binpac: Reformat C++ code in Spicy style

This commit is contained in:
Tim Wojtulewicz 2023-10-30 13:15:14 -07:00
parent 716bf016a1
commit 3297de477b
89 changed files with 7887 additions and 9733 deletions

View file

@ -1,28 +1,24 @@
#ifndef binpac_an_h
#define binpac_an_h
namespace binpac
{
namespace binpac {
// TODO: Add the Done() function
// The interface for a connection analyzer
class ConnectionAnalyzer
{
class ConnectionAnalyzer {
public:
virtual ~ConnectionAnalyzer() { }
virtual void NewData(bool is_orig, const unsigned char* begin_of_data,
const unsigned char* end_of_data) = 0;
};
virtual ~ConnectionAnalyzer() {}
virtual void NewData(bool is_orig, const unsigned char* begin_of_data, const unsigned char* end_of_data) = 0;
};
// The interface for a flow analyzer
class FlowAnalyzer
{
class FlowAnalyzer {
public:
virtual ~FlowAnalyzer() { }
virtual void NewData(const unsigned char* begin_of_data, const unsigned char* end_of_data) = 0;
};
virtual ~FlowAnalyzer() {}
virtual void NewData(const unsigned char* begin_of_data, const unsigned char* end_of_data) = 0;
};
} // namespace binpac
} // namespace binpac
#endif // binpac_an_h

View file

@ -7,310 +7,248 @@
#include "binpac.h"
#include "binpac_buffer.h"
namespace binpac
{
namespace binpac {
extern double network_time();
namespace
{
namespace {
const unsigned char CR = '\r';
const unsigned char LF = '\n';
}
} // namespace
binpac::FlowBuffer::Policy binpac::FlowBuffer::policy = {
// max_capacity
10 * 1024 * 1024,
// min_capacity
512,
// contract_threshold
2 * 1024 * 1024,
// max_capacity
10 * 1024 * 1024,
// min_capacity
512,
// contract_threshold
2 * 1024 * 1024,
};
FlowBuffer::FlowBuffer(LineBreakStyle linebreak_style)
{
buffer_length_ = 0;
buffer_ = nullptr;
FlowBuffer::FlowBuffer(LineBreakStyle linebreak_style) {
buffer_length_ = 0;
buffer_ = nullptr;
orig_data_begin_ = nullptr;
orig_data_end_ = nullptr;
orig_data_begin_ = nullptr;
orig_data_end_ = nullptr;
linebreak_style_ = linebreak_style;
linebreak_style_default = linebreak_style;
linebreaker_ = 0;
ResetLineState();
linebreak_style_ = linebreak_style;
linebreak_style_default = linebreak_style;
linebreaker_ = 0;
ResetLineState();
mode_ = UNKNOWN_MODE;
frame_length_ = 0;
chunked_ = false;
mode_ = UNKNOWN_MODE;
frame_length_ = 0;
chunked_ = false;
data_seq_at_orig_data_end_ = 0;
eof_ = false;
have_pending_request_ = false;
data_seq_at_orig_data_end_ = 0;
eof_ = false;
have_pending_request_ = false;
buffer_n_ = 0;
buffer_n_ = 0;
NewMessage();
}
NewMessage();
}
FlowBuffer::~FlowBuffer()
{
if ( buffer_ )
free(buffer_);
}
FlowBuffer::~FlowBuffer() {
if ( buffer_ )
free(buffer_);
}
void FlowBuffer::NewMessage()
{
BINPAC_ASSERT(frame_length_ >= 0);
void FlowBuffer::NewMessage() {
BINPAC_ASSERT(frame_length_ >= 0);
int bytes_to_advance = 0;
if ( buffer_n_ == 0 )
{
switch ( mode_ )
{
case LINE_MODE:
bytes_to_advance = (frame_length_ + (linebreak_style_ == STRICT_CRLF ? 2 : 1));
break;
case FRAME_MODE:
bytes_to_advance = frame_length_;
break;
case UNKNOWN_MODE:
break;
}
}
int bytes_to_advance = 0;
if ( buffer_n_ == 0 ) {
switch ( mode_ ) {
case LINE_MODE: bytes_to_advance = (frame_length_ + (linebreak_style_ == STRICT_CRLF ? 2 : 1)); break;
case FRAME_MODE: bytes_to_advance = frame_length_; break;
case UNKNOWN_MODE: break;
}
}
orig_data_begin_ += bytes_to_advance;
BINPAC_ASSERT(orig_data_begin_ <= orig_data_end_);
orig_data_begin_ += bytes_to_advance;
BINPAC_ASSERT(orig_data_begin_ <= orig_data_end_);
buffer_n_ = 0;
message_complete_ = false;
ContractBuffer();
}
buffer_n_ = 0;
message_complete_ = false;
ContractBuffer();
}
void FlowBuffer::ResetLineState()
{
switch ( linebreak_style_ )
{
case CR_OR_LF:
state_ = CR_OR_LF_0;
break;
case STRICT_CRLF:
state_ = STRICT_CRLF_0;
break;
case LINE_BREAKER:
break; // Nothing to reset
default:
BINPAC_ASSERT(0);
break;
}
}
void FlowBuffer::ResetLineState() {
switch ( linebreak_style_ ) {
case CR_OR_LF: state_ = CR_OR_LF_0; break;
case STRICT_CRLF: state_ = STRICT_CRLF_0; break;
case LINE_BREAKER: break; // Nothing to reset
default: BINPAC_ASSERT(0); break;
}
}
void FlowBuffer::ExpandBuffer(int length)
{
if ( buffer_length_ >= length )
return;
void FlowBuffer::ExpandBuffer(int length) {
if ( buffer_length_ >= length )
return;
if ( length < policy.min_capacity )
length = policy.min_capacity;
if ( length < policy.min_capacity )
length = policy.min_capacity;
if ( length < buffer_length_ * 2 )
length = buffer_length_ * 2;
if ( length < buffer_length_ * 2 )
length = buffer_length_ * 2;
if ( length > policy.max_capacity )
{
std::string reason = strfmt("expand past max capacity %d/%d", length, policy.max_capacity);
throw ExceptionFlowBufferAlloc(reason.c_str());
}
if ( length > policy.max_capacity ) {
std::string reason = strfmt("expand past max capacity %d/%d", length, policy.max_capacity);
throw ExceptionFlowBufferAlloc(reason.c_str());
}
// Allocate a new buffer and copy the existing contents
buffer_length_ = length;
unsigned char* new_buf = (unsigned char*)realloc(buffer_, buffer_length_);
// Allocate a new buffer and copy the existing contents
buffer_length_ = length;
unsigned char* new_buf = (unsigned char*)realloc(buffer_, buffer_length_);
if ( ! new_buf )
throw ExceptionFlowBufferAlloc("expand realloc OOM");
if ( ! new_buf )
throw ExceptionFlowBufferAlloc("expand realloc OOM");
buffer_ = new_buf;
}
buffer_ = new_buf;
}
void FlowBuffer::ContractBuffer()
{
if ( buffer_length_ < policy.contract_threshold )
return;
void FlowBuffer::ContractBuffer() {
if ( buffer_length_ < policy.contract_threshold )
return;
buffer_length_ = policy.min_capacity;
unsigned char* new_buf = (unsigned char*)realloc(buffer_, buffer_length_);
buffer_length_ = policy.min_capacity;
unsigned char* new_buf = (unsigned char*)realloc(buffer_, buffer_length_);
if ( ! new_buf )
throw ExceptionFlowBufferAlloc("contract realloc OOM");
if ( ! new_buf )
throw ExceptionFlowBufferAlloc("contract realloc OOM");
buffer_ = new_buf;
}
buffer_ = new_buf;
}
void FlowBuffer::SetLineBreaker(unsigned char* lbreaker)
{
linebreaker_ = *lbreaker;
linebreak_style_default = linebreak_style_;
linebreak_style_ = LINE_BREAKER;
}
void FlowBuffer::SetLineBreaker(unsigned char* lbreaker) {
linebreaker_ = *lbreaker;
linebreak_style_default = linebreak_style_;
linebreak_style_ = LINE_BREAKER;
}
void FlowBuffer::UnsetLineBreaker()
{
linebreak_style_ = linebreak_style_default;
}
void FlowBuffer::UnsetLineBreaker() { linebreak_style_ = linebreak_style_default; }
void FlowBuffer::NewLine()
{
FlowBuffer::NewMessage();
mode_ = LINE_MODE;
frame_length_ = 0;
chunked_ = false;
have_pending_request_ = true;
if ( state_ == FRAME_0 )
ResetLineState();
MarkOrCopyLine();
}
void FlowBuffer::NewLine() {
FlowBuffer::NewMessage();
mode_ = LINE_MODE;
frame_length_ = 0;
chunked_ = false;
have_pending_request_ = true;
if ( state_ == FRAME_0 )
ResetLineState();
MarkOrCopyLine();
}
void FlowBuffer::NewFrame(int frame_length, bool chunked)
{
FlowBuffer::NewMessage();
mode_ = FRAME_MODE;
frame_length_ = frame_length;
chunked_ = chunked;
have_pending_request_ = true;
MarkOrCopyFrame();
}
void FlowBuffer::NewFrame(int frame_length, bool chunked) {
FlowBuffer::NewMessage();
mode_ = FRAME_MODE;
frame_length_ = frame_length;
chunked_ = chunked;
have_pending_request_ = true;
MarkOrCopyFrame();
}
void FlowBuffer::BufferData(const_byteptr data, const_byteptr end)
{
mode_ = FRAME_MODE;
frame_length_ += (end - data);
MarkOrCopyFrame();
NewData(data, end);
}
void FlowBuffer::BufferData(const_byteptr data, const_byteptr end) {
mode_ = FRAME_MODE;
frame_length_ += (end - data);
MarkOrCopyFrame();
NewData(data, end);
}
void FlowBuffer::FinishBuffer()
{
message_complete_ = true;
}
void FlowBuffer::FinishBuffer() { message_complete_ = true; }
void FlowBuffer::GrowFrame(int length)
{
BINPAC_ASSERT(frame_length_ >= 0);
if ( length <= frame_length_ )
return;
BINPAC_ASSERT(! chunked_ || frame_length_ == 0);
mode_ = FRAME_MODE;
frame_length_ = length;
MarkOrCopyFrame();
}
void FlowBuffer::GrowFrame(int length) {
BINPAC_ASSERT(frame_length_ >= 0);
if ( length <= frame_length_ )
return;
BINPAC_ASSERT(! chunked_ || frame_length_ == 0);
mode_ = FRAME_MODE;
frame_length_ = length;
MarkOrCopyFrame();
}
void FlowBuffer::DiscardData()
{
mode_ = UNKNOWN_MODE;
message_complete_ = false;
have_pending_request_ = false;
orig_data_begin_ = orig_data_end_ = nullptr;
void FlowBuffer::DiscardData() {
mode_ = UNKNOWN_MODE;
message_complete_ = false;
have_pending_request_ = false;
orig_data_begin_ = orig_data_end_ = nullptr;
buffer_n_ = 0;
frame_length_ = 0;
ContractBuffer();
}
buffer_n_ = 0;
frame_length_ = 0;
ContractBuffer();
}
void FlowBuffer::set_eof()
{
// fprintf(stderr, "EOF\n");
eof_ = true;
if ( chunked_ )
frame_length_ = orig_data_end_ - orig_data_begin_;
if ( frame_length_ < 0 )
frame_length_ = 0;
}
void FlowBuffer::set_eof() {
// fprintf(stderr, "EOF\n");
eof_ = true;
if ( chunked_ )
frame_length_ = orig_data_end_ - orig_data_begin_;
if ( frame_length_ < 0 )
frame_length_ = 0;
}
void FlowBuffer::NewData(const_byteptr begin, const_byteptr end)
{
BINPAC_ASSERT(begin <= end);
void FlowBuffer::NewData(const_byteptr begin, const_byteptr end) {
BINPAC_ASSERT(begin <= end);
ClearPreviousData();
ClearPreviousData();
BINPAC_ASSERT((buffer_n_ == 0 && message_complete_) || orig_data_begin_ == orig_data_end_);
BINPAC_ASSERT((buffer_n_ == 0 && message_complete_) || orig_data_begin_ == orig_data_end_);
orig_data_begin_ = begin;
orig_data_end_ = end;
data_seq_at_orig_data_end_ += (end - begin);
orig_data_begin_ = begin;
orig_data_end_ = end;
data_seq_at_orig_data_end_ += (end - begin);
MarkOrCopy();
}
MarkOrCopy();
}
void FlowBuffer::MarkOrCopy()
{
if ( ! message_complete_ )
{
switch ( mode_ )
{
case LINE_MODE:
MarkOrCopyLine();
break;
void FlowBuffer::MarkOrCopy() {
if ( ! message_complete_ ) {
switch ( mode_ ) {
case LINE_MODE: MarkOrCopyLine(); break;
case FRAME_MODE:
MarkOrCopyFrame();
break;
case FRAME_MODE: MarkOrCopyFrame(); break;
default:
break;
}
}
}
default: break;
}
}
}
void FlowBuffer::ClearPreviousData()
{
// All previous data must have been processed or buffered already
if ( orig_data_begin_ < orig_data_end_ )
{
BINPAC_ASSERT(buffer_n_ == 0);
if ( chunked_ )
{
if ( frame_length_ > 0 )
{
frame_length_ -= (orig_data_end_ - orig_data_begin_);
}
orig_data_begin_ = orig_data_end_;
}
}
}
void FlowBuffer::ClearPreviousData() {
// All previous data must have been processed or buffered already
if ( orig_data_begin_ < orig_data_end_ ) {
BINPAC_ASSERT(buffer_n_ == 0);
if ( chunked_ ) {
if ( frame_length_ > 0 ) {
frame_length_ -= (orig_data_end_ - orig_data_begin_);
}
orig_data_begin_ = orig_data_end_;
}
}
}
void FlowBuffer::NewGap(int length)
{
ClearPreviousData();
void FlowBuffer::NewGap(int length) {
ClearPreviousData();
if ( chunked_ && frame_length_ >= 0 )
{
frame_length_ -= length;
if ( frame_length_ < 0 )
frame_length_ = 0;
}
if ( chunked_ && frame_length_ >= 0 ) {
frame_length_ -= length;
if ( frame_length_ < 0 )
frame_length_ = 0;
}
orig_data_begin_ = orig_data_end_ = nullptr;
MarkOrCopy();
}
orig_data_begin_ = orig_data_end_ = nullptr;
MarkOrCopy();
}
void FlowBuffer::MarkOrCopyLine()
{
switch ( linebreak_style_ )
{
case CR_OR_LF:
MarkOrCopyLine_CR_OR_LF();
break;
case STRICT_CRLF:
MarkOrCopyLine_STRICT_CRLF();
break;
case LINE_BREAKER:
MarkOrCopyLine_LINEBREAK();
break;
default:
BINPAC_ASSERT(0);
break;
}
}
void FlowBuffer::MarkOrCopyLine() {
switch ( linebreak_style_ ) {
case CR_OR_LF: MarkOrCopyLine_CR_OR_LF(); break;
case STRICT_CRLF: MarkOrCopyLine_STRICT_CRLF(); break;
case LINE_BREAKER: MarkOrCopyLine_LINEBREAK(); break;
default: BINPAC_ASSERT(0); break;
}
}
/*
Finite state automaton for CR_OR_LF:
@ -327,57 +265,49 @@ CR_OR_LF_1:
.: CR_OR_LF_0 *
*/
void FlowBuffer::MarkOrCopyLine_CR_OR_LF()
{
if ( ! (orig_data_begin_ && orig_data_end_) )
return;
void FlowBuffer::MarkOrCopyLine_CR_OR_LF() {
if ( ! (orig_data_begin_ && orig_data_end_) )
return;
if ( state_ == CR_OR_LF_1 && orig_data_begin_ < orig_data_end_ && *orig_data_begin_ == LF )
{
state_ = CR_OR_LF_0;
++orig_data_begin_;
}
if ( state_ == CR_OR_LF_1 && orig_data_begin_ < orig_data_end_ && *orig_data_begin_ == LF ) {
state_ = CR_OR_LF_0;
++orig_data_begin_;
}
const_byteptr data;
for ( data = orig_data_begin_; data < orig_data_end_; ++data )
{
switch ( *data )
{
case CR:
state_ = CR_OR_LF_1;
goto found_end_of_line;
const_byteptr data;
for ( data = orig_data_begin_; data < orig_data_end_; ++data ) {
switch ( *data ) {
case CR: state_ = CR_OR_LF_1; goto found_end_of_line;
case LF:
// state_ = CR_OR_LF_0;
goto found_end_of_line;
case LF:
// state_ = CR_OR_LF_0;
goto found_end_of_line;
default:
// state_ = CR_OR_LF_0;
break;
}
}
default:
// state_ = CR_OR_LF_0;
break;
}
}
AppendToBuffer(orig_data_begin_, orig_data_end_ - orig_data_begin_);
return;
AppendToBuffer(orig_data_begin_, orig_data_end_ - orig_data_begin_);
return;
found_end_of_line:
if ( buffer_n_ == 0 )
{
frame_length_ = data - orig_data_begin_;
}
else
{
AppendToBuffer(orig_data_begin_, data + 1 - orig_data_begin_);
// But eliminate the last CR or LF
--buffer_n_;
}
message_complete_ = true;
if ( buffer_n_ == 0 ) {
frame_length_ = data - orig_data_begin_;
}
else {
AppendToBuffer(orig_data_begin_, data + 1 - orig_data_begin_);
// But eliminate the last CR or LF
--buffer_n_;
}
message_complete_ = true;
#if DEBUG_FLOW_BUFFER
fprintf(stderr, "%.6f Line complete: [%s]\n", network_time(),
string((const char*)begin(), (const char*)end()).c_str());
fprintf(stderr, "%.6f Line complete: [%s]\n", network_time(),
string((const char*)begin(), (const char*)end()).c_str());
#endif
}
}
/*
Finite state automaton and STRICT_CRLF:
@ -394,87 +324,73 @@ STRICT_CRLF_1:
.: STRICT_CRLF_0 *
*/
void FlowBuffer::MarkOrCopyLine_STRICT_CRLF()
{
const_byteptr data;
for ( data = orig_data_begin_; data < orig_data_end_; ++data )
{
switch ( *data )
{
case CR:
state_ = STRICT_CRLF_1;
break;
void FlowBuffer::MarkOrCopyLine_STRICT_CRLF() {
const_byteptr data;
for ( data = orig_data_begin_; data < orig_data_end_; ++data ) {
switch ( *data ) {
case CR: state_ = STRICT_CRLF_1; break;
case LF:
if ( state_ == STRICT_CRLF_1 )
{
state_ = STRICT_CRLF_0;
goto found_end_of_line;
}
break;
case LF:
if ( state_ == STRICT_CRLF_1 ) {
state_ = STRICT_CRLF_0;
goto found_end_of_line;
}
break;
default:
state_ = STRICT_CRLF_0;
break;
}
}
default: state_ = STRICT_CRLF_0; break;
}
}
AppendToBuffer(orig_data_begin_, orig_data_end_ - orig_data_begin_);
return;
AppendToBuffer(orig_data_begin_, orig_data_end_ - orig_data_begin_);
return;
found_end_of_line:
if ( buffer_n_ == 0 )
{
frame_length_ = data - 1 - orig_data_begin_;
}
else
{
AppendToBuffer(orig_data_begin_, data + 1 - orig_data_begin_);
// Pop the preceding CR and LF from the buffer
buffer_n_ -= 2;
}
if ( buffer_n_ == 0 ) {
frame_length_ = data - 1 - orig_data_begin_;
}
else {
AppendToBuffer(orig_data_begin_, data + 1 - orig_data_begin_);
// Pop the preceding CR and LF from the buffer
buffer_n_ -= 2;
}
message_complete_ = true;
message_complete_ = true;
#if DEBUG_FLOW_BUFFER
fprintf(stderr, "%.6f Line complete: [%s]\n", network_time(),
string((const char*)begin(), (const char*)end()).c_str());
fprintf(stderr, "%.6f Line complete: [%s]\n", network_time(),
string((const char*)begin(), (const char*)end()).c_str());
#endif
}
}
void FlowBuffer::MarkOrCopyLine_LINEBREAK()
{
if ( ! (orig_data_begin_ && orig_data_end_) )
return;
void FlowBuffer::MarkOrCopyLine_LINEBREAK() {
if ( ! (orig_data_begin_ && orig_data_end_) )
return;
const_byteptr data;
for ( data = orig_data_begin_; data < orig_data_end_; ++data )
{
if ( *data == linebreaker_ )
goto found_end_of_line;
}
const_byteptr data;
for ( data = orig_data_begin_; data < orig_data_end_; ++data ) {
if ( *data == linebreaker_ )
goto found_end_of_line;
}
AppendToBuffer(orig_data_begin_, orig_data_end_ - orig_data_begin_);
return;
AppendToBuffer(orig_data_begin_, orig_data_end_ - orig_data_begin_);
return;
found_end_of_line:
if ( buffer_n_ == 0 )
{
frame_length_ = data - orig_data_begin_;
}
else
{
AppendToBuffer(orig_data_begin_, data + 1 - orig_data_begin_);
// But eliminate the last CR or LF
--buffer_n_;
}
message_complete_ = true;
if ( buffer_n_ == 0 ) {
frame_length_ = data - orig_data_begin_;
}
else {
AppendToBuffer(orig_data_begin_, data + 1 - orig_data_begin_);
// But eliminate the last 'linebreaker' character
--buffer_n_;
}
message_complete_ = true;
#if DEBUG_FLOW_BUFFER
fprintf(stderr, "%.6f Line complete: [%s]\n", network_time(),
string((const char*)begin(), (const char*)end()).c_str());
fprintf(stderr, "%.6f Line complete: [%s]\n", network_time(),
string((const char*)begin(), (const char*)end()).c_str());
#endif
}
}
// Invariants:
//
@ -484,69 +400,58 @@ found_end_of_line:
// When buffer_n_ > 0:
// Frame = [0..buffer_n_][orig_data_begin_..]
void FlowBuffer::MarkOrCopyFrame()
{
if ( mode_ == FRAME_MODE && state_ == CR_OR_LF_1 && orig_data_begin_ < orig_data_end_ )
{
// Skip the lingering LF
if ( *orig_data_begin_ == LF )
{
++orig_data_begin_;
}
state_ = FRAME_0;
}
void FlowBuffer::MarkOrCopyFrame() {
if ( mode_ == FRAME_MODE && state_ == CR_OR_LF_1 && orig_data_begin_ < orig_data_end_ ) {
// Skip the lingering LF
if ( *orig_data_begin_ == LF ) {
++orig_data_begin_;
}
state_ = FRAME_0;
}
if ( buffer_n_ == 0 )
{
// If there is enough data
if ( frame_length_ >= 0 && orig_data_end_ - orig_data_begin_ >= frame_length_ )
{
// Do nothing except setting the message complete flag
message_complete_ = true;
}
else
{
if ( ! chunked_ )
{
AppendToBuffer(orig_data_begin_, orig_data_end_ - orig_data_begin_);
}
message_complete_ = false;
}
}
else
{
BINPAC_ASSERT(! chunked_);
int bytes_to_copy = orig_data_end_ - orig_data_begin_;
message_complete_ = false;
if ( frame_length_ >= 0 && buffer_n_ + bytes_to_copy >= frame_length_ )
{
bytes_to_copy = frame_length_ - buffer_n_;
message_complete_ = true;
}
AppendToBuffer(orig_data_begin_, bytes_to_copy);
}
if ( buffer_n_ == 0 ) {
// If there is enough data
if ( frame_length_ >= 0 && orig_data_end_ - orig_data_begin_ >= frame_length_ ) {
// Do nothing except setting the message complete flag
message_complete_ = true;
}
else {
if ( ! chunked_ ) {
AppendToBuffer(orig_data_begin_, orig_data_end_ - orig_data_begin_);
}
message_complete_ = false;
}
}
else {
BINPAC_ASSERT(! chunked_);
int bytes_to_copy = orig_data_end_ - orig_data_begin_;
message_complete_ = false;
if ( frame_length_ >= 0 && buffer_n_ + bytes_to_copy >= frame_length_ ) {
bytes_to_copy = frame_length_ - buffer_n_;
message_complete_ = true;
}
AppendToBuffer(orig_data_begin_, bytes_to_copy);
}
#if DEBUG_FLOW_BUFFER
if ( message_complete_ )
{
fprintf(stderr, "%.6f frame complete: [%s]\n", network_time(),
string((const char*)begin(), (const char*)end()).c_str());
}
if ( message_complete_ ) {
fprintf(stderr, "%.6f frame complete: [%s]\n", network_time(),
string((const char*)begin(), (const char*)end()).c_str());
}
#endif
}
}
void FlowBuffer::AppendToBuffer(const_byteptr data, int len)
{
if ( len <= 0 )
return;
void FlowBuffer::AppendToBuffer(const_byteptr data, int len) {
if ( len <= 0 )
return;
BINPAC_ASSERT(! chunked_);
ExpandBuffer(buffer_n_ + len);
memcpy(buffer_ + buffer_n_, data, len);
buffer_n_ += len;
BINPAC_ASSERT(! chunked_);
ExpandBuffer(buffer_n_ + len);
memcpy(buffer_ + buffer_n_, data, len);
buffer_n_ += len;
orig_data_begin_ += len;
BINPAC_ASSERT(orig_data_begin_ <= orig_data_end_);
}
orig_data_begin_ += len;
BINPAC_ASSERT(orig_data_begin_ <= orig_data_end_);
}
} // namespace binpac
} // namespace binpac

