NTP_std_msg = record {
# This format is for mode==6, control msg
# See RFC 1119 for details
type NTP_control_msg = record {
second_byte : uint8;
sequence : uint16;
status : uint16; #TODO: this can be further parsed internally
association_id : uint16;
offs : uint16;
c : uint16;
second_byte : uint8;
sequence : uint16;
status : uint16; #TODO: this can be further parsed internally
association_id : uint16;
offs : uint16;
c : uint16;
data : bytestring &length=c;
mac_fields : case (has_control_mac) of {
true -> mac : NTP_CONTROL_MAC;
false -> nil : empty;
} &requires(has_control_mac);
mac_fields : case (has_control_mac) of {
true -> mac : NTP_CONTROL_MAC;
false -> nil : empty;
} &requires(has_control_mac);
} &let {
R : bool = (second_byte & 0x80) > 0; # First bit of 8-bits value
E : bool = (second_byte & 0x40) > 0; # Second bit of 8-bits value
M : bool = (second_byte & 0x20) > 0; # Third bit of 8-bits value
OpCode : uint8 = (second_byte & 0x1F); # Last 5 bits of 8-bits value
length = sourcedata.length();
has_control_mac: bool = (length - offsetof(mac_fields)) == 12;
R : bool = (second_byte & 0x80) > 0; # First bit of 8-bits value
E : bool = (second_byte & 0x40) > 0; # Second bit of 8-bits value
M : bool = (second_byte & 0x20) > 0; # Third bit of 8-bits value
OpCode : uint8 = (second_byte & 0x1F); # Last 5 bits of 8-bits value
length = sourcedata.length();
has_control_mac: bool = (length - offsetof(mac_fields)) == 12;
} &byteorder=bigendian &exportsourcedata;
# As in RFC 5905
@ -90,35 +90,35 @@ type NTP_MAC_ext = record {
# As in RFC 1119
type NTP_CONTROL_MAC = record {
key_id : uint32;
crypto_checksum : bytestring &length=8;
key_id : uint32;
crypto_checksum : bytestring &length=8;
} &length=12;
# As defined in RFC 5906
type Extension_Field = record {
first_byte_ext: uint8;
field_type : uint8;
len : uint16;
association_id: uint16;
timestamp : uint32;
filestamp : uint32;
value_len : uint32;
value : bytestring &length=value_len;
sig_len : uint32;
signature : bytestring &length=sig_len;
pad : padding to (len - offsetof(first_byte_ext));
first_byte_ext: uint8;
field_type : uint8;
len : uint16;
association_id : uint16;
timestamp : uint32;
filestamp : uint32;
value_len : uint32;
value : bytestring &length=value_len;
sig_len : uint32;
signature : bytestring &length=sig_len;
pad : padding to (len - offsetof(first_byte_ext));
} &let {
R: bool = (first_byte_ext & 0x80) > 0; # First bit of 8-bits value
E: bool = (first_byte_ext & 0x40) > 0; # Second bit of 8-bits value
Code: uint8 = (first_byte_ext & 0x3F); # Last 6 bits of 8-bits value
R: bool = (first_byte_ext & 0x80) > 0; # First bit of 8-bits value
E: bool = (first_byte_ext & 0x40) > 0; # Second bit of 8-bits value
Code: uint8 = (first_byte_ext & 0x3F); # Last 6 bits of 8-bits value
};
type NTP_Short_Time = record {
seconds : int16;
fractions : int16;
seconds : int16;
fractions : int16;
};
type NTP_Time = record {
seconds : uint32;
fractions : uint32;
seconds : uint32;
fractions : uint32;
};