View file

@ -5,179 +5,164 @@
#include "binpac.h"
namespace binpac
{
namespace binpac {
class FlowBuffer
{
class FlowBuffer {
public:
struct Policy
{
int max_capacity;
int min_capacity;
int contract_threshold;
};
struct Policy {
int max_capacity;
int min_capacity;
int contract_threshold;
};
enum LineBreakStyle
{
CR_OR_LF, // CR or LF or CRLF
STRICT_CRLF, // CR followed by LF
CR_LF_NUL, // CR or LF or CR-LF or CR-NUL
LINE_BREAKER, // User specified linebreaker
};
enum LineBreakStyle {
CR_OR_LF, // CR or LF or CRLF
STRICT_CRLF, // CR followed by LF
CR_LF_NUL, // CR or LF or CR-LF or CR-NUL
LINE_BREAKER, // User specified linebreaker
};
FlowBuffer(LineBreakStyle linebreak_style = CR_OR_LF);
virtual ~FlowBuffer();
FlowBuffer(LineBreakStyle linebreak_style = CR_OR_LF);
virtual ~FlowBuffer();
void NewData(const_byteptr begin, const_byteptr end);
void NewGap(int length);
void NewData(const_byteptr begin, const_byteptr end);
void NewGap(int length);
// Interface for delayed parsing. Sometimes BinPAC doesn't get the
// buffering right and then one can use these to feed parts
// individually and assemble them internally. After calling
// FinishBuffer(), one can send the uppper-layer flow an FlowEOF() to
// trigger parsing.
void BufferData(const_byteptr data, const_byteptr end);
void FinishBuffer();
// Interface for delayed parsing. Sometimes BinPAC doesn't get the
// buffering right and then one can use these to feed parts
// individually and assemble them internally. After calling
// FinishBuffer(), one can send the uppper-layer flow an FlowEOF() to
// trigger parsing.
void BufferData(const_byteptr data, const_byteptr end);
void FinishBuffer();
// Discard unprocessed data
void DiscardData();
// Discard unprocessed data
void DiscardData();
// Whether there is enough data for the frame
bool ready() const { return message_complete_ || mode_ == UNKNOWN_MODE; }
// Whether there is enough data for the frame
bool ready() const { return message_complete_ || mode_ == UNKNOWN_MODE; }
inline const_byteptr begin() const
{
BINPAC_ASSERT(ready());
return (buffer_n_ == 0) ? orig_data_begin_ : buffer_;
}
inline const_byteptr begin() const {
BINPAC_ASSERT(ready());
return (buffer_n_ == 0) ? orig_data_begin_ : buffer_;
}
inline const_byteptr end() const
{
BINPAC_ASSERT(ready());
if ( buffer_n_ == 0 )
{
BINPAC_ASSERT(frame_length_ >= 0);
const_byteptr end = orig_data_begin_ + frame_length_;
BINPAC_ASSERT(end <= orig_data_end_);
return end;
}
else
return buffer_ + buffer_n_;
}
inline const_byteptr end() const {
BINPAC_ASSERT(ready());
if ( buffer_n_ == 0 ) {
BINPAC_ASSERT(frame_length_ >= 0);
const_byteptr end = orig_data_begin_ + frame_length_;
BINPAC_ASSERT(end <= orig_data_end_);
return end;
}
else
return buffer_ + buffer_n_;
}
inline int data_length() const
{
if ( buffer_n_ > 0 )
return buffer_n_;
inline int data_length() const {
if ( buffer_n_ > 0 )
return buffer_n_;
if ( frame_length_ < 0 || orig_data_begin_ + frame_length_ > orig_data_end_ )
return orig_data_end_ - orig_data_begin_;
else
return frame_length_;
}
if ( frame_length_ < 0 || orig_data_begin_ + frame_length_ > orig_data_end_ )
return orig_data_end_ - orig_data_begin_;
else
return frame_length_;
}
inline bool data_available() const
{
return buffer_n_ > 0 || orig_data_end_ > orig_data_begin_;
}
inline bool data_available() const { return buffer_n_ > 0 || orig_data_end_ > orig_data_begin_; }
void SetLineBreaker(unsigned char* lbreaker);
void UnsetLineBreaker();
void NewLine();
// A negative frame_length represents a frame till EOF
void NewFrame(int frame_length, bool chunked_);
void GrowFrame(int new_frame_length);
void SetLineBreaker(unsigned char* lbreaker);
void UnsetLineBreaker();
void NewLine();
// A negative frame_length represents a frame till EOF
void NewFrame(int frame_length, bool chunked_);
void GrowFrame(int new_frame_length);
int data_seq() const
{
int data_seq_at_orig_data_begin = data_seq_at_orig_data_end_ -
(orig_data_end_ - orig_data_begin_);
if ( buffer_n_ > 0 )
return data_seq_at_orig_data_begin;
else
return data_seq_at_orig_data_begin + data_length();
}
bool eof() const { return eof_; }
void set_eof();
int data_seq() const {
int data_seq_at_orig_data_begin = data_seq_at_orig_data_end_ - (orig_data_end_ - orig_data_begin_);
if ( buffer_n_ > 0 )
return data_seq_at_orig_data_begin;
else
return data_seq_at_orig_data_begin + data_length();
}
bool eof() const { return eof_; }
void set_eof();
bool have_pending_request() const { return have_pending_request_; }
bool have_pending_request() const { return have_pending_request_; }
static void init(Policy p) { policy = p; }
static void init(Policy p) { policy = p; }
protected:
// Reset the buffer for a new message
void NewMessage();
// Reset the buffer for a new message
void NewMessage();
void ClearPreviousData();
void ClearPreviousData();
// Expand the buffer to at least <length> bytes. If there
// are contents in the existing buffer, copy them to the new
// buffer.
void ExpandBuffer(int length);
// Expand the buffer to at least <length> bytes. If there
// are contents in the existing buffer, copy them to the new
// buffer.
void ExpandBuffer(int length);
// Contract the buffer to some minimum capacity.
// Existing contents in the buffer are preserved (but only usage
// at the time of creation this function is when the contents
// are being discarded due to parsing exception or have already been
// copied out after parsing a complete unit).
void ContractBuffer();
// Contract the buffer to some minimum capacity.
// Existing contents in the buffer are preserved (but only usage
// at the time of creation this function is when the contents
// are being discarded due to parsing exception or have already been
// copied out after parsing a complete unit).
void ContractBuffer();
// Reset line state when transit from frame mode to line mode.
void ResetLineState();
// Reset line state when transit from frame mode to line mode.
void ResetLineState();
void AppendToBuffer(const_byteptr data, int len);
void AppendToBuffer(const_byteptr data, int len);
// MarkOrCopy{Line,Frame} sets message_complete_ and
// marks begin/end pointers if a line/frame is complete,
// otherwise it clears message_complete_ and copies all
// the original data to the buffer.
//
void MarkOrCopy();
void MarkOrCopyLine();
void MarkOrCopyFrame();
// MarkOrCopy{Line,Frame} sets message_complete_ and
// marks begin/end pointers if a line/frame is complete,
// otherwise it clears message_complete_ and copies all
// the original data to the buffer.
//
void MarkOrCopy();
void MarkOrCopyLine();
void MarkOrCopyFrame();
void MarkOrCopyLine_CR_OR_LF();
void MarkOrCopyLine_STRICT_CRLF();
void MarkOrCopyLine_LINEBREAK();
void MarkOrCopyLine_CR_OR_LF();
void MarkOrCopyLine_STRICT_CRLF();
void MarkOrCopyLine_LINEBREAK();
int buffer_n_; // number of bytes in the buffer
int buffer_length_; // size of the buffer
unsigned char* buffer_;
bool message_complete_;
int frame_length_;
bool chunked_;
const_byteptr orig_data_begin_, orig_data_end_;
int buffer_n_; // number of bytes in the buffer
int buffer_length_; // size of the buffer
unsigned char* buffer_;
bool message_complete_;
int frame_length_;
bool chunked_;
const_byteptr orig_data_begin_, orig_data_end_;
LineBreakStyle linebreak_style_;
LineBreakStyle linebreak_style_default;
unsigned char linebreaker_;
LineBreakStyle linebreak_style_;
LineBreakStyle linebreak_style_default;
unsigned char linebreaker_;
enum
{
UNKNOWN_MODE,
LINE_MODE,
FRAME_MODE,
} mode_;
enum {
UNKNOWN_MODE,
LINE_MODE,
FRAME_MODE,
} mode_;
enum
{
CR_OR_LF_0,
CR_OR_LF_1,
STRICT_CRLF_0,
STRICT_CRLF_1,
FRAME_0,
} state_;
enum {
CR_OR_LF_0,
CR_OR_LF_1,
STRICT_CRLF_0,
STRICT_CRLF_1,
FRAME_0,
} state_;
int data_seq_at_orig_data_end_;
bool eof_;
bool have_pending_request_;
int data_seq_at_orig_data_end_;
bool eof_;
bool have_pending_request_;
static Policy policy;
};
static Policy policy;
};
typedef FlowBuffer* flow_buffer_t;
} // namespace binpac
} // namespace binpac
#endif // binpac_buffer_h

View file

@ -4,22 +4,12 @@
#include <stdlib.h>
namespace binpac
{
namespace binpac {
std::string std_string(bytestring const* s)
{
return std::string((const char*)s->begin(), (const char*)s->end());
}
std::string std_string(bytestring const* s) { return std::string((const char*)s->begin(), (const char*)s->end()); }
int bytestring_to_int(bytestring const* s)
{
return atoi((const char*)s->begin());
}
int bytestring_to_int(bytestring const* s) { return atoi((const char*)s->begin()); }
double bytestring_to_double(bytestring const* s)
{
return atof((const char*)s->begin());
}
double bytestring_to_double(bytestring const* s) { return atof((const char*)s->begin()); }
} // namespace binpac
} // namespace binpac

View file

@ -6,155 +6,137 @@
#include "binpac.h"
namespace binpac
{
namespace binpac {
template <class T> class datastring;
template<class T>
class datastring;
template <class T> class const_datastring
{
template<class T>
class const_datastring {
public:
const_datastring() : begin_(0), end_(0) { }
const_datastring() : begin_(0), end_(0) {}
const_datastring(T const* data, int length) : begin_(data), end_(data + length) { }
const_datastring(T const* data, int length) : begin_(data), end_(data + length) {}
const_datastring(const T* begin, const T* end) : begin_(begin), end_(end) { }
const_datastring(const T* begin, const T* end) : begin_(begin), end_(end) {}
const_datastring(datastring<T> const& s) : begin_(s.begin()), end_(s.end()) { }
const_datastring(datastring<T> const& s) : begin_(s.begin()), end_(s.end()) {}
void init(const T* data, int length)
{
begin_ = data;
end_ = data + length;
}
void init(const T* data, int length) {
begin_ = data;
end_ = data + length;
}
T const* begin() const { return begin_; }
T const* end() const { return end_; }
int length() const { return end_ - begin_; }
T const* begin() const { return begin_; }
T const* end() const { return end_; }
int length() const { return end_ - begin_; }
T const& operator[](int index) const { return begin()[index]; }
T const& operator[](int index) const { return begin()[index]; }
bool operator==(const_datastring<T> const& s)
{
if ( length() != s.length() )
return false;
return memcmp((const void*)begin(), (const void*)s.begin(), sizeof(T) * length()) == 0;
}
bool operator==(const_datastring<T> const& s) {
if ( length() != s.length() )
return false;
return memcmp((const void*)begin(), (const void*)s.begin(), sizeof(T) * length()) == 0;
}
void set_begin(T const* begin) { begin_ = begin; }
void set_end(T const* end) { end_ = end; }
void set_begin(T const* begin) { begin_ = begin; }
void set_end(T const* end) { end_ = end; }
private:
T const* begin_;
T const* end_;
};
T const* begin_;
T const* end_;
};
typedef const_datastring<uint8> const_bytestring;
template <class T> class datastring
{
template<class T>
class datastring {
public:
datastring() { clear(); }
datastring() { clear(); }
datastring(T* data, int len) { set(data, len); }
datastring(T* data, int len) { set(data, len); }
datastring(T const* begin, T const* end) { set_const(begin, end - begin); }
datastring(T const* begin, T const* end) { set_const(begin, end - begin); }
datastring(datastring<T> const& x) : data_(x.data()), length_(x.length()) { }
datastring(datastring<T> const& x) : data_(x.data()), length_(x.length()) {}
explicit datastring(const_datastring<T> const& x) { set_const(x.begin(), x.length()); }
explicit datastring(const_datastring<T> const& x) { set_const(x.begin(), x.length()); }
datastring const& operator=(datastring<T> const& x)
{
BINPAC_ASSERT(! data_);
set(x.data(), x.length());
return *this;
}
datastring const& operator=(datastring<T> const& x) {
BINPAC_ASSERT(! data_);
set(x.data(), x.length());
return *this;
}
void init(T const* begin, int length)
{
BINPAC_ASSERT(! data_);
set_const(begin, length);
}
void init(T const* begin, int length) {
BINPAC_ASSERT(! data_);
set_const(begin, length);
}
void clear()
{
data_ = 0;
length_ = 0;
}
void clear() {
data_ = 0;
length_ = 0;
}
void free()
{
if ( data_ )
delete[] data_;
clear();
}
void free() {
if ( data_ )
delete[] data_;
clear();
}
void clone() { set_const(begin(), length()); }
void clone() { set_const(begin(), length()); }
datastring const& operator=(const_datastring<T> const& x)
{
BINPAC_ASSERT(! data_);
set_const(x.begin(), x.length());
return *this;
}
datastring const& operator=(const_datastring<T> const& x) {
BINPAC_ASSERT(! data_);
set_const(x.begin(), x.length());
return *this;
}
T const& operator[](int index) const { return begin()[index]; }
T const& operator[](int index) const { return begin()[index]; }
T* data() const { return data_; }
int length() const { return length_; }
T* data() const { return data_; }
int length() const { return length_; }
T const* begin() const { return data_; }
T const* end() const { return data_ + length_; }
T const* begin() const { return data_; }
T const* end() const { return data_ + length_; }
private:
void set(T* data, int len)
{
data_ = data;
length_ = len;
}
void set(T* data, int len) {
data_ = data;
length_ = len;
}
void set_const(T const* data, int len)
{
length_ = len;
data_ = new T[len + 1];
memcpy(data_, data, sizeof(T) * len);
data_[len] = 0;
}
void set_const(T const* data, int len) {
length_ = len;
data_ = new T[len + 1];
memcpy(data_, data, sizeof(T) * len);
data_[len] = 0;
}
T* data_;
int length_;
};
T* data_;
int length_;
};
typedef datastring<uint8> bytestring;
inline const char* c_str(bytestring const& s)
{
return (const char*)s.begin();
}
inline const char* c_str(bytestring const& s) { return (const char*)s.begin(); }
inline std::string std_str(const_bytestring const& s)
{
return std::string((const char*)s.begin(), (const char*)s.end());
}
inline std::string std_str(const_bytestring const& s) {
return std::string((const char*)s.begin(), (const char*)s.end());
}
inline bool operator==(bytestring const& s1, const char* s2)
{
return strcmp(c_str(s1), s2) == 0;
}
inline bool operator==(bytestring const& s1, const char* s2) { return strcmp(c_str(s1), s2) == 0; }
inline void get_pointers(const_bytestring const& s, uint8 const** pbegin, uint8 const** pend)
{
*pbegin = s.begin();
*pend = s.end();
}
inline void get_pointers(const_bytestring const& s, uint8 const** pbegin, uint8 const** pend) {
*pbegin = s.begin();
*pend = s.end();
}
inline void get_pointers(bytestring const* s, uint8 const** pbegin, uint8 const** pend)
{
*pbegin = s->begin();
*pend = s->end();
}
inline void get_pointers(bytestring const* s, uint8 const** pbegin, uint8 const** pend) {
*pbegin = s->begin();
*pend = s->end();
}
} // namespace binpac
} // namespace binpac
#endif // binpac_bytestring_h

View file

@ -4,117 +4,92 @@
#include <inttypes.h>
#include <stdint.h>
namespace binpac
{
namespace binpac {
class Exception
{
class Exception {
public:
Exception(const char* m = 0) : msg_("binpac exception: ")
{
if ( m )
append(m);
// abort();
}
Exception(const char* m = 0) : msg_("binpac exception: ") {
if ( m )
append(m);
// abort();
}
void append(string m) { msg_ += m; }
string msg() const { return msg_; }
const char* c_msg() const { return msg_.c_str(); }
void append(string m) { msg_ += m; }
string msg() const { return msg_; }
const char* c_msg() const { return msg_.c_str(); }
protected:
string msg_;
};
string msg_;
};
class ExceptionEnforceViolation : public Exception
{
class ExceptionEnforceViolation : public Exception {
public:
ExceptionEnforceViolation(const char* where)
{
append(binpac_fmt("&enforce violation : %s", where));
}
};
ExceptionEnforceViolation(const char* where) { append(binpac_fmt("&enforce violation : %s", where)); }
};
class ExceptionOutOfBound : public Exception
{
class ExceptionOutOfBound : public Exception {
public:
ExceptionOutOfBound(const char* where, int len_needed, int len_given)
{
append(binpac_fmt("out_of_bound: %s: %d > %d", where, len_needed, len_given));
}
};
ExceptionOutOfBound(const char* where, int len_needed, int len_given) {
append(binpac_fmt("out_of_bound: %s: %d > %d", where, len_needed, len_given));
}
};
class ExceptionInvalidCase : public Exception
{
class ExceptionInvalidCase : public Exception {
public:
ExceptionInvalidCase(const char* location, int64_t index, const char* expected)
: location_(location), index_(index), expected_(expected)
{
append(binpac_fmt("invalid case: %s: %" PRIi64 " (%s)", location, index, expected));
}
ExceptionInvalidCase(const char* location, int64_t index, const char* expected)
: location_(location), index_(index), expected_(expected) {
append(binpac_fmt("invalid case: %s: %" PRIi64 " (%s)", location, index, expected));
}
protected:
const char* location_;
int64_t index_;
string expected_;
};
const char* location_;
int64_t index_;
string expected_;
};
class ExceptionInvalidCaseIndex : public Exception
{
class ExceptionInvalidCaseIndex : public Exception {
public:
ExceptionInvalidCaseIndex(const char* location, int64_t index)
: location_(location), index_(index)
{
append(binpac_fmt("invalid index for case: %s: %" PRIi64, location, index));
}
ExceptionInvalidCaseIndex(const char* location, int64_t index) : location_(location), index_(index) {
append(binpac_fmt("invalid index for case: %s: %" PRIi64, location, index));
}
protected:
const char* location_;
int64_t index_;
};
const char* location_;
int64_t index_;
};
class ExceptionInvalidOffset : public Exception
{
class ExceptionInvalidOffset : public Exception {
public:
ExceptionInvalidOffset(const char* location, int min_offset, int offset)
: location_(location), min_offset_(min_offset), offset_(offset)
{
append(binpac_fmt("invalid offset: %s: min_offset = %d, offset = %d", location, min_offset,
offset));
}
ExceptionInvalidOffset(const char* location, int min_offset, int offset)
: location_(location), min_offset_(min_offset), offset_(offset) {
append(binpac_fmt("invalid offset: %s: min_offset = %d, offset = %d", location, min_offset, offset));
}
protected:
const char* location_;
int min_offset_, offset_;
};
const char* location_;
int min_offset_, offset_;
};
class ExceptionStringMismatch : public Exception
{
class ExceptionStringMismatch : public Exception {
public:
ExceptionStringMismatch(const char* location, const char* expected, const char* actual_data)
{
append(binpac_fmt("string mismatch at %s: \nexpected pattern: \"%s\"\nactual data: \"%s\"",
location, expected, actual_data));
}
};
ExceptionStringMismatch(const char* location, const char* expected, const char* actual_data) {
append(binpac_fmt("string mismatch at %s: \nexpected pattern: \"%s\"\nactual data: \"%s\"", location, expected,
actual_data));
}
};
class ExceptionInvalidStringLength : public Exception
{
class ExceptionInvalidStringLength : public Exception {
public:
ExceptionInvalidStringLength(const char* location, int len)
{
append(binpac_fmt("invalid length string: %s: %d", location, len));
}
};
ExceptionInvalidStringLength(const char* location, int len) {
append(binpac_fmt("invalid length string: %s: %d", location, len));
}
};
class ExceptionFlowBufferAlloc : public Exception
{
class ExceptionFlowBufferAlloc : public Exception {
public:
ExceptionFlowBufferAlloc(const char* reason)
{
append(binpac_fmt("flowbuffer allocation failed: %s", reason));
}
};
ExceptionFlowBufferAlloc(const char* reason) { append(binpac_fmt("flowbuffer allocation failed: %s", reason)); }
};
}
} // namespace binpac
#endif // binpac_exception_h

View file

@ -1,11 +1,12 @@
#include <vector>
namespace zeek { class RE_Matcher; }
namespace zeek {
class RE_Matcher;
}
namespace binpac
{
namespace binpac {
std::vector<zeek::RE_Matcher*>* uncompiled_re_matchers = nullptr;
}
}

View file

@ -5,13 +5,11 @@
#include "binpac.h"
namespace zeek
{
namespace zeek {
class RE_Matcher;
}
}
namespace binpac
{
namespace binpac {
// Must be called before any binpac functionality is used.
//
@ -23,58 +21,52 @@ inline void init(FlowBuffer::Policy* fbp = 0);
// Internal vector recording not yet compiled matchers.
extern std::vector<zeek::RE_Matcher*>* uncompiled_re_matchers;
class RegExMatcher
{
class RegExMatcher {
public:
RegExMatcher(const char* pattern) : pattern_(pattern)
{
if ( ! uncompiled_re_matchers )
uncompiled_re_matchers = new std::vector<zeek::RE_Matcher*>;
RegExMatcher(const char* pattern) : pattern_(pattern) {
if ( ! uncompiled_re_matchers )
uncompiled_re_matchers = new std::vector<zeek::RE_Matcher*>;
re_matcher_ = new zeek::RE_Matcher(pattern_.c_str());
uncompiled_re_matchers->push_back(re_matcher_);
}
re_matcher_ = new zeek::RE_Matcher(pattern_.c_str());
uncompiled_re_matchers->push_back(re_matcher_);
}
~RegExMatcher() { delete re_matcher_; }
~RegExMatcher() { delete re_matcher_; }
// Returns the length of longest match, or -1 on mismatch.
int MatchPrefix(const_byteptr data, int len) { return re_matcher_->MatchPrefix(data, len); }
// Returns the length of longest match, or -1 on mismatch.
int MatchPrefix(const_byteptr data, int len) { return re_matcher_->MatchPrefix(data, len); }
private:
friend void ::binpac::init(FlowBuffer::Policy*);
friend void ::binpac::init(FlowBuffer::Policy*);
// Function, and state, for compiling matchers.
static void init();
// Function, and state, for compiling matchers.
static void init();
string pattern_;
zeek::RE_Matcher* re_matcher_;
};
string pattern_;
zeek::RE_Matcher* re_matcher_;
};
inline void RegExMatcher::init()
{
if ( ! uncompiled_re_matchers )
return;
inline void RegExMatcher::init() {
if ( ! uncompiled_re_matchers )
return;
for ( size_t i = 0; i < uncompiled_re_matchers->size(); ++i )
{
if ( ! (*uncompiled_re_matchers)[i]->Compile() )
{
fprintf(stderr, "binpac: cannot compile regular expression\n");
exit(1);
}
}
for ( size_t i = 0; i < uncompiled_re_matchers->size(); ++i ) {
if ( ! (*uncompiled_re_matchers)[i]->Compile() ) {
fprintf(stderr, "binpac: cannot compile regular expression\n");
exit(1);
}
}
uncompiled_re_matchers->clear();
}
uncompiled_re_matchers->clear();
}
inline void init(FlowBuffer::Policy* fbp)
{
RegExMatcher::init();
inline void init(FlowBuffer::Policy* fbp) {
RegExMatcher::init();
if ( fbp )
FlowBuffer::init(*fbp);
}
if ( fbp )
FlowBuffer::init(*fbp);
}
} // namespace binpac
} // namespace binpac
#endif // binpac_regex_h

View file

@ -9,93 +9,72 @@
#include "pac_utils.h"
AnalyzerAction::AnalyzerAction(ID* action_id, When when, ActionParam* param, EmbeddedCode* code)
: AnalyzerElement(ACTION), action_id_(action_id), when_(when), param_(param), code_(code),
analyzer_(nullptr)
{
}
: AnalyzerElement(ACTION), action_id_(action_id), when_(when), param_(param), code_(code), analyzer_(nullptr) {}
AnalyzerAction::~AnalyzerAction()
{
delete action_id_;
delete param_;
delete code_;
}
AnalyzerAction::~AnalyzerAction() {
delete action_id_;
delete param_;
delete code_;
}
string AnalyzerAction::action_function() const
{
return strfmt("Action_%s", action_id_->Name());
}
string AnalyzerAction::action_function() const { return strfmt("Action_%s", action_id_->Name()); }
void AnalyzerAction::InstallHook(AnalyzerDecl* analyzer)
{
ASSERT(0);
analyzer_ = analyzer;
// param_->MainDataType()->InstallAction(this);
}
void AnalyzerAction::InstallHook(AnalyzerDecl* analyzer) {
ASSERT(0);
analyzer_ = analyzer;
// param_->MainDataType()->InstallAction(this);
}
void AnalyzerAction::GenCode(Output* out_h, Output* out_cc, AnalyzerDecl* decl)
{
Env action_func_env(decl->env(), this);
action_func_env.AddID(param_->id(), TEMP_VAR, param_->DataType());
action_func_env.SetEvaluated(param_->id());
void AnalyzerAction::GenCode(Output* out_h, Output* out_cc, AnalyzerDecl* decl) {
Env action_func_env(decl->env(), this);
action_func_env.AddID(param_->id(), TEMP_VAR, param_->DataType());
action_func_env.SetEvaluated(param_->id());
string action_func_proto = strfmt("%s(%s)", action_function().c_str(),
ParamDecls(&action_func_env).c_str());
string action_func_proto = strfmt("%s(%s)", action_function().c_str(), ParamDecls(&action_func_env).c_str());
out_h->println("void %s;", action_func_proto.c_str());
out_h->println("void %s;", action_func_proto.c_str());
out_cc->println("void %s::%s", decl->class_name().c_str(), action_func_proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("void %s::%s", decl->class_name().c_str(), action_func_proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
code_->GenCode(out_cc, &action_func_env);
code_->GenCode(out_cc, &action_func_env);
out_cc->println("");
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("");
}
out_cc->println("");
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("");
}
string AnalyzerAction::ParamDecls(Env* env) const
{
return param_->DeclStr(env);
}
string AnalyzerAction::ParamDecls(Env* env) const { return param_->DeclStr(env); }
Type* ActionParam::MainDataType() const
{
// Note: this is not equal to DataType()
Type* main_type = TypeDecl::LookUpType(type()->type_id());
Type* ActionParam::MainDataType() const {
// Note: this is not equal to DataType()
Type* main_type = TypeDecl::LookUpType(type()->type_id());
if ( ! main_type )
{
throw Exception(type()->type_id(), "type not defined");
}
if ( ! main_type ) {
throw Exception(type()->type_id(), "type not defined");
}
return main_type;
}
return main_type;
}
Type* ActionParam::DataType() const
{
Type* main_type = MainDataType();
Type* ActionParam::DataType() const {
Type* main_type = MainDataType();
if ( ! type()->field_id() )
{
return main_type;
}
else
{
Type* member_type = main_type->MemberDataType(type()->field_id());
if ( ! member_type )
{
throw Exception(type()->field_id(),
strfmt("cannot find member type for `%s.%s'", type()->type_id()->Name(),
type()->field_id()->Name()));
}
return member_type;
}
}
if ( ! type()->field_id() ) {
return main_type;
}
else {
Type* member_type = main_type->MemberDataType(type()->field_id());
if ( ! member_type ) {
throw Exception(type()->field_id(), strfmt("cannot find member type for `%s.%s'", type()->type_id()->Name(),
type()->field_id()->Name()));
}
return member_type;
}
}
string ActionParam::DeclStr(Env* env) const
{
return strfmt("%s %s", DataType()->DataTypeStr().c_str(), env->LValue(id()));
}
string ActionParam::DeclStr(Env* env) const {
return strfmt("%s %s", DataType()->DataTypeStr().c_str(), env->LValue(id()));
}

View file

@ -6,71 +6,61 @@
#include "pac_analyzer.h"
#include "pac_common.h"
class AnalyzerAction : public AnalyzerElement
{
class AnalyzerAction : public AnalyzerElement {
public:
enum When
{
BEFORE,
AFTER
};
enum When { BEFORE, AFTER };
AnalyzerAction(ID* action_id, When when, ActionParam* param, EmbeddedCode* code);
AnalyzerAction(ID* action_id, When when, ActionParam* param, EmbeddedCode* code);
~AnalyzerAction() override;
~AnalyzerAction() override;
When when() const { return when_; }
ActionParam* param() const { return param_; }
AnalyzerDecl* analyzer() const { return analyzer_; }
string action_function() const;
When when() const { return when_; }
ActionParam* param() const { return param_; }
AnalyzerDecl* analyzer() const { return analyzer_; }
string action_function() const;
// Generate function prototype and code for the action
void GenCode(Output* out_h, Output* out_cc, AnalyzerDecl* decl);
// Generate function prototype and code for the action
void GenCode(Output* out_h, Output* out_cc, AnalyzerDecl* decl);
// Install the hook at the corresponding data type parsing
// function to invoke the action.
void InstallHook(AnalyzerDecl* analyzer);
// Install the hook at the corresponding data type parsing
// function to invoke the action.
void InstallHook(AnalyzerDecl* analyzer);
private:
string ParamDecls(Env* env) const;
string ParamDecls(Env* env) const;
ID* action_id_;
When when_;
ActionParam* param_;
EmbeddedCode* code_;
AnalyzerDecl* analyzer_;
};
ID* action_id_;
When when_;
ActionParam* param_;
EmbeddedCode* code_;
AnalyzerDecl* analyzer_;
};
class ActionParam
{
class ActionParam {
public:
ActionParam(const ID* id, ActionParamType* type) : id_(id), type_(type) { }
ActionParam(const ID* id, ActionParamType* type) : id_(id), type_(type) {}
const ID* id() const { return id_; }
ActionParamType* type() const { return type_; }
const ID* id() const { return id_; }
ActionParamType* type() const { return type_; }
Type* MainDataType() const;
Type* DataType() const;
string DeclStr(Env* env) const;
Type* MainDataType() const;
Type* DataType() const;
string DeclStr(Env* env) const;
private:
const ID* id_;
ActionParamType* type_;
};
const ID* id_;
ActionParamType* type_;
};
class ActionParamType
{
class ActionParamType {
public:
ActionParamType(const ID* type_id, const ID* field_id = 0)
: type_id_(type_id), field_id_(field_id)
{
}
ActionParamType(const ID* type_id, const ID* field_id = 0) : type_id_(type_id), field_id_(field_id) {}
const ID* type_id() const { return type_id_; }
const ID* field_id() const { return field_id_; }
const ID* type_id() const { return type_id_; }
const ID* field_id() const { return field_id_; }
protected:
const ID *type_id_, *field_id_;
};
const ID *type_id_, *field_id_;
};
#endif // pac_action_h

View file

@ -14,330 +14,250 @@
#include "pac_type.h"
#include "pac_varfield.h"
AnalyzerDecl::AnalyzerDecl(ID* id, DeclType decl_type, ParamList* params)
: TypeDecl(id, params, new DummyType())
{
decl_type_ = decl_type;
AnalyzerDecl::AnalyzerDecl(ID* id, DeclType decl_type, ParamList* params) : TypeDecl(id, params, new DummyType()) {
decl_type_ = decl_type;
statevars_ = new StateVarList();
actions_ = new AnalyzerActionList();
helpers_ = new AnalyzerHelperList();
functions_ = new FunctionList();
statevars_ = new StateVarList();
actions_ = new AnalyzerActionList();
helpers_ = new AnalyzerHelperList();
functions_ = new FunctionList();
constructor_helpers_ = new AnalyzerHelperList();
destructor_helpers_ = new AnalyzerHelperList();
eof_helpers_ = new AnalyzerHelperList();
constructor_helpers_ = new AnalyzerHelperList();
destructor_helpers_ = new AnalyzerHelperList();
eof_helpers_ = new AnalyzerHelperList();
SetAnalyzerContext();
SetAnalyzerContext();
env_ = nullptr;
}
env_ = nullptr;
}
AnalyzerDecl::~AnalyzerDecl()
{
delete_list(StateVarList, statevars_);
delete_list(AnalyzerActionList, actions_);
delete_list(AnalyzerHelperList, helpers_);
delete_list(FunctionList, functions_);
delete_list(ParamList, params_);
delete_list(AnalyzerHelperList, constructor_helpers_);
delete_list(AnalyzerHelperList, destructor_helpers_);
delete_list(AnalyzerHelperList, eof_helpers_);
}
AnalyzerDecl::~AnalyzerDecl() {
delete_list(StateVarList, statevars_);
delete_list(AnalyzerActionList, actions_);
delete_list(AnalyzerHelperList, helpers_);
delete_list(FunctionList, functions_);
delete_list(ParamList, params_);
delete_list(AnalyzerHelperList, constructor_helpers_);
delete_list(AnalyzerHelperList, destructor_helpers_);
delete_list(AnalyzerHelperList, eof_helpers_);
}
void AnalyzerDecl::AddElements(AnalyzerElementList* elemlist)
{
ASSERT(! env_);
foreach (i, AnalyzerElementList, elemlist)
{
AnalyzerElement* elem = *i;
switch ( elem->type() )
{
case AnalyzerElement::STATE:
{
ASSERT(0);
AnalyzerState* state_elem = (AnalyzerState*)elem;
statevars_->insert(statevars_->end(), state_elem->statevars()->begin(),
state_elem->statevars()->end());
}
break;
case AnalyzerElement::ACTION:
{
ASSERT(0);
AnalyzerAction* action_elem = (AnalyzerAction*)elem;
actions_->push_back(action_elem);
}
break;
case AnalyzerElement::HELPER:
{
AnalyzerHelper* helper_elem = (AnalyzerHelper*)elem;
void AnalyzerDecl::AddElements(AnalyzerElementList* elemlist) {
ASSERT(! env_);
foreach (i, AnalyzerElementList, elemlist) {
AnalyzerElement* elem = *i;
switch ( elem->type() ) {
case AnalyzerElement::STATE: {
ASSERT(0);
AnalyzerState* state_elem = (AnalyzerState*)elem;
statevars_->insert(statevars_->end(), state_elem->statevars()->begin(), state_elem->statevars()->end());
} break;
case AnalyzerElement::ACTION: {
ASSERT(0);
AnalyzerAction* action_elem = (AnalyzerAction*)elem;
actions_->push_back(action_elem);
} break;
case AnalyzerElement::HELPER: {
AnalyzerHelper* helper_elem = (AnalyzerHelper*)elem;
switch ( helper_elem->helper_type() )
{
case AnalyzerHelper::INIT_CODE:
constructor_helpers_->push_back(helper_elem);
break;
case AnalyzerHelper::CLEANUP_CODE:
destructor_helpers_->push_back(helper_elem);
break;
case AnalyzerHelper::EOF_CODE:
eof_helpers_->push_back(helper_elem);
break;
default:
helpers_->push_back(helper_elem);
}
}
break;
case AnalyzerElement::FUNCTION:
{
AnalyzerFunction* func_elem = (AnalyzerFunction*)elem;
Function* func = func_elem->function();
func->set_analyzer_decl(this);
functions_->push_back(func);
}
break;
case AnalyzerElement::FLOW:
{
AnalyzerFlow* flow_elem = (AnalyzerFlow*)elem;
ProcessFlowElement(flow_elem);
}
break;
case AnalyzerElement::DATAUNIT:
{
AnalyzerDataUnit* dataunit_elem = (AnalyzerDataUnit*)elem;
ProcessDataUnitElement(dataunit_elem);
}
break;
}
}
}
switch ( helper_elem->helper_type() ) {
case AnalyzerHelper::INIT_CODE: constructor_helpers_->push_back(helper_elem); break;
case AnalyzerHelper::CLEANUP_CODE: destructor_helpers_->push_back(helper_elem); break;
case AnalyzerHelper::EOF_CODE: eof_helpers_->push_back(helper_elem); break;
default: helpers_->push_back(helper_elem);
}
} break;
case AnalyzerElement::FUNCTION: {
AnalyzerFunction* func_elem = (AnalyzerFunction*)elem;
Function* func = func_elem->function();
func->set_analyzer_decl(this);
functions_->push_back(func);
} break;
case AnalyzerElement::FLOW: {
AnalyzerFlow* flow_elem = (AnalyzerFlow*)elem;
ProcessFlowElement(flow_elem);
} break;
case AnalyzerElement::DATAUNIT: {
AnalyzerDataUnit* dataunit_elem = (AnalyzerDataUnit*)elem;
ProcessDataUnitElement(dataunit_elem);
} break;
}
}
}
string AnalyzerDecl::class_name() const
{
return id_->Name();
}
string AnalyzerDecl::class_name() const { return id_->Name(); }
void AnalyzerDecl::Prepare()
{
TypeDecl::Prepare();
void AnalyzerDecl::Prepare() {
TypeDecl::Prepare();
ASSERT(statevars_->empty());
ASSERT(actions_->empty());
ASSERT(statevars_->empty());
ASSERT(actions_->empty());
foreach (i, FunctionList, functions_)
{
Function* function = *i;
function->Prepare(env_);
}
foreach (i, StateVarList, statevars_)
{
StateVar* statevar = *i;
env_->AddID(statevar->id(), STATE_VAR, statevar->type());
}
foreach (i, AnalyzerActionList, actions_)
{
AnalyzerAction* action = *i;
action->InstallHook(this);
}
}
foreach (i, FunctionList, functions_) {
Function* function = *i;
function->Prepare(env_);
}
foreach (i, StateVarList, statevars_) {
StateVar* statevar = *i;
env_->AddID(statevar->id(), STATE_VAR, statevar->type());
}
foreach (i, AnalyzerActionList, actions_) {
AnalyzerAction* action = *i;
action->InstallHook(this);
}
}
void AnalyzerDecl::GenForwardDeclaration(Output* out_h)
{
out_h->println("class %s;", class_name().c_str());
foreach (i, FunctionList, functions_)
{
Function* function = *i;
function->GenForwardDeclaration(out_h);
}
}
void AnalyzerDecl::GenForwardDeclaration(Output* out_h) {
out_h->println("class %s;", class_name().c_str());
foreach (i, FunctionList, functions_) {
Function* function = *i;
function->GenForwardDeclaration(out_h);
}
}
void AnalyzerDecl::GenActions(Output* out_h, Output* out_cc)
{
foreach (i, AnalyzerActionList, actions_)
{
(*i)->GenCode(out_h, out_cc, this);
}
}
void AnalyzerDecl::GenActions(Output* out_h, Output* out_cc) {
foreach (i, AnalyzerActionList, actions_) {
(*i)->GenCode(out_h, out_cc, this);
}
}
void AnalyzerDecl::GenHelpers(Output* out_h, Output* out_cc)
{
foreach (i, AnalyzerHelperList, helpers_)
{
(*i)->GenCode(out_h, out_cc, this);
}
}
void AnalyzerDecl::GenHelpers(Output* out_h, Output* out_cc) {
foreach (i, AnalyzerHelperList, helpers_) {
(*i)->GenCode(out_h, out_cc, this);
}
}
void AnalyzerDecl::GenPubDecls(Output* out_h, Output* out_cc)
{
TypeDecl::GenPubDecls(out_h, out_cc);
void AnalyzerDecl::GenPubDecls(Output* out_h, Output* out_cc) {
TypeDecl::GenPubDecls(out_h, out_cc);
GenProcessFunc(out_h, out_cc);
GenGapFunc(out_h, out_cc);
GenEOFFunc(out_h, out_cc);
out_h->println("");
GenProcessFunc(out_h, out_cc);
GenGapFunc(out_h, out_cc);
GenEOFFunc(out_h, out_cc);
out_h->println("");
if ( ! functions_->empty() )
{
out_h->println("// Functions");
GenFunctions(out_h, out_cc);
out_h->println("");
}
if ( ! functions_->empty() ) {
out_h->println("// Functions");
GenFunctions(out_h, out_cc);
out_h->println("");
}
// TODO: export public state variables
}
// TODO: export public state variables
}
void AnalyzerDecl::GenPrivDecls(Output* out_h, Output* out_cc)
{
TypeDecl::GenPrivDecls(out_h, out_cc);
void AnalyzerDecl::GenPrivDecls(Output* out_h, Output* out_cc) {
TypeDecl::GenPrivDecls(out_h, out_cc);
if ( ! helpers_->empty() )
{
out_h->println("");
out_h->println("// Additional members");
GenHelpers(out_h, out_cc);
}
if ( ! helpers_->empty() ) {
out_h->println("");
out_h->println("// Additional members");
GenHelpers(out_h, out_cc);
}
// TODO: declare state variables
}
// TODO: declare state variables
}
void AnalyzerDecl::GenInitCode(Output* out_cc)
{
TypeDecl::GenInitCode(out_cc);
foreach (i, AnalyzerHelperList, constructor_helpers_)
{
(*i)->GenCode(nullptr, out_cc, this);
}
}
void AnalyzerDecl::GenInitCode(Output* out_cc) {
TypeDecl::GenInitCode(out_cc);
foreach (i, AnalyzerHelperList, constructor_helpers_) {
(*i)->GenCode(nullptr, out_cc, this);
}
}
void AnalyzerDecl::GenCleanUpCode(Output* out_cc)
{
TypeDecl::GenCleanUpCode(out_cc);
foreach (i, AnalyzerHelperList, destructor_helpers_)
{
(*i)->GenCode(nullptr, out_cc, this);
}
}
void AnalyzerDecl::GenCleanUpCode(Output* out_cc) {
TypeDecl::GenCleanUpCode(out_cc);
foreach (i, AnalyzerHelperList, destructor_helpers_) {
(*i)->GenCode(nullptr, out_cc, this);
}
}
void AnalyzerDecl::GenStateVarDecls(Output* out_h)
{
foreach (i, StateVarList, statevars_)
{
StateVar* var = *i;
var->GenDecl(out_h, env_);
}
}
void AnalyzerDecl::GenStateVarDecls(Output* out_h) {
foreach (i, StateVarList, statevars_) {
StateVar* var = *i;
var->GenDecl(out_h, env_);
}
}
void AnalyzerDecl::GenStateVarSetFunctions(Output* out_h)
{
foreach (i, StateVarList, statevars_)
{
StateVar* var = *i;
var->GenSetFunction(out_h, env_);
}
}
void AnalyzerDecl::GenStateVarSetFunctions(Output* out_h) {
foreach (i, StateVarList, statevars_) {
StateVar* var = *i;
var->GenSetFunction(out_h, env_);
}
}
void AnalyzerDecl::GenStateVarInitCode(Output* out_cc)
{
foreach (i, StateVarList, statevars_)
{
StateVar* var = *i;
var->GenInitCode(out_cc, env_);
}
}
void AnalyzerDecl::GenStateVarInitCode(Output* out_cc) {
foreach (i, StateVarList, statevars_) {
StateVar* var = *i;
var->GenInitCode(out_cc, env_);
}
}
void AnalyzerDecl::GenStateVarCleanUpCode(Output* out_cc)
{
foreach (i, StateVarList, statevars_)
{
StateVar* var = *i;
var->GenCleanUpCode(out_cc, env_);
}
}
void AnalyzerDecl::GenStateVarCleanUpCode(Output* out_cc) {
foreach (i, StateVarList, statevars_) {
StateVar* var = *i;
var->GenCleanUpCode(out_cc, env_);
}
}
void AnalyzerDecl::GenFunctions(Output* out_h, Output* out_cc)
{
foreach (i, FunctionList, functions_)
{
Function* function = *i;
function->GenCode(out_h, out_cc);
}
}
void AnalyzerDecl::GenFunctions(Output* out_h, Output* out_cc) {
foreach (i, FunctionList, functions_) {
Function* function = *i;
function->GenCode(out_h, out_cc);
}
}
AnalyzerState::~AnalyzerState()
{
// Note: do not delete elements of statevars_, because they
// are referenced by the AnalyzerDecl.
delete statevars_;
}
AnalyzerState::~AnalyzerState() {
// Note: do not delete elements of statevars_, because they
// are referenced by the AnalyzerDecl.
delete statevars_;
}
AnalyzerHelper::~AnalyzerHelper()
{
delete code_;
}
AnalyzerHelper::~AnalyzerHelper() { delete code_; }
void AnalyzerHelper::GenCode(Output* out_h, Output* out_cc, AnalyzerDecl* decl)
{
Output* out = nullptr;
switch ( helper_type_ )
{
case MEMBER_DECLS:
out = out_h;
break;
case INIT_CODE:
case CLEANUP_CODE:
case EOF_CODE:
out = out_cc;
break;
}
ASSERT(out);
code()->GenCode(out, decl->env());
}
void AnalyzerHelper::GenCode(Output* out_h, Output* out_cc, AnalyzerDecl* decl) {
Output* out = nullptr;
switch ( helper_type_ ) {
case MEMBER_DECLS: out = out_h; break;
case INIT_CODE:
case CLEANUP_CODE:
case EOF_CODE: out = out_cc; break;
}
ASSERT(out);
code()->GenCode(out, decl->env());
}
FlowField::FlowField(ID* flow_id, ParameterizedType* flow_type)
: Field(FLOW_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, flow_id, flow_type)
{
}
: Field(FLOW_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, flow_id, flow_type) {}
void FlowField::GenInitCode(Output* out_cc, Env* env)
{
type_->GenPreParsing(out_cc, env);
}
void FlowField::GenInitCode(Output* out_cc, Env* env) { type_->GenPreParsing(out_cc, env); }
AnalyzerFlow::AnalyzerFlow(Direction dir, ID* type_id, ExprList* params)
: AnalyzerElement(FLOW), dir_(dir), type_id_(type_id)
{
if ( ! params )
params = new ExprList();
: AnalyzerElement(FLOW), dir_(dir), type_id_(type_id) {
if ( ! params )
params = new ExprList();
// Add "this" to the list of params
params->insert(params->begin(), new Expr(this_id->clone()));
// Add "this" to the list of params
params->insert(params->begin(), new Expr(this_id->clone()));
ID* flow_id = ((dir == UP) ? upflow_id : downflow_id)->clone();
ID* flow_id = ((dir == UP) ? upflow_id : downflow_id)->clone();
ParameterizedType* flow_type = new ParameterizedType(type_id_, params);
ParameterizedType* flow_type = new ParameterizedType(type_id_, params);
flow_field_ = new FlowField(flow_id, flow_type);
flow_field_ = new FlowField(flow_id, flow_type);
flow_decl_ = nullptr;
}
flow_decl_ = nullptr;
}
AnalyzerFlow::~AnalyzerFlow()
{
delete flow_field_;
}
AnalyzerFlow::~AnalyzerFlow() { delete flow_field_; }
FlowDecl* AnalyzerFlow::flow_decl()
{
DEBUG_MSG("Getting flow_decl for %s\n", type_id_->Name());
if ( ! flow_decl_ )
{
Decl* decl = Decl::LookUpDecl(type_id_);
if ( decl && decl->decl_type() == Decl::FLOW )
flow_decl_ = static_cast<FlowDecl*>(decl);
if ( ! flow_decl_ )
{
throw Exception(this, "cannot find the flow declaration");
}
}
return flow_decl_;
}
FlowDecl* AnalyzerFlow::flow_decl() {
DEBUG_MSG("Getting flow_decl for %s\n", type_id_->Name());
if ( ! flow_decl_ ) {
Decl* decl = Decl::LookUpDecl(type_id_);
if ( decl && decl->decl_type() == Decl::FLOW )
flow_decl_ = static_cast<FlowDecl*>(decl);
if ( ! flow_decl_ ) {
throw Exception(this, "cannot find the flow declaration");
}
}
return flow_decl_;
}

View file

@ -17,162 +17,141 @@ class FlowDecl;
typedef vector<AnalyzerHelper*> AnalyzerHelperList;
typedef vector<Function*> FunctionList;
class AnalyzerDecl : public TypeDecl
{
class AnalyzerDecl : public TypeDecl {
public:
AnalyzerDecl(ID* id, DeclType decl_type, ParamList* params);
~AnalyzerDecl() override;
AnalyzerDecl(ID* id, DeclType decl_type, ParamList* params);
~AnalyzerDecl() override;
void AddElements(AnalyzerElementList* elemlist);
void AddElements(AnalyzerElementList* elemlist);
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
// void GenCode(Output *out_h, Output *out_cc);
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
// void GenCode(Output *out_h, Output *out_cc);
void GenInitCode(Output* out_cc) override;
void GenCleanUpCode(Output* out_cc) override;
void GenInitCode(Output* out_cc) override;
void GenCleanUpCode(Output* out_cc) override;
string class_name() const;
// string cookie_name() const;
string class_name() const;
// string cookie_name() const;
protected:
virtual void ProcessFlowElement(AnalyzerFlow* flow_elem) = 0;
virtual void ProcessDataUnitElement(AnalyzerDataUnit* dataunit_elem) = 0;
virtual void ProcessFlowElement(AnalyzerFlow* flow_elem) = 0;
virtual void ProcessDataUnitElement(AnalyzerDataUnit* dataunit_elem) = 0;
// Generate public/private declarations for member functions and
// variables
void GenPubDecls(Output* out_h, Output* out_cc) override;
void GenPrivDecls(Output* out_h, Output* out_cc) override;
// Generate public/private declarations for member functions and
// variables
void GenPubDecls(Output* out_h, Output* out_cc) override;
void GenPrivDecls(Output* out_h, Output* out_cc) override;
// Generate the NewData() function
virtual void GenProcessFunc(Output* out_h, Output* out_cc) = 0;
// Generate the NewData() function
virtual void GenProcessFunc(Output* out_h, Output* out_cc) = 0;
// Generate the NewGap() function
virtual void GenGapFunc(Output* out_h, Output* out_cc) = 0;
// Generate the NewGap() function
virtual void GenGapFunc(Output* out_h, Output* out_cc) = 0;
// Generate the FlowEOF() function
virtual void GenEOFFunc(Output* out_h, Output* out_cc) = 0;
// Generate the FlowEOF() function
virtual void GenEOFFunc(Output* out_h, Output* out_cc) = 0;
// Generate the functions
void GenFunctions(Output* out_h, Output* out_cc);
// Generate the functions
void GenFunctions(Output* out_h, Output* out_cc);
// Generate the action functions
void GenActions(Output* out_h, Output* out_cc);
// Generate the action functions
void GenActions(Output* out_h, Output* out_cc);
// Generate the helper code segments
void GenHelpers(Output* out_h, Output* out_cc);
// Generate the helper code segments
void GenHelpers(Output* out_h, Output* out_cc);
// Generate declarations for state variables and their set functions
void GenStateVarDecls(Output* out_h);
void GenStateVarSetFunctions(Output* out_h);
// Generate declarations for state variables and their set functions
void GenStateVarDecls(Output* out_h);
void GenStateVarSetFunctions(Output* out_h);
// Generate code for initializing and cleaning up (including
// memory de-allocating) state variables
void GenStateVarInitCode(Output* out_cc);
void GenStateVarCleanUpCode(Output* out_cc);
// Generate code for initializing and cleaning up (including
// memory de-allocating) state variables
void GenStateVarInitCode(Output* out_cc);
void GenStateVarCleanUpCode(Output* out_cc);
StateVarList* statevars_;
AnalyzerActionList* actions_;
AnalyzerHelperList* helpers_;
FunctionList* functions_;
StateVarList* statevars_;
AnalyzerActionList* actions_;
AnalyzerHelperList* helpers_;
FunctionList* functions_;
AnalyzerHelperList* constructor_helpers_;
AnalyzerHelperList* destructor_helpers_;
AnalyzerHelperList* eof_helpers_;
};
AnalyzerHelperList* constructor_helpers_;
AnalyzerHelperList* destructor_helpers_;
AnalyzerHelperList* eof_helpers_;
};
class AnalyzerElement : public Object
{
class AnalyzerElement : public Object {
public:
enum ElementType
{
STATE,
ACTION,
FUNCTION,
HELPER,
FLOW,
DATAUNIT
};
AnalyzerElement(ElementType type) : type_(type) { }
virtual ~AnalyzerElement() { }
enum ElementType { STATE, ACTION, FUNCTION, HELPER, FLOW, DATAUNIT };
AnalyzerElement(ElementType type) : type_(type) {}
virtual ~AnalyzerElement() {}
ElementType type() const { return type_; }
ElementType type() const { return type_; }
private:
ElementType type_;
};
ElementType type_;
};
// A collection of variables representing analyzer states.
class AnalyzerState : public AnalyzerElement
{
class AnalyzerState : public AnalyzerElement {
public:
AnalyzerState(StateVarList* statevars) : AnalyzerElement(STATE), statevars_(statevars) { }
~AnalyzerState() override;
AnalyzerState(StateVarList* statevars) : AnalyzerElement(STATE), statevars_(statevars) {}
~AnalyzerState() override;
StateVarList* statevars() const { return statevars_; }
StateVarList* statevars() const { return statevars_; }
private:
StateVarList* statevars_;
};
StateVarList* statevars_;
};
// A collection of embedded C++ code
class AnalyzerHelper : public AnalyzerElement
{
class AnalyzerHelper : public AnalyzerElement {
public:
enum Type
{
MEMBER_DECLS,
INIT_CODE,
CLEANUP_CODE,
EOF_CODE,
};
AnalyzerHelper(Type helper_type, EmbeddedCode* code)
: AnalyzerElement(HELPER), helper_type_(helper_type), code_(code)
{
}
~AnalyzerHelper() override;
enum Type {
MEMBER_DECLS,
INIT_CODE,
CLEANUP_CODE,
EOF_CODE,
};
AnalyzerHelper(Type helper_type, EmbeddedCode* code)
: AnalyzerElement(HELPER), helper_type_(helper_type), code_(code) {}
~AnalyzerHelper() override;
Type helper_type() const { return helper_type_; }
Type helper_type() const { return helper_type_; }
void GenCode(Output* out_h, Output* out_cc, AnalyzerDecl* decl);
void GenCode(Output* out_h, Output* out_cc, AnalyzerDecl* decl);
EmbeddedCode* code() const { return code_; }
EmbeddedCode* code() const { return code_; }
private:
Type helper_type_;
EmbeddedCode* code_;
};
Type helper_type_;
EmbeddedCode* code_;
};
// The type and parameters of (uni-directional) flows of a connection.
class FlowField : public Field
{
class FlowField : public Field {
public:
FlowField(ID* flow_id, ParameterizedType* flow_type);
void GenInitCode(Output* out, Env* env) override;
};
FlowField(ID* flow_id, ParameterizedType* flow_type);
void GenInitCode(Output* out, Env* env) override;
};
class AnalyzerFlow : public AnalyzerElement
{
class AnalyzerFlow : public AnalyzerElement {
public:
enum Direction
{
UP,
DOWN
};
AnalyzerFlow(Direction dir, ID* type_id, ExprList* params);
~AnalyzerFlow() override;
enum Direction { UP, DOWN };
AnalyzerFlow(Direction dir, ID* type_id, ExprList* params);
~AnalyzerFlow() override;
Direction dir() const { return dir_; }
FlowField* flow_field() const { return flow_field_; }
Direction dir() const { return dir_; }
FlowField* flow_field() const { return flow_field_; }
FlowDecl* flow_decl();
FlowDecl* flow_decl();
private:
Direction dir_;
ID* type_id_;
FlowField* flow_field_;
FlowDecl* flow_decl_;
};
Direction dir_;
ID* type_id_;
FlowField* flow_field_;
FlowDecl* flow_decl_;
};
#endif // pac_analyzer_h

File diff suppressed because it is too large Load diff

View file

@ -6,82 +6,81 @@
// Fixed-length array and variable length sequence with an ending pattern
class ArrayType : public Type
{
class ArrayType : public Type {
public:
ArrayType(Type* arg_elemtype, Expr* arg_length = nullptr);
~ArrayType() override;
ArrayType(Type* arg_elemtype, Expr* arg_length = nullptr);
~ArrayType() override;
bool DefineValueVar() const override;
string DataTypeStr() const override;
string DefaultValue() const override { return "0"; }
Type* ElementDataType() const override;
bool DefineValueVar() const override;
string DataTypeStr() const override;
string DefaultValue() const override { return "0"; }
Type* ElementDataType() const override;
string EvalElement(const string& array, const string& index) const override;
string EvalElement(const string& array, const string& index) const override;
void ProcessAttr(Attr* a) override;
void ProcessAttr(Attr* a) override;
void Prepare(Env* env, int flags) override;
void Prepare(Env* env, int flags) override;
void GenPubDecls(Output* out, Env* env) override;
void GenPrivDecls(Output* out, Env* env) override;
void GenPubDecls(Output* out, Env* env) override;
void GenPrivDecls(Output* out, Env* env) override;
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
int StaticSize(Env* env) const override;
int StaticSize(Env* env) const override;
void SetBoundaryChecked() override;
void GenUntilInputCheck(Output* out_cc, Env* env);
void SetBoundaryChecked() override;
void GenUntilInputCheck(Output* out_cc, Env* env);
bool IsPointerType() const override { return true; }
bool IsPointerType() const override { return true; }
protected:
void init();
void init();
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
void GenArrayLength(Output* out_cc, Env* env, const DataPtr& data);
string GenArrayInit(Output* out_cc, Env* env, bool known_array_length);
void GenElementAssignment(Output* out_cc, Env* env, string const& array_str, bool use_vector);
void GenUntilCheck(Output* out_cc, Env* env, Expr* until_condition, bool delete_elem);
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
void GenArrayLength(Output* out_cc, Env* env, const DataPtr& data);
string GenArrayInit(Output* out_cc, Env* env, bool known_array_length);
void GenElementAssignment(Output* out_cc, Env* env, string const& array_str, bool use_vector);
void GenUntilCheck(Output* out_cc, Env* env, Expr* until_condition, bool delete_elem);
bool ByteOrderSensitive() const override { return elemtype_->RequiresByteOrder(); }
bool RequiresAnalyzerContext() override;
bool ByteOrderSensitive() const override { return elemtype_->RequiresByteOrder(); }
bool RequiresAnalyzerContext() override;
Type* DoClone() const override;
Type* DoClone() const override;
void DoMarkIncrementalInput() override;
void DoMarkIncrementalInput() override;
const ID* arraylength_var() const;
const ID* elem_it_var() const;
const ID* elem_var() const;
const ID* elem_dataptr_var() const;
const ID* elem_input_var() const;
const ID* arraylength_var() const;
const ID* elem_it_var() const;
const ID* elem_var() const;
const ID* elem_dataptr_var() const;
const ID* elem_input_var() const;
protected:
bool DoTraverse(DataDepVisitor* visitor) override;
bool DoTraverse(DataDepVisitor* visitor) override;
private:
Type* elemtype_;
Expr* length_;
Type* elemtype_;
Expr* length_;
string vector_str_;
string datatype_str_;
string end_of_array_loop_label_;
string vector_str_;
string datatype_str_;
string end_of_array_loop_label_;
Field* arraylength_var_field_;
Field* elem_it_var_field_;
Field* elem_var_field_;
Field* elem_dataptr_var_field_;
Field* elem_input_var_field_;
Field* arraylength_var_field_;
Field* elem_it_var_field_;
Field* elem_var_field_;
Field* elem_dataptr_var_field_;
Field* elem_input_var_field_;
// This does not come from &until, but is internally generated
Expr* elem_dataptr_until_expr_;
// This does not come from &until, but is internally generated
Expr* elem_dataptr_until_expr_;
Expr* attr_generic_until_expr_;
Expr* attr_until_element_expr_;
Expr* attr_until_input_expr_;
};
Expr* attr_generic_until_expr_;
Expr* attr_until_element_expr_;
Expr* attr_until_input_expr_;
};
#endif // pac_array_h

View file

@ -2,60 +2,47 @@
#include "pac_expr.h"
bool Attr::DoTraverse(DataDepVisitor* visitor)
{
if ( expr_ && ! expr_->Traverse(visitor) )
return false;
return true;
}
bool Attr::DoTraverse(DataDepVisitor* visitor) {
if ( expr_ && ! expr_->Traverse(visitor) )
return false;
return true;
}
bool Attr::RequiresAnalyzerContext() const
{
return (expr_ && expr_->RequiresAnalyzerContext());
}
bool Attr::RequiresAnalyzerContext() const { return (expr_ && expr_->RequiresAnalyzerContext()); }
void Attr::init()
{
expr_ = nullptr;
seqend_ = nullptr;
delete_expr_ = false;
}
void Attr::init() {
expr_ = nullptr;
seqend_ = nullptr;
delete_expr_ = false;
}
Attr::Attr(AttrType type) : DataDepElement(DataDepElement::ATTR)
{
type_ = type;
init();
}
Attr::Attr(AttrType type) : DataDepElement(DataDepElement::ATTR) {
type_ = type;
init();
}
Attr::Attr(AttrType type, Expr* expr) : DataDepElement(DataDepElement::ATTR)
{
type_ = type;
init();
expr_ = expr;
}
Attr::Attr(AttrType type, Expr* expr) : DataDepElement(DataDepElement::ATTR) {
type_ = type;
init();
expr_ = expr;
}
Attr::Attr(AttrType type, ExprList* exprlist) : DataDepElement(DataDepElement::ATTR)
{
type_ = type;
init();
expr_ = new Expr(exprlist);
delete_expr_ = true;
}
Attr::Attr(AttrType type, ExprList* exprlist) : DataDepElement(DataDepElement::ATTR) {
type_ = type;
init();
expr_ = new Expr(exprlist);
delete_expr_ = true;
}
Attr::Attr(AttrType type, SeqEnd* seqend) : DataDepElement(DataDepElement::ATTR)
{
type_ = type;
init();
seqend_ = seqend;
}
Attr::Attr(AttrType type, SeqEnd* seqend) : DataDepElement(DataDepElement::ATTR) {
type_ = type;
init();
seqend_ = seqend;
}
Attr::~Attr()
{
if ( delete_expr_ )
delete expr_;
}
Attr::~Attr() {
if ( delete_expr_ )
delete expr_;
}
LetAttr::LetAttr(FieldList* letfields) : Attr(ATTR_LET)
{
letfields_ = letfields;
}
LetAttr::LetAttr(FieldList* letfields) : Attr(ATTR_LET) { letfields_ = letfields; }

View file

@ -4,63 +4,60 @@
#include "pac_common.h"
#include "pac_datadep.h"
enum AttrType
{
ATTR_BYTEORDER,
ATTR_CHECK,
ATTR_CHUNKED,
ATTR_ENFORCE,
ATTR_EXPORTSOURCEDATA,
ATTR_IF,
ATTR_LENGTH,
ATTR_LET,
ATTR_LINEBREAKER,
ATTR_MULTILINE,
ATTR_ONELINE,
ATTR_REFCOUNT,
ATTR_REQUIRES,
ATTR_RESTOFDATA,
ATTR_RESTOFFLOW,
ATTR_TRANSIENT,
ATTR_UNTIL,
};
enum AttrType {
ATTR_BYTEORDER,
ATTR_CHECK,
ATTR_CHUNKED,
ATTR_ENFORCE,
ATTR_EXPORTSOURCEDATA,
ATTR_IF,
ATTR_LENGTH,
ATTR_LET,
ATTR_LINEBREAKER,
ATTR_MULTILINE,
ATTR_ONELINE,
ATTR_REFCOUNT,
ATTR_REQUIRES,
ATTR_RESTOFDATA,
ATTR_RESTOFFLOW,
ATTR_TRANSIENT,
ATTR_UNTIL,
};
class Attr : public Object, public DataDepElement
{
class Attr : public Object, public DataDepElement {
public:
Attr(AttrType type);
Attr(AttrType type, Expr* expr);
Attr(AttrType type, ExprList* exprlist);
Attr(AttrType type, SeqEnd* seqend);
Attr(AttrType type);
Attr(AttrType type, Expr* expr);
Attr(AttrType type, ExprList* exprlist);
Attr(AttrType type, SeqEnd* seqend);
~Attr() override;
~Attr() override;
AttrType type() const { return type_; }
Expr* expr() const { return expr_; }
SeqEnd* seqend() const { return seqend_; }
AttrType type() const { return type_; }
Expr* expr() const { return expr_; }
SeqEnd* seqend() const { return seqend_; }
bool RequiresAnalyzerContext() const;
bool RequiresAnalyzerContext() const;
protected:
bool DoTraverse(DataDepVisitor* visitor) override;
bool DoTraverse(DataDepVisitor* visitor) override;
protected:
void init();
void init();
AttrType type_;
Expr* expr_;
SeqEnd* seqend_;
bool delete_expr_;
};
AttrType type_;
Expr* expr_;
SeqEnd* seqend_;
bool delete_expr_;
};
class LetAttr : public Attr
{
class LetAttr : public Attr {
public:
LetAttr(FieldList* letfields);
FieldList* letfields() const { return letfields_; }
LetAttr(FieldList* letfields);
FieldList* letfields() const { return letfields_; }
private:
FieldList* letfields_;
};
FieldList* letfields_;
};
#endif // pac_attr_h

View file

@ -4,125 +4,104 @@
#include "pac_id.h"
#include "pac_output.h"
Type* BuiltInType::DoClone() const
{
return new BuiltInType(bit_type());
}
Type* BuiltInType::DoClone() const { return new BuiltInType(bit_type()); }
bool BuiltInType::IsNumericType() const
{
BITType t = bit_type();
return (t == INT8 || t == INT16 || t == INT32 || t == INT64 || t == UINT8 || t == UINT16 ||
t == UINT32 || t == UINT64);
}
bool BuiltInType::IsNumericType() const {
BITType t = bit_type();
return (t == INT8 || t == INT16 || t == INT32 || t == INT64 || t == UINT8 || t == UINT16 || t == UINT32 ||
t == UINT64);
}
bool BuiltInType::CompatibleBuiltInTypes(BuiltInType* type1, BuiltInType* type2)
{
return type1->IsNumericType() && type2->IsNumericType();
}
bool BuiltInType::CompatibleBuiltInTypes(BuiltInType* type1, BuiltInType* type2) {
return type1->IsNumericType() && type2->IsNumericType();
}
static const char* basic_pactype_name[] = {
#define TYPE_DEF(name, pactype, ctype, size) pactype,
#include "pac_type.def"
#undef TYPE_DEF
nullptr,
nullptr,
};
void BuiltInType::static_init()
{
for ( int bit_type = 0; basic_pactype_name[bit_type]; ++bit_type )
{
Type::AddPredefinedType(basic_pactype_name[bit_type], new BuiltInType((BITType)bit_type));
}
}
void BuiltInType::static_init() {
for ( int bit_type = 0; basic_pactype_name[bit_type]; ++bit_type ) {
Type::AddPredefinedType(basic_pactype_name[bit_type], new BuiltInType((BITType)bit_type));
}
}
int BuiltInType::LookUpByName(const char* name)
{
ASSERT(0);
for ( int i = 0; basic_pactype_name[i]; ++i )
if ( strcmp(basic_pactype_name[i], name) == 0 )
return i;
return -1;
}
int BuiltInType::LookUpByName(const char* name) {
ASSERT(0);
for ( int i = 0; basic_pactype_name[i]; ++i )
if ( strcmp(basic_pactype_name[i], name) == 0 )
return i;
return -1;
}
static const char* basic_ctype_name[] = {
#define TYPE_DEF(name, pactype, ctype, size) ctype,
#include "pac_type.def"
#undef TYPE_DEF
nullptr,
nullptr,
};
bool BuiltInType::DefineValueVar() const
{
return bit_type_ != EMPTY;
}
bool BuiltInType::DefineValueVar() const { return bit_type_ != EMPTY; }
string BuiltInType::DataTypeStr() const
{
return basic_ctype_name[bit_type_];
}
string BuiltInType::DataTypeStr() const { return basic_ctype_name[bit_type_]; }
int BuiltInType::StaticSize(Env* /* env */) const
{
static const size_t basic_type_size[] = {
int BuiltInType::StaticSize(Env* /* env */) const {
static const size_t basic_type_size[] = {
#define TYPE_DEF(name, pactype, ctype, size) size,
#include "pac_type.def"
#undef TYPE_DEF
};
};
return basic_type_size[bit_type_];
}
return basic_type_size[bit_type_];
}
void BuiltInType::DoMarkIncrementalInput()
{
if ( bit_type_ == EMPTY )
return;
Type::DoMarkIncrementalInput();
}
void BuiltInType::DoMarkIncrementalInput() {
if ( bit_type_ == EMPTY )
return;
Type::DoMarkIncrementalInput();
}
void BuiltInType::GenInitCode(Output* out_cc, Env* env)
{
if ( bit_type_ != EMPTY )
out_cc->println("%s = 0;", env->LValue(value_var()));
Type::GenInitCode(out_cc, env);
}
void BuiltInType::GenInitCode(Output* out_cc, Env* env) {
if ( bit_type_ != EMPTY )
out_cc->println("%s = 0;", env->LValue(value_var()));
Type::GenInitCode(out_cc, env);
}
void BuiltInType::GenDynamicSize(Output* out_cc, Env* env, const DataPtr& data)
{
/* should never be called */
ASSERT(0);
}
void BuiltInType::GenDynamicSize(Output* out_cc, Env* env, const DataPtr& data) {
/* should never be called */
ASSERT(0);
}
void BuiltInType::DoGenParseCode(Output* out_cc, Env* env, const DataPtr& data, int flags)
{
if ( bit_type_ == EMPTY )
return;
void BuiltInType::DoGenParseCode(Output* out_cc, Env* env, const DataPtr& data, int flags) {
if ( bit_type_ == EMPTY )
return;
// There is no need to generate the size variable
// out_cc->println("%s = sizeof(%s);", size_var(), DataTypeStr().c_str());
// There is no need to generate the size variable
// out_cc->println("%s = sizeof(%s);", size_var(), DataTypeStr().c_str());
GenBoundaryCheck(out_cc, env, data);
GenBoundaryCheck(out_cc, env, data);
if ( anonymous_value_var() )
return;
if ( anonymous_value_var() )
return;
switch ( bit_type_ )
{
case EMPTY:
// do nothing
break;
switch ( bit_type_ ) {
case EMPTY:
// do nothing
break;
case INT8:
case UINT8:
out_cc->println("%s = *((%s const *) (%s));", lvalue(), DataTypeStr().c_str(),
data.ptr_expr());
break;
case INT16:
case UINT16:
case INT32:
case UINT32:
case INT64:
case UINT64:
case INT8:
case UINT8:
out_cc->println("%s = *((%s const *) (%s));", lvalue(), DataTypeStr().c_str(), data.ptr_expr());
break;
case INT16:
case UINT16:
case INT32:
case UINT32:
case INT64:
case UINT64:
#if 0
out_cc->println("%s = UnMarshall<%s>(%s, %s);",
lvalue(),
@ -130,10 +109,9 @@ void BuiltInType::DoGenParseCode(Output* out_cc, Env* env, const DataPtr& data,
data.ptr_expr(),
EvalByteOrder(out_cc, env).c_str());
#else
out_cc->println("%s = FixByteOrder(%s, *((%s const *) (%s)));", lvalue(),
EvalByteOrder(out_cc, env).c_str(), DataTypeStr().c_str(),
data.ptr_expr());
out_cc->println("%s = FixByteOrder(%s, *((%s const *) (%s)));", lvalue(),
EvalByteOrder(out_cc, env).c_str(), DataTypeStr().c_str(), data.ptr_expr());
#endif
break;
}
}
break;
}
}

View file

@ -3,51 +3,46 @@
#include "pac_type.h"
class BuiltInType : public Type
{
class BuiltInType : public Type {
public:
enum BITType
{
enum BITType {
#define TYPE_DEF(name, pactype, ctype, size) name,
#include "pac_type.def"
#undef TYPE_DEF
};
};
static int LookUpByName(const char* name);
static int LookUpByName(const char* name);
BuiltInType(BITType bit_type)
: Type(bit_type == BuiltInType::EMPTY ? Type::EMPTY : BUILTIN), bit_type_(bit_type)
{
}
BuiltInType(BITType bit_type) : Type(bit_type == BuiltInType::EMPTY ? Type::EMPTY : BUILTIN), bit_type_(bit_type) {}
BITType bit_type() const { return bit_type_; }
BITType bit_type() const { return bit_type_; }
bool IsNumericType() const override;
bool IsNumericType() const override;
bool DefineValueVar() const override;
string DataTypeStr() const override;
string DefaultValue() const override { return "0"; }
bool DefineValueVar() const override;
string DataTypeStr() const override;
string DefaultValue() const override { return "0"; }
int StaticSize(Env* env) const override;
int StaticSize(Env* env) const override;
bool IsPointerType() const override { return false; }
bool IsPointerType() const override { return false; }
bool ByteOrderSensitive() const override { return StaticSize(0) >= 2; }
bool ByteOrderSensitive() const override { return StaticSize(0) >= 2; }
void GenInitCode(Output* out_cc, Env* env) override;
void GenInitCode(Output* out_cc, Env* env) override;
void DoMarkIncrementalInput() override;
void DoMarkIncrementalInput() override;
protected:
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
Type* DoClone() const override;
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
Type* DoClone() const override;
BITType bit_type_;
BITType bit_type_;
public:
static void static_init();
static bool CompatibleBuiltInTypes(BuiltInType* type1, BuiltInType* type2);
};
static void static_init();
static bool CompatibleBuiltInTypes(BuiltInType* type1, BuiltInType* type2);
};
#endif // pac_btype_h

View file

@ -12,443 +12,381 @@
#include "pac_typedecl.h"
#include "pac_utils.h"
CaseType::CaseType(Expr* index_expr, CaseFieldList* cases)
: Type(CASE), index_expr_(index_expr), cases_(cases)
{
index_var_ = nullptr;
foreach (i, CaseFieldList, cases_)
AddField(*i);
}
CaseType::CaseType(Expr* index_expr, CaseFieldList* cases) : Type(CASE), index_expr_(index_expr), cases_(cases) {
index_var_ = nullptr;
foreach (i, CaseFieldList, cases_)
AddField(*i);
}
CaseType::~CaseType()
{
delete index_var_;
delete index_expr_;
delete cases_;
}
CaseType::~CaseType() {
delete index_var_;
delete index_expr_;
delete cases_;
}
void CaseType::AddCaseField(CaseField* f)
{
// All fields must be added before Prepare()
ASSERT(! env());
void CaseType::AddCaseField(CaseField* f) {
// All fields must be added before Prepare()
ASSERT(! env());
AddField(f);
cases_->push_back(f);
}
AddField(f);
cases_->push_back(f);
}
bool CaseType::DefineValueVar() const
{
return false;
}
bool CaseType::DefineValueVar() const { return false; }
string CaseType::DataTypeStr() const
{
ASSERT(type_decl());
return strfmt("%s *", type_decl()->class_name().c_str());
}
string CaseType::DataTypeStr() const {
ASSERT(type_decl());
return strfmt("%s *", type_decl()->class_name().c_str());
}
Type* CaseType::ValueType() const
{
foreach (i, CaseFieldList, cases_)
{
CaseField* c = *i;
return c->type();
}
ASSERT(0);
return nullptr;
}
Type* CaseType::ValueType() const {
foreach (i, CaseFieldList, cases_) {
CaseField* c = *i;
return c->type();
}
ASSERT(0);
return nullptr;
}
string CaseType::DefaultValue() const
{
return ValueType()->DefaultValue();
}
string CaseType::DefaultValue() const { return ValueType()->DefaultValue(); }
void CaseType::Prepare(Env* env, int flags)
{
ASSERT(flags & TO_BE_PARSED);
void CaseType::Prepare(Env* env, int flags) {
ASSERT(flags & TO_BE_PARSED);
index_var_ = new ID(strfmt("%s_case_index", value_var()->Name()));
// Unable to get the type for index_var_ at this moment, but we'll
// generate the right type based on index_expr_ later.
env->AddID(index_var_, MEMBER_VAR, nullptr);
index_var_ = new ID(strfmt("%s_case_index", value_var()->Name()));
// Unable to get the type for index_var_ at this moment, but we'll
// generate the right type based on index_expr_ later.
env->AddID(index_var_, MEMBER_VAR, nullptr);
// Sort the cases_ to put the default case at the end of the list
CaseFieldList::iterator default_case_it = cases_->end(); // to avoid warning
CaseField* default_case = nullptr;
// Sort the cases_ to put the default case at the end of the list
CaseFieldList::iterator default_case_it = cases_->end(); // to avoid warning
CaseField* default_case = nullptr;
foreach (i, CaseFieldList, cases_)
{
CaseField* c = *i;
if ( ! c->index() )
{
if ( default_case )
throw Exception(c, "duplicate default case");
default_case_it = i;
default_case = c;
}
}
if ( default_case )
{
cases_->erase(default_case_it);
cases_->push_back(default_case);
}
foreach (i, CaseFieldList, cases_) {
CaseField* c = *i;
if ( ! c->index() ) {
if ( default_case )
throw Exception(c, "duplicate default case");
default_case_it = i;
default_case = c;
}
}
if ( default_case ) {
cases_->erase(default_case_it);
cases_->push_back(default_case);
}
foreach (i, CaseFieldList, cases_)
{
CaseField* c = *i;
c->set_index_var(index_var_);
c->set_case_type(this);
}
foreach (i, CaseFieldList, cases_) {
CaseField* c = *i;
c->set_index_var(index_var_);
c->set_case_type(this);
}
Type::Prepare(env, flags);
}
Type::Prepare(env, flags);
}
void CaseType::GenPrivDecls(Output* out_h, Env* env)
{
Type* t = index_expr_->DataType(env);
void CaseType::GenPrivDecls(Output* out_h, Env* env) {
Type* t = index_expr_->DataType(env);
if ( t->tot() != Type::BUILTIN )
// It's a Type::EXTERN with a C++ type of "int", "bool", or "enum",
// any of which will convert consistently using an int as storage type.
t = extern_type_int;
if ( t->tot() != Type::BUILTIN )
// It's a Type::EXTERN with a C++ type of "int", "bool", or "enum",
// any of which will convert consistently using an int as storage type.
t = extern_type_int;
out_h->println("%s %s;", t->DataTypeStr().c_str(), env->LValue(index_var_));
Type::GenPrivDecls(out_h, env);
}
out_h->println("%s %s;", t->DataTypeStr().c_str(), env->LValue(index_var_));
Type::GenPrivDecls(out_h, env);
}
void CaseType::GenPubDecls(Output* out_h, Env* env)
{
Type* t = index_expr_->DataType(env);
void CaseType::GenPubDecls(Output* out_h, Env* env) {
Type* t = index_expr_->DataType(env);
if ( t->tot() != Type::BUILTIN )
t = extern_type_int;
if ( t->tot() != Type::BUILTIN )
t = extern_type_int;
out_h->println("%s %s const { return %s; }", t->DataTypeStr().c_str(), env->RValue(index_var_),
env->LValue(index_var_));
Type::GenPubDecls(out_h, env);
}
out_h->println("%s %s const { return %s; }", t->DataTypeStr().c_str(), env->RValue(index_var_),
env->LValue(index_var_));
Type::GenPubDecls(out_h, env);
}
void CaseType::GenInitCode(Output* out_cc, Env* env)
{
out_cc->println("%s = -1;", env->LValue(index_var_));
Type::GenInitCode(out_cc, env);
}
void CaseType::GenInitCode(Output* out_cc, Env* env) {
out_cc->println("%s = -1;", env->LValue(index_var_));
Type::GenInitCode(out_cc, env);
}
void CaseType::GenCleanUpCode(Output* out_cc, Env* env)
{
Type::GenCleanUpCode(out_cc, env);
void CaseType::GenCleanUpCode(Output* out_cc, Env* env) {
Type::GenCleanUpCode(out_cc, env);
env->set_in_branch(true);
out_cc->println("switch ( %s )", env->RValue(index_var_));
out_cc->inc_indent();
out_cc->println("{");
foreach (i, CaseFieldList, cases_)
{
CaseField* c = *i;
c->GenCleanUpCode(out_cc, env);
}
out_cc->println("}");
out_cc->dec_indent();
env->set_in_branch(false);
}
env->set_in_branch(true);
out_cc->println("switch ( %s )", env->RValue(index_var_));
out_cc->inc_indent();
out_cc->println("{");
foreach (i, CaseFieldList, cases_) {
CaseField* c = *i;
c->GenCleanUpCode(out_cc, env);
}
out_cc->println("}");
out_cc->dec_indent();
env->set_in_branch(false);
}
void CaseType::DoGenParseCode(Output* out_cc, Env* env, const DataPtr& data, int flags)
{
if ( StaticSize(env) >= 0 )
GenBoundaryCheck(out_cc, env, data);
void CaseType::DoGenParseCode(Output* out_cc, Env* env, const DataPtr& data, int flags) {
if ( StaticSize(env) >= 0 )
GenBoundaryCheck(out_cc, env, data);
bool compute_size_var = false;
bool compute_size_var = false;
if ( ! incremental_input() )
compute_size_var = AddSizeVar(out_cc, env);
if ( ! incremental_input() )
compute_size_var = AddSizeVar(out_cc, env);
out_cc->println("%s = %s;", env->LValue(index_var_), index_expr_->EvalExpr(out_cc, env));
env->SetEvaluated(index_var_);
env->set_in_branch(true);
out_cc->println("switch ( %s )", env->RValue(index_var_));
out_cc->inc_indent();
out_cc->println("{");
bool has_default_case = false;
foreach (i, CaseFieldList, cases_)
{
CaseField* c = *i;
c->GenParseCode(out_cc, env, data, compute_size_var ? size_var() : nullptr);
if ( c->IsDefaultCase() )
has_default_case = true;
}
out_cc->println("%s = %s;", env->LValue(index_var_), index_expr_->EvalExpr(out_cc, env));
env->SetEvaluated(index_var_);
if ( ! has_default_case )
{
out_cc->println("default:");
out_cc->inc_indent();
out_cc->println("throw binpac::ExceptionInvalidCaseIndex(\"%s\", (int64)%s);",
decl_id()->Name(), env->RValue(index_var_));
out_cc->println("break;");
out_cc->dec_indent();
}
out_cc->println("}");
out_cc->dec_indent();
env->set_in_branch(false);
env->set_in_branch(true);
out_cc->println("switch ( %s )", env->RValue(index_var_));
out_cc->inc_indent();
out_cc->println("{");
bool has_default_case = false;
foreach (i, CaseFieldList, cases_) {
CaseField* c = *i;
c->GenParseCode(out_cc, env, data, compute_size_var ? size_var() : nullptr);
if ( c->IsDefaultCase() )
has_default_case = true;
}
if ( compute_size_var )
env->SetEvaluated(size_var());
}
if ( ! has_default_case ) {
out_cc->println("default:");
out_cc->inc_indent();
out_cc->println("throw binpac::ExceptionInvalidCaseIndex(\"%s\", (int64)%s);", decl_id()->Name(),
env->RValue(index_var_));
out_cc->println("break;");
out_cc->dec_indent();
}
out_cc->println("}");
out_cc->dec_indent();
env->set_in_branch(false);
void CaseType::GenDynamicSize(Output* out_cc, Env* env, const DataPtr& data)
{
GenParseCode(out_cc, env, data, 0);
}
if ( compute_size_var )
env->SetEvaluated(size_var());
}
int CaseType::StaticSize(Env* env) const
{
int static_w = -1;
foreach (i, CaseFieldList, cases_)
{
CaseField* c = *i;
int w = c->StaticSize(env);
if ( w < 0 || (static_w >= 0 && w != static_w) )
return -1;
static_w = w;
}
return static_w;
}
void CaseType::GenDynamicSize(Output* out_cc, Env* env, const DataPtr& data) { GenParseCode(out_cc, env, data, 0); }
void CaseType::SetBoundaryChecked()
{
Type::SetBoundaryChecked();
foreach (i, CaseFieldList, cases_)
{
CaseField* c = *i;
c->SetBoundaryChecked();
}
}
int CaseType::StaticSize(Env* env) const {
int static_w = -1;
foreach (i, CaseFieldList, cases_) {
CaseField* c = *i;
int w = c->StaticSize(env);
if ( w < 0 || (static_w >= 0 && w != static_w) )
return -1;
static_w = w;
}
return static_w;
}
void CaseType::DoMarkIncrementalInput()
{
foreach (i, CaseFieldList, cases_)
{
CaseField* c = *i;
c->type()->MarkIncrementalInput();
}
}
void CaseType::SetBoundaryChecked() {
Type::SetBoundaryChecked();
foreach (i, CaseFieldList, cases_) {
CaseField* c = *i;
c->SetBoundaryChecked();
}
}
bool CaseType::ByteOrderSensitive() const
{
foreach (i, CaseFieldList, cases_)
{
CaseField* c = *i;
if ( c->RequiresByteOrder() )
return true;
}
return false;
}
void CaseType::DoMarkIncrementalInput() {
foreach (i, CaseFieldList, cases_) {
CaseField* c = *i;
c->type()->MarkIncrementalInput();
}
}
bool CaseType::ByteOrderSensitive() const {
foreach (i, CaseFieldList, cases_) {
CaseField* c = *i;
if ( c->RequiresByteOrder() )
return true;
}
return false;
}
CaseField::CaseField(ExprList* index, ID* id, Type* type)
: Field(CASE_FIELD, TYPE_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, id, type), index_(index)
{
ASSERT(type_);
type_->set_value_var(id, MEMBER_VAR);
case_type_ = nullptr;
index_var_ = nullptr;
}
: Field(CASE_FIELD, TYPE_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, id, type), index_(index) {
ASSERT(type_);
type_->set_value_var(id, MEMBER_VAR);
case_type_ = nullptr;
index_var_ = nullptr;
}
CaseField::~CaseField()
{
delete_list(ExprList, index_);
}
CaseField::~CaseField() { delete_list(ExprList, index_); }
void GenCaseStr(ExprList* index_list, Output* out_cc, Env* env, Type* switch_type)
{
if ( index_list )
{
foreach (i, ExprList, index_list)
{
Expr* index_expr = *i;
void GenCaseStr(ExprList* index_list, Output* out_cc, Env* env, Type* switch_type) {
if ( index_list ) {
foreach (i, ExprList, index_list) {
Expr* index_expr = *i;
Type* case_type = index_expr->DataType(env);
Type* case_type = index_expr->DataType(env);
if ( case_type->tot() == Type::BUILTIN && case_type->StaticSize(env) > 4 )
throw ExceptionInvalidCaseSizeExpr(index_expr);
if ( case_type->tot() == Type::BUILTIN && case_type->StaticSize(env) > 4 )
throw ExceptionInvalidCaseSizeExpr(index_expr);
int index_const;
if ( ! index_expr->ConstFold(env, &index_const) )
throw ExceptionNonConstExpr(index_expr);
int index_const;
// External C++ types like "int", "bool", "enum"
// all use "int" type internally by default.
int case_type_width = 4;
int switch_type_width = 4;
if ( ! index_expr->ConstFold(env, &index_const) )
throw ExceptionNonConstExpr(index_expr);
if ( switch_type->tot() == Type::BUILTIN )
switch_type_width = switch_type->StaticSize(env);
// External C++ types like "int", "bool", "enum"
// all use "int" type internally by default.
int case_type_width = 4;
int switch_type_width = 4;
if ( case_type->tot() == Type::BUILTIN )
case_type_width = case_type->StaticSize(env);
if ( switch_type->tot() == Type::BUILTIN )
switch_type_width = switch_type->StaticSize(env);
if ( case_type_width > switch_type_width )
{
BuiltInType* st = (BuiltInType*)switch_type;
if ( case_type->tot() == Type::BUILTIN )
case_type_width = case_type->StaticSize(env);
if ( switch_type_width == 1 )
{
if ( st->bit_type() == BuiltInType::INT8 )
{
if ( index_const < std::numeric_limits<int8_t>::min() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
if ( index_const > std::numeric_limits<int8_t>::max() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
}
else
{
if ( index_const < std::numeric_limits<uint8_t>::min() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
if ( index_const > std::numeric_limits<uint8_t>::max() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
}
}
else if ( switch_type_width == 2 )
{
if ( st->bit_type() == BuiltInType::INT16 )
{
if ( index_const < std::numeric_limits<int16_t>::min() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
if ( index_const > std::numeric_limits<int16_t>::max() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
}
else
{
if ( index_const < std::numeric_limits<uint16_t>::min() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
if ( index_const > std::numeric_limits<uint16_t>::max() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
}
}
}
if ( case_type_width > switch_type_width ) {
BuiltInType* st = (BuiltInType*)switch_type;
// We're always using "int" for storage, so ok to just
// cast into the type used by the switch statement since
// some unsafe stuff is already checked above.
out_cc->println("case ((%s) %d):", switch_type->DataTypeStr().c_str(), index_const);
}
}
else
{
out_cc->println("default:");
}
}
if ( switch_type_width == 1 ) {
if ( st->bit_type() == BuiltInType::INT8 ) {
if ( index_const < std::numeric_limits<int8_t>::min() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
if ( index_const > std::numeric_limits<int8_t>::max() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
}
else {
if ( index_const < std::numeric_limits<uint8_t>::min() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
if ( index_const > std::numeric_limits<uint8_t>::max() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
}
}
else if ( switch_type_width == 2 ) {
if ( st->bit_type() == BuiltInType::INT16 ) {
if ( index_const < std::numeric_limits<int16_t>::min() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
if ( index_const > std::numeric_limits<int16_t>::max() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
}
else {
if ( index_const < std::numeric_limits<uint16_t>::min() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
if ( index_const > std::numeric_limits<uint16_t>::max() )
throw ExceptionInvalidCaseLimitExpr(index_expr);
}
}
else {
assert(0);
}
}
void CaseField::Prepare(Env* env)
{
ASSERT(index_var_);
Field::Prepare(env);
}
// We're always using "int" for storage, so ok to just
// cast into the type used by the switch statement since
// some unsafe stuff is already checked above.
out_cc->println("case ((%s) %d):", switch_type->DataTypeStr().c_str(), index_const);
}
}
else {
out_cc->println("default:");
}
}
void CaseField::GenPubDecls(Output* out_h, Env* env)
{
if ( ! ((flags_ & PUBLIC_READABLE) && (flags_ & CLASS_MEMBER)) )
return;
void CaseField::Prepare(Env* env) {
ASSERT(index_var_);
Field::Prepare(env);
}
// Skip type "empty"
if ( type_->DataTypeStr().empty() )
return;
void CaseField::GenPubDecls(Output* out_h, Env* env) {
if ( ! ((flags_ & PUBLIC_READABLE) && (flags_ & CLASS_MEMBER)) )
return;
out_h->println("%s %s const", type_->DataTypeConstRefStr().c_str(), env->RValue(id_));
// Skip type "empty"
if ( type_->DataTypeStr().empty() )
return;
out_h->inc_indent();
out_h->println("{");
out_h->println("%s %s const", type_->DataTypeConstRefStr().c_str(), env->RValue(id_));
if ( ! index_ )
out_h->println("return %s;", lvalue());
else
{
out_h->println("switch ( %s )", env->RValue(index_var_));
out_h->inc_indent();
out_h->println("{");
GenCaseStr(index_, out_h, env, case_type()->IndexExpr()->DataType(env));
out_h->inc_indent();
out_h->println("break; // OK");
out_h->dec_indent();
out_h->inc_indent();
out_h->println("{");
out_h->println("default:");
out_h->inc_indent();
out_h->println("throw binpac::ExceptionInvalidCase(\"%s\", (int64)%s, \"%s\");",
id_->LocName(), env->RValue(index_var_), OrigExprList(index_).c_str());
out_h->println("break;");
out_h->dec_indent();
if ( ! index_ )
out_h->println("return %s;", lvalue());
else {
out_h->println("switch ( %s )", env->RValue(index_var_));
out_h->inc_indent();
out_h->println("{");
GenCaseStr(index_, out_h, env, case_type()->IndexExpr()->DataType(env));
out_h->inc_indent();
out_h->println("break; // OK");
out_h->dec_indent();
out_h->println("}");
out_h->dec_indent();
out_h->println("default:");
out_h->inc_indent();
out_h->println("throw binpac::ExceptionInvalidCase(\"%s\", (int64)%s, \"%s\");", id_->LocName(),
env->RValue(index_var_), OrigExprList(index_).c_str());
out_h->println("break;");
out_h->dec_indent();
out_h->println("return %s;", lvalue());
}
out_h->println("}");
out_h->dec_indent();
out_h->println("}");
out_h->dec_indent();
}
out_h->println("return %s;", lvalue());
}
void CaseField::GenInitCode(Output* out_cc, Env* env)
{
// GenCaseStr(index_, out_cc, env);
// out_cc->inc_indent();
// out_cc->println("{");
// out_cc->println("// Initialize \"%s\"", id_->Name());
type_->GenInitCode(out_cc, env);
// out_cc->println("}");
// out_cc->println("break;");
// out_cc->dec_indent();
}
out_h->println("}");
out_h->dec_indent();
}
void CaseField::GenCleanUpCode(Output* out_cc, Env* env)
{
GenCaseStr(index_, out_cc, env, case_type()->IndexExpr()->DataType(env));
out_cc->inc_indent();
out_cc->println("// Clean up \"%s\"", id_->Name());
out_cc->println("{");
if ( ! anonymous_field() )
type_->GenCleanUpCode(out_cc, env);
out_cc->println("}");
out_cc->println("break;");
out_cc->dec_indent();
}
void CaseField::GenInitCode(Output* out_cc, Env* env) {
// GenCaseStr(index_, out_cc, env);
// out_cc->inc_indent();
// out_cc->println("{");
// out_cc->println("// Initialize \"%s\"", id_->Name());
type_->GenInitCode(out_cc, env);
// out_cc->println("}");
// out_cc->println("break;");
// out_cc->dec_indent();
}
void CaseField::GenParseCode(Output* out_cc, Env* env, const DataPtr& data, const ID* size_var)
{
GenCaseStr(index_, out_cc, env, case_type()->IndexExpr()->DataType(env));
out_cc->inc_indent();
out_cc->println("// Parse \"%s\"", id_->Name());
out_cc->println("{");
void CaseField::GenCleanUpCode(Output* out_cc, Env* env) {
GenCaseStr(index_, out_cc, env, case_type()->IndexExpr()->DataType(env));
out_cc->inc_indent();
out_cc->println("// Clean up \"%s\"", id_->Name());
out_cc->println("{");
if ( ! anonymous_field() )
type_->GenCleanUpCode(out_cc, env);
out_cc->println("}");
out_cc->println("break;");
out_cc->dec_indent();
}
{
Env case_env(env, this);
void CaseField::GenParseCode(Output* out_cc, Env* env, const DataPtr& data, const ID* size_var) {
GenCaseStr(index_, out_cc, env, case_type()->IndexExpr()->DataType(env));
out_cc->inc_indent();
out_cc->println("// Parse \"%s\"", id_->Name());
out_cc->println("{");
type_->GenPreParsing(out_cc, &case_env);
type_->GenParseCode(out_cc, &case_env, data, 0);
if ( size_var )
{
out_cc->println("%s = %s;", case_env.LValue(size_var),
type_->DataSize(out_cc, &case_env, data).c_str());
}
if ( type_->incremental_input() )
{
ASSERT(case_type()->parsing_complete_var());
out_cc->println("%s = %s;", case_env.LValue(case_type()->parsing_complete_var()),
case_env.RValue(type_->parsing_complete_var()));
}
out_cc->println("}");
}
{
Env case_env(env, this);
out_cc->println("break;");
out_cc->dec_indent();
}
type_->GenPreParsing(out_cc, &case_env);
type_->GenParseCode(out_cc, &case_env, data, 0);
if ( size_var ) {
out_cc->println("%s = %s;", case_env.LValue(size_var), type_->DataSize(out_cc, &case_env, data).c_str());
}
if ( type_->incremental_input() ) {
ASSERT(case_type()->parsing_complete_var());
out_cc->println("%s = %s;", case_env.LValue(case_type()->parsing_complete_var()),
case_env.RValue(type_->parsing_complete_var()));
}
out_cc->println("}");
}
bool CaseField::DoTraverse(DataDepVisitor* visitor)
{
return Field::DoTraverse(visitor) && type()->Traverse(visitor);
}
out_cc->println("break;");
out_cc->dec_indent();
}
bool CaseField::RequiresAnalyzerContext() const
{
return Field::RequiresAnalyzerContext() || type()->RequiresAnalyzerContext();
}
bool CaseField::DoTraverse(DataDepVisitor* visitor) { return Field::DoTraverse(visitor) && type()->Traverse(visitor); }
bool CaseField::RequiresAnalyzerContext() const {
return Field::RequiresAnalyzerContext() || type()->RequiresAnalyzerContext();
}

View file

@ -6,92 +6,90 @@
#include "pac_id.h"
#include "pac_type.h"
class CaseType : public Type
{
class CaseType : public Type {
public:
CaseType(Expr* index, CaseFieldList* cases);
~CaseType() override;
CaseType(Expr* index, CaseFieldList* cases);
~CaseType() override;
void AddCaseField(CaseField* f);
void AddCaseField(CaseField* f);
bool DefineValueVar() const override;
string DataTypeStr() const override;
string DefaultValue() const override;
bool DefineValueVar() const override;
string DataTypeStr() const override;
string DefaultValue() const override;
void Prepare(Env* env, int flags) override;
void Prepare(Env* env, int flags) override;
void GenPubDecls(Output* out, Env* env) override;
void GenPrivDecls(Output* out, Env* env) override;
void GenPubDecls(Output* out, Env* env) override;
void GenPrivDecls(Output* out, Env* env) override;
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
int StaticSize(Env* env) const override;
int StaticSize(Env* env) const override;
void SetBoundaryChecked() override;
void SetBoundaryChecked() override;
Type* ValueType() const;
Type* ValueType() const;
Expr* IndexExpr() const { return index_expr_; }
Expr* IndexExpr() const { return index_expr_; }
bool IsPointerType() const override { return ValueType()->IsPointerType(); }
bool IsPointerType() const override { return ValueType()->IsPointerType(); }
protected:
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
Type* DoClone() const override { return nullptr; }
void DoMarkIncrementalInput() override;
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
Type* DoClone() const override { return nullptr; }
void DoMarkIncrementalInput() override;
bool ByteOrderSensitive() const override;
bool ByteOrderSensitive() const override;
Expr* index_expr_;
ID* index_var_;
CaseFieldList* cases_;
Expr* index_expr_;
ID* index_var_;
CaseFieldList* cases_;
typedef map<const ID*, CaseField*, ID_ptr_cmp> member_map_t;
member_map_t member_map_;
};
typedef map<const ID*, CaseField*, ID_ptr_cmp> member_map_t;
member_map_t member_map_;
};
class CaseField : public Field
{
class CaseField : public Field {
public:
CaseField(ExprList* index, ID* id, Type* type);
~CaseField() override;
CaseField(ExprList* index, ID* id, Type* type);
~CaseField() override;
CaseType* case_type() const { return case_type_; }
void set_case_type(CaseType* t) { case_type_ = t; }
CaseType* case_type() const { return case_type_; }
void set_case_type(CaseType* t) { case_type_ = t; }
ExprList* index() const { return index_; }
ExprList* index() const { return index_; }
const char* lvalue() const { return type_->lvalue(); }
const char* lvalue() const { return type_->lvalue(); }
const char* CaseStr(Env* env);
void set_index_var(const ID* var) { index_var_ = var; }
const char* CaseStr(Env* env);
void set_index_var(const ID* var) { index_var_ = var; }
void Prepare(Env* env) override;
void Prepare(Env* env) override;
void GenPubDecls(Output* out, Env* env) override;
void GenPubDecls(Output* out, Env* env) override;
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
void GenParseCode(Output* out, Env* env, const DataPtr& data, const ID* size_var);
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
void GenParseCode(Output* out, Env* env, const DataPtr& data, const ID* size_var);
int StaticSize(Env* env) const { return type_->StaticSize(env); }
int StaticSize(Env* env) const { return type_->StaticSize(env); }
bool IsDefaultCase() const { return ! index_; }
void SetBoundaryChecked() { type_->SetBoundaryChecked(); }
bool IsDefaultCase() const { return ! index_; }
void SetBoundaryChecked() { type_->SetBoundaryChecked(); }
bool RequiresByteOrder() const { return type_->RequiresByteOrder(); }
bool RequiresAnalyzerContext() const override;
bool RequiresByteOrder() const { return type_->RequiresByteOrder(); }
bool RequiresAnalyzerContext() const override;
protected:
bool DoTraverse(DataDepVisitor* visitor) override;
bool DoTraverse(DataDepVisitor* visitor) override;
protected:
CaseType* case_type_;
ExprList* index_;
const ID* index_var_;
};
CaseType* case_type_;
ExprList* index_;
const ID* index_var_;
};
// Generate a list of "case X:" lines from index_list. Each index
// expression must be constant foldable.

View file

@ -24,58 +24,54 @@ typedef vector<CVariable*> CVariableList;
//
// 3. We do not check repeated names.
class CClass
{
class CClass {
public:
CClass(const string& class_name);
CClass(const string& class_name);
void AddMember(CClassMember* member);
void AddMethod(CClassMember* method);
void AddMember(CClassMember* member);
void AddMethod(CClassMember* method);
void GenForwardDeclaration(Output* out_h);
void GenCode(Output* out_h, Output* out_cc);
void GenForwardDeclaration(Output* out_h);
void GenCode(Output* out_h, Output* out_cc);
protected:
string class_name_;
CClassMemberList* members_;
CClassMethodList* methods_;
};
string class_name_;
CClassMemberList* members_;
CClassMethodList* methods_;
};
class CVariable
{
class CVariable {
public:
CClassMember(const string& name, CType* type);
CClassMember(const string& name, CType* type);
string name() const { return name_; }
CType* type() const { return type_; }
string name() const { return name_; }
CType* type() const { return type_; }
protected:
string name_;
CType* type_;
};
string name_;
CType* type_;
};
class CClassMember
{
class CClassMember {
public:
CClassMember(CVariable* var);
void GenCode(Output* out_h, Output* out_cc);
CClassMember(CVariable* var);
void GenCode(Output* out_h, Output* out_cc);
string decl() const;
string decl() const;
protected:
CVariable* var_;
};
CVariable* var_;
};
class CClassMethod
{
class CClassMethod {
public:
CClassMethod(CVariable* var, CVariableList* params);
CClassMethod(CVariable* var, CVariableList* params);
string decl() const;
string decl() const;
protected:
CVariable* var_;
CVariableList* params_;
};
CVariable* var_;
CVariableList* params_;
};
#endif // pac_cclass_h

View file

@ -20,25 +20,23 @@ extern int line_number;
// representing language elements -- identifiers, types, expressions,
// etc.
class Object
{
class Object {
public:
Object()
{
filename = input_filename;
line_num = line_number;
location = strfmt("%s:%d", filename.c_str(), line_number);
}
Object() {
filename = input_filename;
line_num = line_number;
location = strfmt("%s:%d", filename.c_str(), line_number);
}
~Object() { }
~Object() {}
const char* Location() const { return location.c_str(); }
const char* Location() const { return location.c_str(); }
protected:
string filename;
int line_num;
string location;
};
string filename;
int line_num;
string location;
};
class ActionParam;
class ActionParamType;
@ -103,17 +101,17 @@ typedef vector<Param*> ParamList;
typedef vector<RecordField*> RecordFieldList;
typedef vector<StateVar*> StateVarList;
#define foreach(i, ct, pc) \
if ( pc ) \
for ( ct::iterator i = (pc)->begin(); i != (pc)->end(); ++i )
#define foreach(i, ct, pc) \
if ( pc ) \
for ( ct::iterator i = (pc)->begin(); i != (pc)->end(); ++i )
#define delete_list(ct, pc) \
{ \
foreach (delete_list_i, ct, pc) \
delete *delete_list_i; \
delete pc; \
pc = 0; \
}
#define delete_list(ct, pc) \
{ \
foreach (delete_list_i, ct, pc) \
delete *delete_list_i; \
delete pc; \
pc = 0; \
}
// Constants
const char* const kComputeFrameLength = "compute_frame_length";

View file

@ -11,141 +11,123 @@
#include "pac_type.h"
ConnDecl::ConnDecl(ID* conn_id, ParamList* params, AnalyzerElementList* elemlist)
: AnalyzerDecl(conn_id, CONN, params)
{
flows_[0] = flows_[1] = nullptr;
AddElements(elemlist);
data_type_ = new ParameterizedType(conn_id->clone(), nullptr);
}
: AnalyzerDecl(conn_id, CONN, params) {
flows_[0] = flows_[1] = nullptr;
AddElements(elemlist);
data_type_ = new ParameterizedType(conn_id->clone(), nullptr);
}
ConnDecl::~ConnDecl()
{
delete flows_[0];
delete flows_[1];
delete data_type_;
}
ConnDecl::~ConnDecl() {
delete flows_[0];
delete flows_[1];
delete data_type_;
}
void ConnDecl::AddBaseClass(vector<string>* base_classes) const
{
base_classes->push_back("binpac::ConnectionAnalyzer");
}
void ConnDecl::AddBaseClass(vector<string>* base_classes) const {
base_classes->push_back("binpac::ConnectionAnalyzer");
}
void ConnDecl::ProcessFlowElement(AnalyzerFlow* flow_elem)
{
int flow_index;
void ConnDecl::ProcessFlowElement(AnalyzerFlow* flow_elem) {
int flow_index;
if ( flow_elem->dir() == AnalyzerFlow::UP )
flow_index = 0;
else
flow_index = 1;
if ( flow_elem->dir() == AnalyzerFlow::UP )
flow_index = 0;
else
flow_index = 1;
if ( flows_[flow_index] )
{
throw Exception(flow_elem,
strfmt("%sflow already defined", flow_index == 0 ? "up" : "down"));
}
if ( flows_[flow_index] ) {
throw Exception(flow_elem, strfmt("%sflow already defined", flow_index == 0 ? "up" : "down"));
}
flows_[flow_index] = flow_elem;
type_->AddField(flow_elem->flow_field());
}
flows_[flow_index] = flow_elem;
type_->AddField(flow_elem->flow_field());
}
void ConnDecl::ProcessDataUnitElement(AnalyzerDataUnit* dataunit_elem)
{
throw Exception(dataunit_elem, "dataunit should be defined in only a flow declaration");
}
void ConnDecl::ProcessDataUnitElement(AnalyzerDataUnit* dataunit_elem) {
throw Exception(dataunit_elem, "dataunit should be defined in only a flow declaration");
}
void ConnDecl::Prepare()
{
AnalyzerDecl::Prepare();
void ConnDecl::Prepare() {
AnalyzerDecl::Prepare();
flows_[0]->flow_decl()->set_conn_decl(this);
flows_[1]->flow_decl()->set_conn_decl(this);
}
flows_[0]->flow_decl()->set_conn_decl(this);
flows_[1]->flow_decl()->set_conn_decl(this);
}
void ConnDecl::GenPubDecls(Output* out_h, Output* out_cc)
{
AnalyzerDecl::GenPubDecls(out_h, out_cc);
}
void ConnDecl::GenPubDecls(Output* out_h, Output* out_cc) { AnalyzerDecl::GenPubDecls(out_h, out_cc); }
void ConnDecl::GenPrivDecls(Output* out_h, Output* out_cc)
{
AnalyzerDecl::GenPrivDecls(out_h, out_cc);
}
void ConnDecl::GenPrivDecls(Output* out_h, Output* out_cc) { AnalyzerDecl::GenPrivDecls(out_h, out_cc); }
void ConnDecl::GenEOFFunc(Output* out_h, Output* out_cc)
{
string proto = strfmt("%s(bool is_orig)", kFlowEOF);
void ConnDecl::GenEOFFunc(Output* out_h, Output* out_cc) {
string proto = strfmt("%s(bool is_orig)", kFlowEOF);
out_h->println("void %s;", proto.c_str());
out_h->println("void %s;", proto.c_str());
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("if ( is_orig )");
out_cc->inc_indent();
out_cc->println("%s->%s();", env_->LValue(upflow_id), kFlowEOF);
out_cc->dec_indent();
out_cc->println("else");
out_cc->inc_indent();
out_cc->println("%s->%s();", env_->LValue(downflow_id), kFlowEOF);
out_cc->println("if ( is_orig )");
out_cc->inc_indent();
out_cc->println("%s->%s();", env_->LValue(upflow_id), kFlowEOF);
out_cc->dec_indent();
out_cc->println("else");
out_cc->inc_indent();
out_cc->println("%s->%s();", env_->LValue(downflow_id), kFlowEOF);
foreach (i, AnalyzerHelperList, eof_helpers_)
{
(*i)->GenCode(nullptr, out_cc, this);
}
foreach (i, AnalyzerHelperList, eof_helpers_) {
(*i)->GenCode(nullptr, out_cc, this);
}
out_cc->dec_indent();
out_cc->dec_indent();
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("");
}
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("");
}
void ConnDecl::GenGapFunc(Output* out_h, Output* out_cc)
{
string proto = strfmt("%s(bool is_orig, int gap_length)", kFlowGap);
void ConnDecl::GenGapFunc(Output* out_h, Output* out_cc) {
string proto = strfmt("%s(bool is_orig, int gap_length)", kFlowGap);
out_h->println("void %s;", proto.c_str());
out_h->println("void %s;", proto.c_str());
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("if ( is_orig )");
out_cc->inc_indent();
out_cc->println("%s->%s(gap_length);", env_->LValue(upflow_id), kFlowGap);
out_cc->dec_indent();
out_cc->println("else");
out_cc->inc_indent();
out_cc->println("%s->%s(gap_length);", env_->LValue(downflow_id), kFlowGap);
out_cc->dec_indent();
out_cc->println("if ( is_orig )");
out_cc->inc_indent();
out_cc->println("%s->%s(gap_length);", env_->LValue(upflow_id), kFlowGap);
out_cc->dec_indent();
out_cc->println("else");
out_cc->inc_indent();
out_cc->println("%s->%s(gap_length);", env_->LValue(downflow_id), kFlowGap);
out_cc->dec_indent();
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("");
}
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("");
}
void ConnDecl::GenProcessFunc(Output* out_h, Output* out_cc)
{
string proto = strfmt("%s(bool is_orig, const_byteptr begin, const_byteptr end)", kNewData);
void ConnDecl::GenProcessFunc(Output* out_h, Output* out_cc) {
string proto = strfmt("%s(bool is_orig, const_byteptr begin, const_byteptr end)", kNewData);
out_h->println("void %s;", proto.c_str());
out_h->println("void %s;", proto.c_str());
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("if ( is_orig )");
out_cc->inc_indent();
out_cc->println("%s->%s(begin, end);", env_->LValue(upflow_id), kNewData);
out_cc->dec_indent();
out_cc->println("else");
out_cc->inc_indent();
out_cc->println("%s->%s(begin, end);", env_->LValue(downflow_id), kNewData);
out_cc->dec_indent();
out_cc->println("if ( is_orig )");
out_cc->inc_indent();
out_cc->println("%s->%s(begin, end);", env_->LValue(upflow_id), kNewData);
out_cc->dec_indent();
out_cc->println("else");
out_cc->inc_indent();
out_cc->println("%s->%s(begin, end);", env_->LValue(downflow_id), kNewData);
out_cc->dec_indent();
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("");
}
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("");
}

View file

@ -4,31 +4,30 @@
#include "pac_analyzer.h"
#include "pac_decl.h"
class ConnDecl : public AnalyzerDecl
{
class ConnDecl : public AnalyzerDecl {
public:
ConnDecl(ID* conn_id, ParamList* params, AnalyzerElementList* elemlist);
~ConnDecl() override;
ConnDecl(ID* conn_id, ParamList* params, AnalyzerElementList* elemlist);
~ConnDecl() override;
void Prepare() override;
void Prepare() override;
Type* DataType() const { return data_type_; }
Type* DataType() const { return data_type_; }
protected:
void AddBaseClass(vector<string>* base_classes) const override;
void AddBaseClass(vector<string>* base_classes) const override;
void GenProcessFunc(Output* out_h, Output* out_cc) override;
void GenGapFunc(Output* out_h, Output* out_cc) override;
void GenEOFFunc(Output* out_h, Output* out_cc) override;
void GenProcessFunc(Output* out_h, Output* out_cc) override;
void GenGapFunc(Output* out_h, Output* out_cc) override;
void GenEOFFunc(Output* out_h, Output* out_cc) override;
void GenPubDecls(Output* out_h, Output* out_cc) override;
void GenPrivDecls(Output* out_h, Output* out_cc) override;
void GenPubDecls(Output* out_h, Output* out_cc) override;
void GenPrivDecls(Output* out_h, Output* out_cc) override;
void ProcessFlowElement(AnalyzerFlow* flow_elem) override;
void ProcessDataUnitElement(AnalyzerDataUnit* dataunit_elem) override;
void ProcessFlowElement(AnalyzerFlow* flow_elem) override;
void ProcessDataUnitElement(AnalyzerDataUnit* dataunit_elem) override;
AnalyzerFlow* flows_[2];
Type* data_type_;
};
AnalyzerFlow* flows_[2];
Type* data_type_;
};
#endif // pac_conn_h

View file

@ -12,99 +12,83 @@
#include "pac_utils.h"
ContextField::ContextField(ID* id, Type* type)
: Field(CONTEXT_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, id, type)
{
}
: Field(CONTEXT_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, id, type) {}
AnalyzerContextDecl* AnalyzerContextDecl::current_analyzer_context_ = nullptr;
namespace
{
ParamList* ContextFieldsToParams(ContextFieldList* context_fields)
{
// Convert context fields to parameters
ParamList* params = new ParamList();
foreach (i, ContextFieldList, context_fields)
{
ContextField* f = *i;
params->push_back(new Param(f->id()->clone(), f->type()));
}
return params;
}
} // namespace private
namespace {
ParamList* ContextFieldsToParams(ContextFieldList* context_fields) {
// Convert context fields to parameters
ParamList* params = new ParamList();
foreach (i, ContextFieldList, context_fields) {
ContextField* f = *i;
params->push_back(new Param(f->id()->clone(), f->type()));
}
return params;
}
} // namespace
AnalyzerContextDecl::AnalyzerContextDecl(ID* id, ContextFieldList* context_fields)
: TypeDecl(new ID(strfmt("Context%s", id->Name())), ContextFieldsToParams(context_fields),
new DummyType())
{
context_name_id_ = id;
if ( current_analyzer_context_ != nullptr )
{
throw Exception(this, strfmt("multiple declaration of analyzer context; "
"the previous one is `%s'",
current_analyzer_context_->id()->Name()));
}
else
current_analyzer_context_ = this;
: TypeDecl(new ID(strfmt("Context%s", id->Name())), ContextFieldsToParams(context_fields), new DummyType()) {
context_name_id_ = id;
if ( current_analyzer_context_ != nullptr ) {
throw Exception(this, strfmt("multiple declaration of analyzer context; "
"the previous one is `%s'",
current_analyzer_context_->id()->Name()));
}
else
current_analyzer_context_ = this;
context_fields_ = context_fields;
context_fields_ = context_fields;
param_type_ = new ParameterizedType(id_->clone(), nullptr);
param_type_ = new ParameterizedType(id_->clone(), nullptr);
flow_buffer_added_ = false;
flow_buffer_added_ = false;
DEBUG_MSG("Context type: %s\n", param_type()->class_name().c_str());
}
DEBUG_MSG("Context type: %s\n", param_type()->class_name().c_str());
}
AnalyzerContextDecl::~AnalyzerContextDecl()
{
delete context_name_id_;
delete param_type_;
delete_list(ContextFieldList, context_fields_);
}
AnalyzerContextDecl::~AnalyzerContextDecl() {
delete context_name_id_;
delete param_type_;
delete_list(ContextFieldList, context_fields_);
}
void AnalyzerContextDecl::GenForwardDeclaration(Output* out_h)
{
GenNamespaceBegin(out_h);
TypeDecl::GenForwardDeclaration(out_h);
}
void AnalyzerContextDecl::GenForwardDeclaration(Output* out_h) {
GenNamespaceBegin(out_h);
TypeDecl::GenForwardDeclaration(out_h);
}
void AnalyzerContextDecl::GenCode(Output* out_h, Output* out_cc)
{
GenNamespaceBegin(out_h);
GenNamespaceBegin(out_cc);
TypeDecl::GenCode(out_h, out_cc);
}
void AnalyzerContextDecl::GenCode(Output* out_h, Output* out_cc) {
GenNamespaceBegin(out_h);
GenNamespaceBegin(out_cc);
TypeDecl::GenCode(out_h, out_cc);
}
void AnalyzerContextDecl::GenNamespaceBegin(Output* out) const
{
out->println("namespace %s {", context_name_id()->Name());
}
void AnalyzerContextDecl::GenNamespaceBegin(Output* out) const {
out->println("namespace %s {", context_name_id()->Name());
}
void AnalyzerContextDecl::GenNamespaceEnd(Output* out) const
{
out->println("} // namespace %s", context_name_id()->Name());
}
void AnalyzerContextDecl::GenNamespaceEnd(Output* out) const {
out->println("} // namespace %s", context_name_id()->Name());
}
void AnalyzerContextDecl::AddFlowBuffer()
{
if ( flow_buffer_added_ )
return;
void AnalyzerContextDecl::AddFlowBuffer() {
if ( flow_buffer_added_ )
return;
AddParam(new Param(new ID(kFlowBufferVar), FlowDecl::flow_buffer_type()->Clone()));
AddParam(new Param(new ID(kFlowBufferVar), FlowDecl::flow_buffer_type()->Clone()));
flow_buffer_added_ = true;
}
flow_buffer_added_ = true;
}
string AnalyzerContextDecl::mb_buffer(Env* env)
{
// A hack. The orthodox way would be to build an Expr of
// context.flow_buffer_var, and then EvalExpr.
return strfmt("%s->%s()", env->RValue(analyzer_context_id), kFlowBufferVar);
}
string AnalyzerContextDecl::mb_buffer(Env* env) {
// A hack. The orthodox way would be to build an Expr of
// context.flow_buffer_var, and then EvalExpr.
return strfmt("%s->%s()", env->RValue(analyzer_context_id), kFlowBufferVar);
}
Type* DummyType::DoClone() const
{
// Fields will be copied in Type::Clone().
return new DummyType();
}
Type* DummyType::DoClone() const {
// Fields will be copied in Type::Clone().
return new DummyType();
}

View file

@ -23,84 +23,75 @@
// accessed as members of the cookie, such as
// ``binpac_context.connection''.
class ContextField : public Field
{
class ContextField : public Field {
public:
ContextField(ID* id, Type* type);
};
ContextField(ID* id, Type* type);
};
class AnalyzerContextDecl : public TypeDecl
{
class AnalyzerContextDecl : public TypeDecl {
public:
AnalyzerContextDecl(ID* id, ContextFieldList* context_fields);
~AnalyzerContextDecl() override;
AnalyzerContextDecl(ID* id, ContextFieldList* context_fields);
~AnalyzerContextDecl() override;
void AddFlowBuffer();
void AddFlowBuffer();
const ID* context_name_id() const { return context_name_id_; }
const ID* context_name_id() const { return context_name_id_; }
// The type of analyzer context as a parameter
ParameterizedType* param_type() const { return param_type_; }
// The type of analyzer context as a parameter
ParameterizedType* param_type() const { return param_type_; }
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
void GenNamespaceBegin(Output* out) const;
void GenNamespaceEnd(Output* out) const;
void GenNamespaceBegin(Output* out) const;
void GenNamespaceEnd(Output* out) const;
private:
ID* context_name_id_;
ContextFieldList* context_fields_;
ParameterizedType* param_type_;
bool flow_buffer_added_;
ID* context_name_id_;
ContextFieldList* context_fields_;
ParameterizedType* param_type_;
bool flow_buffer_added_;
// static members
// static members
public:
static AnalyzerContextDecl* current_analyzer_context() { return current_analyzer_context_; }
static AnalyzerContextDecl* current_analyzer_context() { return current_analyzer_context_; }
static string mb_buffer(Env* env);
static string mb_buffer(Env* env);
private:
static AnalyzerContextDecl* current_analyzer_context_;
};
static AnalyzerContextDecl* current_analyzer_context_;
};
class DummyType : public Type
{
class DummyType : public Type {
public:
DummyType() : Type(DUMMY) { }
DummyType() : Type(DUMMY) {}
bool DefineValueVar() const override { return false; }
string DataTypeStr() const override
{
ASSERT(0);
return "";
}
bool DefineValueVar() const override { return false; }
string DataTypeStr() const override {
ASSERT(0);
return "";
}
int StaticSize(Env* env) const override
{
ASSERT(0);
return -1;
}
int StaticSize(Env* env) const override {
ASSERT(0);
return -1;
}
bool ByteOrderSensitive() const override { return false; }
bool ByteOrderSensitive() const override { return false; }
bool IsPointerType() const override
{
ASSERT(0);
return false;
}
bool IsPointerType() const override {
ASSERT(0);
return false;
}
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override
{
ASSERT(0);
}
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override { ASSERT(0); }
// Generate code for computing the dynamic size of the type
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override { ASSERT(0); }
// Generate code for computing the dynamic size of the type
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override { ASSERT(0); }
protected:
Type* DoClone() const override;
void DoMarkIncrementalInput() override { ASSERT(0); }
};
Type* DoClone() const override;
void DoMarkIncrementalInput() override { ASSERT(0); }
};
#endif // pac_context_h

View file

@ -3,129 +3,108 @@
#include "pac_dbg.h"
#include "pac_exception.h"
namespace
{
namespace {
class EscapeException
{
class EscapeException {
public:
explicit EscapeException(const string& s) { msg_ = s; }
explicit EscapeException(const string& s) { msg_ = s; }
const string& msg() const { return msg_; }
const string& msg() const { return msg_; }
private:
string msg_;
};
string msg_;
};
// Copied from util.cc of Zeek
int expand_escape(const char*& s)
{
switch ( *(s++) )
{
case 'b':
return '\b';
case 'f':
return '\f';
case 'n':
return '\n';
case 'r':
return '\r';
case 't':
return '\t';
case 'a':
return '\a';
case 'v':
return '\v';
int expand_escape(const char*& s) {
switch ( *(s++) ) {
case 'b': return '\b';
case 'f': return '\f';
case 'n': return '\n';
case 'r': return '\r';
case 't': return '\t';
case 'a': return '\a';
case 'v': return '\v';
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
{ // \<octal>{1,3}
--s; // put back the first octal digit
const char* start = s;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7': { // \<octal>{1,3}
--s; // put back the first octal digit
const char* start = s;
// Don't increment inside loop control
// because if isdigit() is a macro it might
// expand into multiple increments ...
// Don't increment inside loop control
// because if isdigit() is a macro it might
// expand into multiple increments ...
// Here we define a maximum length for escape sequence
// to allow easy handling of string like: "^H0" as
// "\0100".
// Here we define a maximum length for escape sequence
// to allow easy handling of string like: "^H0" as
// "\0100".
for ( int len = 0; len < 3 && isascii(*s) && isdigit(*s); ++s, ++len )
;
for ( int len = 0; len < 3 && isascii(*s) && isdigit(*s); ++s, ++len )
;
int result;
if ( sscanf(start, "%3o", &result) != 1 )
throw EscapeException(strfmt("bad octal escape: \"%s", start));
int result;
if ( sscanf(start, "%3o", &result) != 1 )
throw EscapeException(strfmt("bad octal escape: \"%s", start));
return result;
}
return result;
}
case 'x':
{ /* \x<hex> */
const char* start = s;
case 'x': { /* \x<hex> */
const char* start = s;
// Look at most 2 characters, so that "\x0ddir" -> "^Mdir".
for ( int len = 0; len < 2 && isascii(*s) && isxdigit(*s); ++s, ++len )
;
// Look at most 2 characters, so that "\x0ddir" -> "^Mdir".
for ( int len = 0; len < 2 && isascii(*s) && isxdigit(*s); ++s, ++len )
;
int result;
if ( sscanf(start, "%2x", &result) != 1 )
throw EscapeException(strfmt("bad hexadecimal escape: \"%s", start));
int result;
if ( sscanf(start, "%2x", &result) != 1 )
throw EscapeException(strfmt("bad hexadecimal escape: \"%s", start));
return result;
}
return result;
}
default:
return s[-1];
}
}
default: return s[-1];
}
}
} // private namespace
} // namespace
ConstString::ConstString(const string& s) : str_(s)
{
// Copied from scan.l of Zeek
try
{
const char* text = str_.c_str();
int len = strlen(text) + 1;
int i = 0;
ConstString::ConstString(const string& s) : str_(s) {
// Copied from scan.l of Zeek
try {
const char* text = str_.c_str();
int len = strlen(text) + 1;
int i = 0;
char* new_s = new char[len];
char* new_s = new char[len];
// Skip leading quote.
for ( ++text; *text; ++text )
{
if ( *text == '\\' )
{
++text; // skip '\'
new_s[i++] = expand_escape(text);
--text; // point to end of sequence
}
else
{
new_s[i++] = *text;
}
}
ASSERT(i < len);
// Skip leading quote.
for ( ++text; *text; ++text ) {
if ( *text == '\\' ) {
++text; // skip '\'
new_s[i++] = expand_escape(text);
--text; // point to end of sequence
}
else {
new_s[i++] = *text;
}
}
ASSERT(i < len);
// Get rid of trailing quote.
ASSERT(new_s[i - 1] == '"');
new_s[i - 1] = '\0';
// Get rid of trailing quote.
ASSERT(new_s[i - 1] == '"');
new_s[i - 1] = '\0';
unescaped_ = new_s;
delete[] new_s;
}
catch ( EscapeException const& e )
{
// Throw again with the object
throw Exception(this, e.msg().c_str());
}
}
unescaped_ = new_s;
delete[] new_s;
} catch ( EscapeException const& e ) {
// Throw again with the object
throw Exception(this, e.msg().c_str());
}
}

View file

@ -3,21 +3,20 @@
#include "pac_common.h"
class ConstString : public Object
{
class ConstString : public Object {
public:
ConstString(const string& s);
ConstString(const string& s);
// The string in its escaped form, with surrounding '"'s
const string& str() const { return str_; }
const char* c_str() const { return str_.c_str(); }
// The string in its escaped form, with surrounding '"'s
const string& str() const { return str_; }
const char* c_str() const { return str_.c_str(); }
// The unescaped string, without surrounding '"'s
const string& unescaped() const { return unescaped_; }
// The unescaped string, without surrounding '"'s
const string& unescaped() const { return unescaped_; }
private:
string str_;
string unescaped_;
};
string str_;
string unescaped_;
};
#endif // pac_cstr_h

View file

@ -1,21 +1,13 @@
#include "pac_ctype.h"
string CType::DeclareInstance(const string& var) const
{
return strfmt("%s %s", name().c_str(), var.c_str());
}
string CType::DeclareInstance(const string& var) const { return strfmt("%s %s", name().c_str(), var.c_str()); }
string CType::DeclareConstReference(const string& var) const
{
return strfmt("%s const &%s", name().c_str(), var.c_str());
}
string CType::DeclareConstReference(const string& var) const {
return strfmt("%s const &%s", name().c_str(), var.c_str());
}
string CType::DeclareConstPointer(const string& var) const
{
return strfmt("%s const *%s", name().c_str(), var.c_str());
}
string CType::DeclareConstPointer(const string& var) const {
return strfmt("%s const *%s", name().c_str(), var.c_str());
}
string CType::DeclarePointer(const string& var) const
{
return strfmt("%s *%s", name().c_str(), var.c_str());
}
string CType::DeclarePointer(const string& var) const { return strfmt("%s *%s", name().c_str(), var.c_str()); }

View file

@ -4,20 +4,19 @@
#include "pac_common.h"
// Represents a C++ type
class CType
{
class CType {
public:
CType(const string& name);
CType(const string& name);
string name() const { return name_; }
string name() const { return name_; }
string DeclareInstance(const string& var) const;
string DeclareConstReference(const string& var) const;
string DeclareConstPointer(const string& var) const;
string DeclarePointer(const string& var) const;
string DeclareInstance(const string& var) const;
string DeclareConstReference(const string& var) const;
string DeclareConstPointer(const string& var) const;
string DeclarePointer(const string& var) const;
protected:
string name_;
};
string name_;
};
#endif // pac_ctype_h

View file

@ -4,70 +4,51 @@
#include "pac_id.h"
#include "pac_type.h"
DataDepElement::DataDepElement(DDE_Type type) : dde_type_(type), in_traversal(false) { }
DataDepElement::DataDepElement(DDE_Type type) : dde_type_(type), in_traversal(false) {}
bool DataDepElement::Traverse(DataDepVisitor* visitor)
{
// Avoid infinite loop
if ( in_traversal )
return true;
if ( ! visitor->PreProcess(this) )
return false;
bool DataDepElement::Traverse(DataDepVisitor* visitor) {
// Avoid infinite loop
if ( in_traversal )
return true;
if ( ! visitor->PreProcess(this) )
return false;
in_traversal = true;
bool cont = DoTraverse(visitor);
in_traversal = false;
in_traversal = true;
bool cont = DoTraverse(visitor);
in_traversal = false;
if ( ! cont )
return false;
if ( ! visitor->PostProcess(this) )
return false;
return true;
}
if ( ! cont )
return false;
if ( ! visitor->PostProcess(this) )
return false;
return true;
}
Expr* DataDepElement::expr()
{
return static_cast<Expr*>(this);
}
Expr* DataDepElement::expr() { return static_cast<Expr*>(this); }
Type* DataDepElement::type()
{
return static_cast<Type*>(this);
}
Type* DataDepElement::type() { return static_cast<Type*>(this); }
bool RequiresAnalyzerContext::PreProcess(DataDepElement* element)
{
switch ( element->dde_type() )
{
case DataDepElement::EXPR:
ProcessExpr(element->expr());
break;
default:
break;
}
bool RequiresAnalyzerContext::PreProcess(DataDepElement* element) {
switch ( element->dde_type() ) {
case DataDepElement::EXPR: ProcessExpr(element->expr()); break;
default: break;
}
// Continue traversal until we know the answer is 'yes'
return ! requires_analyzer_context_;
}
// Continue traversal until we know the answer is 'yes'
return ! requires_analyzer_context_;
}
bool RequiresAnalyzerContext::PostProcess(DataDepElement* element)
{
return ! requires_analyzer_context_;
}
bool RequiresAnalyzerContext::PostProcess(DataDepElement* element) { return ! requires_analyzer_context_; }
void RequiresAnalyzerContext::ProcessExpr(Expr* expr)
{
if ( expr->expr_type() == Expr::EXPR_ID )
{
requires_analyzer_context_ = (requires_analyzer_context_ ||
*expr->id() == *analyzer_context_id ||
*expr->id() == *context_macro_id);
}
}
void RequiresAnalyzerContext::ProcessExpr(Expr* expr) {
if ( expr->expr_type() == Expr::EXPR_ID ) {
requires_analyzer_context_ =
(requires_analyzer_context_ || *expr->id() == *analyzer_context_id || *expr->id() == *context_macro_id);
}
}
bool RequiresAnalyzerContext::compute(DataDepElement* element)
{
RequiresAnalyzerContext visitor;
element->Traverse(&visitor);
return visitor.requires_analyzer_context_;
}
bool RequiresAnalyzerContext::compute(DataDepElement* element) {
RequiresAnalyzerContext visitor;
element->Traverse(&visitor);
return visitor.requires_analyzer_context_;
}

View file

@ -9,64 +9,60 @@
class DataDepVisitor;
class DataDepElement
{
class DataDepElement {
public:
enum DDE_Type
{
ATTR,
CASEEXPR,
EXPR,
FIELD,
INPUT_BUFFER,
PARAM,
TYPE,
};
enum DDE_Type {
ATTR,
CASEEXPR,
EXPR,
FIELD,
INPUT_BUFFER,
PARAM,
TYPE,
};
DataDepElement(DDE_Type type);
virtual ~DataDepElement() { }
DataDepElement(DDE_Type type);
virtual ~DataDepElement() {}
// Returns whether to continue traversal
bool Traverse(DataDepVisitor* visitor);
// Returns whether to continue traversal
bool Traverse(DataDepVisitor* visitor);
// Returns whether to continue traversal
virtual bool DoTraverse(DataDepVisitor* visitor) = 0;
// Returns whether to continue traversal
virtual bool DoTraverse(DataDepVisitor* visitor) = 0;
DDE_Type dde_type() const { return dde_type_; }
Expr* expr();
Type* type();
DDE_Type dde_type() const { return dde_type_; }
Expr* expr();
Type* type();
protected:
DDE_Type dde_type_;
bool in_traversal;
};
DDE_Type dde_type_;
bool in_traversal;
};
class DataDepVisitor
{
class DataDepVisitor {
public:
virtual ~DataDepVisitor() { }
// Returns whether to continue traversal
virtual bool PreProcess(DataDepElement* element) = 0;
virtual bool PostProcess(DataDepElement* element) = 0;
};
virtual ~DataDepVisitor() {}
// Returns whether to continue traversal
virtual bool PreProcess(DataDepElement* element) = 0;
virtual bool PostProcess(DataDepElement* element) = 0;
};
class RequiresAnalyzerContext : public DataDepVisitor
{
class RequiresAnalyzerContext : public DataDepVisitor {
public:
RequiresAnalyzerContext() : requires_analyzer_context_(false) { }
RequiresAnalyzerContext() : requires_analyzer_context_(false) {}
// Returns whether to continue traversal
bool PreProcess(DataDepElement* element) override;
bool PostProcess(DataDepElement* element) override;
// Returns whether to continue traversal
bool PreProcess(DataDepElement* element) override;
bool PostProcess(DataDepElement* element) override;
bool requires_analyzer_context() const { return requires_analyzer_context_; }
bool requires_analyzer_context() const { return requires_analyzer_context_; }
static bool compute(DataDepElement* element);
static bool compute(DataDepElement* element);
protected:
void ProcessExpr(Expr* expr);
void ProcessExpr(Expr* expr);
bool requires_analyzer_context_;
};
bool requires_analyzer_context_;
};
#endif // pac_datadep_h

View file

@ -5,56 +5,48 @@
#include "pac_output.h"
#include "pac_utils.h"
DataPtr::DataPtr(Env* env, const ID* id, const int offset) : id_(id), offset_(offset)
{
if ( id_ )
{
if ( ! env->Evaluated(id_) )
throw ExceptionIDNotEvaluated(id_);
DataPtr::DataPtr(Env* env, const ID* id, const int offset) : id_(id), offset_(offset) {
if ( id_ ) {
if ( ! env->Evaluated(id_) )
throw ExceptionIDNotEvaluated(id_);
if ( offset_ == 0 )
ptr_expr_ = strfmt("%s", env->RValue(id_));
else
ptr_expr_ = strfmt("(%s + %d)", env->RValue(id_), offset_);
}
else
ptr_expr_ = "(null id)";
}
if ( offset_ == 0 )
ptr_expr_ = strfmt("%s", env->RValue(id_));
else
ptr_expr_ = strfmt("(%s + %d)", env->RValue(id_), offset_);
}
else
ptr_expr_ = "(null id)";
}
int DataPtr::AbsOffset(const ID* base_ptr) const
{
return (id() == base_ptr) ? offset() : -1;
}
int DataPtr::AbsOffset(const ID* base_ptr) const { return (id() == base_ptr) ? offset() : -1; }
char* DataPtr::AbsOffsetExpr(Env* env, const ID* base_ptr) const
{
if ( AbsOffset(base_ptr) >= 0 )
return nfmt("%d", offset());
else
return nfmt("(%s - %s)", ptr_expr(), env->RValue(base_ptr));
}
char* DataPtr::AbsOffsetExpr(Env* env, const ID* base_ptr) const {
if ( AbsOffset(base_ptr) >= 0 )
return nfmt("%d", offset());
else
return nfmt("(%s - %s)", ptr_expr(), env->RValue(base_ptr));
}
void DataPtr::GenBoundaryCheck(Output* out_cc, Env* env, const char* data_size,
const char* data_name) const
{
ASSERT(id_);
void DataPtr::GenBoundaryCheck(Output* out_cc, Env* env, const char* data_size, const char* data_name) const {
ASSERT(id_);
out_cc->println("// Checking out-of-bound for \"%s\"", data_name);
out_cc->println("if ( %s + (%s) > %s || %s + (%s) < %s )", ptr_expr(), data_size,
env->RValue(end_of_data), ptr_expr(), data_size, ptr_expr());
out_cc->println("// Checking out-of-bound for \"%s\"", data_name);
out_cc->println("if ( %s + (%s) > %s || %s + (%s) < %s )", ptr_expr(), data_size, env->RValue(end_of_data),
ptr_expr(), data_size, ptr_expr());
out_cc->inc_indent();
out_cc->println("{");
out_cc->inc_indent();
out_cc->println("{");
char* data_offset = AbsOffsetExpr(env, begin_of_data);
char* data_offset = AbsOffsetExpr(env, begin_of_data);
out_cc->println("// Handle out-of-bound condition");
out_cc->println("throw binpac::ExceptionOutOfBound(\"%s\",", data_name);
out_cc->println(" (%s) + (%s), ", data_offset, data_size);
out_cc->println(" (%s) - (%s));", env->RValue(end_of_data), env->RValue(begin_of_data));
out_cc->println("// Handle out-of-bound condition");
out_cc->println("throw binpac::ExceptionOutOfBound(\"%s\",", data_name);
out_cc->println(" (%s) + (%s), ", data_offset, data_size);
out_cc->println(" (%s) - (%s));", env->RValue(end_of_data), env->RValue(begin_of_data));
delete[] data_offset;
delete[] data_offset;
out_cc->println("}");
out_cc->dec_indent();
}
out_cc->println("}");
out_cc->dec_indent();
}

View file

@ -9,40 +9,36 @@
// A data pointer is represented by an data pointer variable
// plus a constant offset.
class DataPtr
{
class DataPtr {
public:
DataPtr(Env* env, const ID* arg_id, const int arg_off);
DataPtr(DataPtr const& x) { *this = x; }
DataPtr(Env* env, const ID* arg_id, const int arg_off);
DataPtr(DataPtr const& x) { *this = x; }
DataPtr const& operator=(DataPtr const& x)
{
id_ = x.id();
offset_ = x.offset();
ptr_expr_ = x.ptr_expr();
DataPtr const& operator=(DataPtr const& x) {
id_ = x.id();
offset_ = x.offset();
ptr_expr_ = x.ptr_expr();
return *this;
}
return *this;
}
const ID* id() const { return id_; }
int offset() const { return offset_; }
const ID* id() const { return id_; }
int offset() const { return offset_; }
const char* ptr_expr() const
{
ASSERT(id_);
return ptr_expr_.c_str();
}
const char* ptr_expr() const {
ASSERT(id_);
return ptr_expr_.c_str();
}
int AbsOffset(const ID* base_ptr) const;
char* AbsOffsetExpr(Env* env, const ID* base_ptr) const;
int AbsOffset(const ID* base_ptr) const;
char* AbsOffsetExpr(Env* env, const ID* base_ptr) const;
void GenBoundaryCheck(Output* out, Env* env, const char* data_size,
const char* data_name) const;
void GenBoundaryCheck(Output* out, Env* env, const char* data_size, const char* data_name) const;
protected:
const ID* id_;
int offset_;
string ptr_expr_;
};
const ID* id_;
int offset_;
string ptr_expr_;
};
#endif // pac_dataptr_h

View file

@ -5,41 +5,33 @@
#include "pac_paramtype.h"
#include "pac_varfield.h"
AnalyzerDataUnit::AnalyzerDataUnit(DataUnitType type, ID* id, ExprList* type_params,
ExprList* context_params)
: AnalyzerElement(DATAUNIT), type_(type), id_(id), type_params_(type_params),
context_params_(context_params)
{
data_type_ = new ParameterizedType(id_, type_params_);
context_type_ = new ParameterizedType(
AnalyzerContextDecl::current_analyzer_context()->id()->clone(), context_params_);
AnalyzerDataUnit::AnalyzerDataUnit(DataUnitType type, ID* id, ExprList* type_params, ExprList* context_params)
: AnalyzerElement(DATAUNIT), type_(type), id_(id), type_params_(type_params), context_params_(context_params) {
data_type_ = new ParameterizedType(id_, type_params_);
context_type_ =
new ParameterizedType(AnalyzerContextDecl::current_analyzer_context()->id()->clone(), context_params_);
dataunit_var_field_ = new ParseVarField(Field::CLASS_MEMBER, dataunit_id->clone(), data_type());
context_var_field_ = new PrivVarField(analyzer_context_id->clone(), context_type());
}
dataunit_var_field_ = new ParseVarField(Field::CLASS_MEMBER, dataunit_id->clone(), data_type());
context_var_field_ = new PrivVarField(analyzer_context_id->clone(), context_type());
}
AnalyzerDataUnit::~AnalyzerDataUnit()
{
delete dataunit_var_field_;
delete context_var_field_;
}
AnalyzerDataUnit::~AnalyzerDataUnit() {
delete dataunit_var_field_;
delete context_var_field_;
}
void AnalyzerDataUnit::Prepare(Env* env)
{
dataunit_var_field_->Prepare(env);
context_var_field_->Prepare(env);
}
void AnalyzerDataUnit::Prepare(Env* env) {
dataunit_var_field_->Prepare(env);
context_var_field_->Prepare(env);
}
void AnalyzerDataUnit::GenNewDataUnit(Output* out_cc, Env* env)
{
out_cc->println("%s = new %s(%s);", env->LValue(dataunit_id), data_type()->class_name().c_str(),
data_type()->EvalParameters(out_cc, env).c_str());
}
void AnalyzerDataUnit::GenNewDataUnit(Output* out_cc, Env* env) {
out_cc->println("%s = new %s(%s);", env->LValue(dataunit_id), data_type()->class_name().c_str(),
data_type()->EvalParameters(out_cc, env).c_str());
}
void AnalyzerDataUnit::GenNewContext(Output* out_cc, Env* env)
{
out_cc->println("%s = new %s(%s);", env->LValue(analyzer_context_id),
context_type()->class_name().c_str(),
context_type()->EvalParameters(out_cc, env).c_str());
env->SetEvaluated(analyzer_context_id);
}
void AnalyzerDataUnit::GenNewContext(Output* out_cc, Env* env) {
out_cc->println("%s = new %s(%s);", env->LValue(analyzer_context_id), context_type()->class_name().c_str(),
context_type()->EvalParameters(out_cc, env).c_str());
env->SetEvaluated(analyzer_context_id);
}

View file

@ -6,44 +6,39 @@
// The type and parameters of input data unit of a flow. For instance, the
// data unit of a DCE/RPC flow is DCE_RPC_PDU.
class AnalyzerDataUnit : public AnalyzerElement
{
class AnalyzerDataUnit : public AnalyzerElement {
public:
enum DataUnitType
{
DATAGRAM,
FLOWUNIT
};
AnalyzerDataUnit(DataUnitType type, ID* id, ExprList* type_params, ExprList* context_params);
~AnalyzerDataUnit() override;
enum DataUnitType { DATAGRAM, FLOWUNIT };
AnalyzerDataUnit(DataUnitType type, ID* id, ExprList* type_params, ExprList* context_params);
~AnalyzerDataUnit() override;
void Prepare(Env* env);
void Prepare(Env* env);
// Initializes dataunit_id
void GenNewDataUnit(Output* out_cc, Env* env);
// Initializes analyzer_context_id
void GenNewContext(Output* out_cc, Env* env);
// Initializes dataunit_id
void GenNewDataUnit(Output* out_cc, Env* env);
// Initializes analyzer_context_id
void GenNewContext(Output* out_cc, Env* env);
DataUnitType type() const { return type_; }
const ID* id() const { return id_; }
ExprList* type_params() const { return type_params_; }
ExprList* context_params() const { return context_params_; }
DataUnitType type() const { return type_; }
const ID* id() const { return id_; }
ExprList* type_params() const { return type_params_; }
ExprList* context_params() const { return context_params_; }
ParameterizedType* data_type() const { return data_type_; }
ParameterizedType* context_type() const { return context_type_; }
ParameterizedType* data_type() const { return data_type_; }
ParameterizedType* context_type() const { return context_type_; }
Field* dataunit_var_field() const { return dataunit_var_field_; }
Field* context_var_field() const { return context_var_field_; }
Field* dataunit_var_field() const { return dataunit_var_field_; }
Field* context_var_field() const { return context_var_field_; }
private:
DataUnitType type_;
ID* id_;
ExprList* type_params_;
ExprList* context_params_;
ParameterizedType* data_type_;
ParameterizedType* context_type_;
Field* dataunit_var_field_;
Field* context_var_field_;
};
DataUnitType type_;
ID* id_;
ExprList* type_params_;
ExprList* context_params_;
ParameterizedType* data_type_;
ParameterizedType* context_type_;
Field* dataunit_var_field_;
Field* context_var_field_;
};
#endif // pac_dataunit_h

View file

@ -6,7 +6,9 @@
extern bool FLAGS_pac_debug;
#define ASSERT(x) assert(x)
#define DEBUG_MSG(...) if ( FLAGS_pac_debug ) fprintf(stderr, __VA_ARGS__)
#define ASSERT(x) assert(x)
#define DEBUG_MSG(...) \
if ( FLAGS_pac_debug ) \
fprintf(stderr, __VA_ARGS__)
#endif /* pac_dbg_h */

View file

@ -17,140 +17,120 @@
DeclList* Decl::decl_list_ = nullptr;
Decl::DeclMap Decl::decl_map_;
Decl::Decl(ID* id, DeclType decl_type) : id_(id), decl_type_(decl_type), attrlist_(nullptr)
{
decl_map_[id_] = this;
if ( ! decl_list_ )
decl_list_ = new DeclList();
decl_list_->push_back(this);
Decl::Decl(ID* id, DeclType decl_type) : id_(id), decl_type_(decl_type), attrlist_(nullptr) {
decl_map_[id_] = this;
if ( ! decl_list_ )
decl_list_ = new DeclList();
decl_list_->push_back(this);
DEBUG_MSG("Finished Decl %s\n", id_->Name());
DEBUG_MSG("Finished Decl %s\n", id_->Name());
analyzer_context_ = nullptr;
}
analyzer_context_ = nullptr;
}
Decl::~Decl()
{
delete id_;
delete_list(AttrList, attrlist_);
}
Decl::~Decl() {
delete id_;
delete_list(AttrList, attrlist_);
}
void Decl::AddAttrs(AttrList* attrs)
{
if ( ! attrs )
return;
if ( ! attrlist_ )
attrlist_ = new AttrList();
foreach (i, AttrList, attrs)
{
attrlist_->push_back(*i);
ProcessAttr(*i);
}
}
void Decl::AddAttrs(AttrList* attrs) {
if ( ! attrs )
return;
if ( ! attrlist_ )
attrlist_ = new AttrList();
foreach (i, AttrList, attrs) {
attrlist_->push_back(*i);
ProcessAttr(*i);
}
}
void Decl::ProcessAttr(Attr* attr)
{
throw Exception(attr, "unhandled attribute");
}
void Decl::ProcessAttr(Attr* attr) { throw Exception(attr, "unhandled attribute"); }
void Decl::SetAnalyzerContext()
{
analyzer_context_ = AnalyzerContextDecl::current_analyzer_context();
if ( ! analyzer_context_ )
{
throw Exception(this, "analyzer context not defined");
}
}
void Decl::SetAnalyzerContext() {
analyzer_context_ = AnalyzerContextDecl::current_analyzer_context();
if ( ! analyzer_context_ ) {
throw Exception(this, "analyzer context not defined");
}
}
void Decl::ProcessDecls(Output* out_h, Output* out_cc)
{
if ( ! decl_list_ )
return;
void Decl::ProcessDecls(Output* out_h, Output* out_cc) {
if ( ! decl_list_ )
return;
foreach (i, DeclList, decl_list_)
{
Decl* decl = *i;
current_decl_id = decl->id();
decl->Prepare();
}
foreach (i, DeclList, decl_list_) {
Decl* decl = *i;
current_decl_id = decl->id();
decl->Prepare();
}
foreach (i, DeclList, decl_list_)
{
Decl* decl = *i;
current_decl_id = decl->id();
decl->GenExternDeclaration(out_h);
}
foreach (i, DeclList, decl_list_) {
Decl* decl = *i;
current_decl_id = decl->id();
decl->GenExternDeclaration(out_h);
}
out_h->println("namespace binpac {\n");
out_cc->println("namespace binpac {\n");
out_h->println("namespace binpac {\n");
out_cc->println("namespace binpac {\n");
AnalyzerContextDecl* analyzer_context = AnalyzerContextDecl::current_analyzer_context();
AnalyzerContextDecl* analyzer_context = AnalyzerContextDecl::current_analyzer_context();
foreach (i, DeclList, decl_list_)
{
Decl* decl = *i;
current_decl_id = decl->id();
decl->GenForwardDeclaration(out_h);
}
foreach (i, DeclList, decl_list_) {
Decl* decl = *i;
current_decl_id = decl->id();
decl->GenForwardDeclaration(out_h);
}
if ( analyzer_context )
analyzer_context->GenNamespaceEnd(out_h);
if ( analyzer_context )
analyzer_context->GenNamespaceEnd(out_h);
out_h->println("");
out_h->println("");
foreach (i, DeclList, decl_list_)
{
Decl* decl = *i;
current_decl_id = decl->id();
decl->GenCode(out_h, out_cc);
}
foreach (i, DeclList, decl_list_) {
Decl* decl = *i;
current_decl_id = decl->id();
decl->GenCode(out_h, out_cc);
}
if ( analyzer_context )
{
analyzer_context->GenNamespaceEnd(out_h);
analyzer_context->GenNamespaceEnd(out_cc);
}
if ( analyzer_context ) {
analyzer_context->GenNamespaceEnd(out_h);
analyzer_context->GenNamespaceEnd(out_cc);
}
out_h->println("} // namespace binpac");
out_cc->println("} // namespace binpac");
}
out_h->println("} // namespace binpac");
out_cc->println("} // namespace binpac");
}
Decl* Decl::LookUpDecl(const ID* id)
{
DeclMap::iterator it = decl_map_.find(id);
if ( it == decl_map_.end() )
return nullptr;
return it->second;
}
Decl* Decl::LookUpDecl(const ID* id) {
DeclMap::iterator it = decl_map_.find(id);
if ( it == decl_map_.end() )
return nullptr;
return it->second;
}
int HelperDecl::helper_id_seq = 0;
HelperDecl::HelperDecl(HelperType helper_type, ID* context_id, EmbeddedCode* code)
: Decl(new ID(strfmt("helper_%d", ++helper_id_seq)), HELPER), helper_type_(helper_type),
context_id_(context_id), code_(code)
{
}
: Decl(new ID(strfmt("helper_%d", ++helper_id_seq)), HELPER),
helper_type_(helper_type),
context_id_(context_id),
code_(code) {}
HelperDecl::~HelperDecl()
{
delete context_id_;
delete code_;
}
HelperDecl::~HelperDecl() {
delete context_id_;
delete code_;
}
void HelperDecl::Prepare()
{
// Do nothing
}
void HelperDecl::Prepare() {
// Do nothing
}
void HelperDecl::GenExternDeclaration(Output* out_h)
{
if ( helper_type_ == EXTERN )
code_->GenCode(out_h, global_env());
}
void HelperDecl::GenExternDeclaration(Output* out_h) {
if ( helper_type_ == EXTERN )
code_->GenCode(out_h, global_env());
}
void HelperDecl::GenCode(Output* out_h, Output* out_cc)
{
Env* env = global_env();
void HelperDecl::GenCode(Output* out_h, Output* out_cc) {
Env* env = global_env();
#if 0
if ( context_id_ )
@ -172,12 +152,12 @@ void HelperDecl::GenCode(Output* out_h, Output* out_cc)
}
#endif
if ( helper_type_ == HEADER )
code_->GenCode(out_h, env);
else if ( helper_type_ == CODE )
code_->GenCode(out_cc, env);
else if ( helper_type_ == EXTERN )
; // do nothing
else
ASSERT(0);
}
if ( helper_type_ == HEADER )
code_->GenCode(out_h, env);
else if ( helper_type_ == CODE )
code_->GenCode(out_cc, env);
else if ( helper_type_ == EXTERN )
; // do nothing
else
ASSERT(0);
}

View file

@ -4,93 +4,77 @@
#include "pac_common.h"
#include "pac_id.h"
class Decl : public Object
{
class Decl : public Object {
public:
// Note: ANALYZER is not for AnalyzerDecl (which is an
// abstract class) , but for AnalyzerContextDecl.
enum DeclType
{
ENUM,
LET,
TYPE,
FUNC,
CONN,
FLOW,
ANALYZER,
HELPER,
REGEX
};
// Note: ANALYZER is not for AnalyzerDecl (which is an
// abstract class) , but for AnalyzerContextDecl.
enum DeclType { ENUM, LET, TYPE, FUNC, CONN, FLOW, ANALYZER, HELPER, REGEX };
Decl(ID* id, DeclType decl_type);
virtual ~Decl();
Decl(ID* id, DeclType decl_type);
virtual ~Decl();
const ID* id() const { return id_; }
DeclType decl_type() const { return decl_type_; }
AnalyzerContextDecl* analyzer_context() const { return analyzer_context_; }
const ID* id() const { return id_; }
DeclType decl_type() const { return decl_type_; }
AnalyzerContextDecl* analyzer_context() const { return analyzer_context_; }
// NULL except for TypeDecl or AnalyzerDecl
virtual Env* env() const { return nullptr; }
// NULL except for TypeDecl or AnalyzerDecl
virtual Env* env() const { return nullptr; }
virtual void Prepare() = 0;
virtual void Prepare() = 0;
// Generate declarations out of the "binpac" namespace
virtual void GenExternDeclaration(Output* out_h)
{ /* do nothing */
}
// Generate declarations out of the "binpac" namespace
virtual void GenExternDeclaration(Output* out_h) { /* do nothing */
}
// Generate declarations before definition of classes
virtual void GenForwardDeclaration(Output* out_h) = 0;
// Generate declarations before definition of classes
virtual void GenForwardDeclaration(Output* out_h) = 0;
virtual void GenCode(Output* out_h, Output* out_cc) = 0;
virtual void GenCode(Output* out_h, Output* out_cc) = 0;
void TakeExprList();
void AddAttrs(AttrList* attrlist);
void SetAnalyzerContext();
void TakeExprList();
void AddAttrs(AttrList* attrlist);
void SetAnalyzerContext();
protected:
virtual void ProcessAttr(Attr* a);
virtual void ProcessAttr(Attr* a);
ID* id_;
DeclType decl_type_;
AttrList* attrlist_;
AnalyzerContextDecl* analyzer_context_;
ID* id_;
DeclType decl_type_;
AttrList* attrlist_;
AnalyzerContextDecl* analyzer_context_;
public:
static void ProcessDecls(Output* out_h, Output* out_cc);
static Decl* LookUpDecl(const ID* id);
static void ProcessDecls(Output* out_h, Output* out_cc);
static Decl* LookUpDecl(const ID* id);
private:
static DeclList* decl_list_;
typedef map<const ID*, Decl*, ID_ptr_cmp> DeclMap;
static DeclMap decl_map_;
};
static DeclList* decl_list_;
typedef map<const ID*, Decl*, ID_ptr_cmp> DeclMap;
static DeclMap decl_map_;
};
class HelperDecl : public Decl
{
class HelperDecl : public Decl {
public:
enum HelperType
{
HEADER,
CODE,
EXTERN,
};
HelperDecl(HelperType type, ID* context_id, EmbeddedCode* code);
~HelperDecl() override;
enum HelperType {
HEADER,
CODE,
EXTERN,
};
HelperDecl(HelperType type, ID* context_id, EmbeddedCode* code);
~HelperDecl() override;
void Prepare() override;
void GenExternDeclaration(Output* out_h) override;
void GenForwardDeclaration(Output* out_h) override
{ /* do nothing */
}
void GenCode(Output* out_h, Output* out_cc) override;
void Prepare() override;
void GenExternDeclaration(Output* out_h) override;
void GenForwardDeclaration(Output* out_h) override { /* do nothing */
}
void GenCode(Output* out_h, Output* out_cc) override;
private:
HelperType helper_type_;
ID* context_id_;
EmbeddedCode* code_;
HelperType helper_type_;
ID* context_id_;
EmbeddedCode* code_;
static int helper_id_seq;
};
static int helper_id_seq;
};
#endif // pac_decl_h

View file

@ -4,74 +4,52 @@
#include "pac_output.h"
#include "pac_primitive.h"
EmbeddedCodeSegment::EmbeddedCodeSegment(const string& s) : s_(s), primitive_(nullptr) { }
EmbeddedCodeSegment::EmbeddedCodeSegment(const string& s) : s_(s), primitive_(nullptr) {}
EmbeddedCodeSegment::EmbeddedCodeSegment(PacPrimitive* primitive)
: s_(""), primitive_(primitive) { }
EmbeddedCodeSegment::EmbeddedCodeSegment(PacPrimitive* primitive) : s_(""), primitive_(primitive) {}
EmbeddedCodeSegment::~EmbeddedCodeSegment()
{
delete primitive_;
}
EmbeddedCodeSegment::~EmbeddedCodeSegment() { delete primitive_; }
string EmbeddedCodeSegment::ToCode(Env* env)
{
if ( primitive_ && s_.empty() )
s_ = primitive_->ToCode(env);
return s_;
}
string EmbeddedCodeSegment::ToCode(Env* env) {
if ( primitive_ && s_.empty() )
s_ = primitive_->ToCode(env);
return s_;
}
EmbeddedCode::EmbeddedCode()
{
segments_ = new EmbeddedCodeSegmentList();
}
EmbeddedCode::EmbeddedCode() { segments_ = new EmbeddedCodeSegmentList(); }
EmbeddedCode::~EmbeddedCode()
{
delete_list(EmbeddedCodeSegmentList, segments_);
}
EmbeddedCode::~EmbeddedCode() { delete_list(EmbeddedCodeSegmentList, segments_); }
void EmbeddedCode::Append(int atom)
{
current_segment_ += static_cast<char>(atom);
}
void EmbeddedCode::Append(int atom) { current_segment_ += static_cast<char>(atom); }
void EmbeddedCode::Append(const char* str)
{
current_segment_ += str;
}
void EmbeddedCode::Append(const char* str) { current_segment_ += str; }
void EmbeddedCode::Append(PacPrimitive* primitive)
{
if ( ! current_segment_.empty() )
{
segments_->push_back(new EmbeddedCodeSegment(current_segment_));
current_segment_ = "";
}
segments_->push_back(new EmbeddedCodeSegment(primitive));
}
void EmbeddedCode::Append(PacPrimitive* primitive) {
if ( ! current_segment_.empty() ) {
segments_->push_back(new EmbeddedCodeSegment(current_segment_));
current_segment_ = "";
}
segments_->push_back(new EmbeddedCodeSegment(primitive));
}
void EmbeddedCode::GenCode(Output* out, Env* env)
{
if ( ! current_segment_.empty() )
{
segments_->push_back(new EmbeddedCodeSegment(current_segment_));
current_segment_ = "";
}
void EmbeddedCode::GenCode(Output* out, Env* env) {
if ( ! current_segment_.empty() ) {
segments_->push_back(new EmbeddedCodeSegment(current_segment_));
current_segment_ = "";
}
// TODO: return to the generated file after embedded code
// out->print("#line %d \"%s\"\n", line_num, filename.c_str());
// TODO: return to the generated file after embedded code
// out->print("#line %d \"%s\"\n", line_num, filename.c_str());
// Allow use of RValue for undefined ID, in which case the
// ID's name is used as its RValue
env->set_allow_undefined_id(true);
// Allow use of RValue for undefined ID, in which case the
// ID's name is used as its RValue
env->set_allow_undefined_id(true);
foreach (i, EmbeddedCodeSegmentList, segments_)
{
EmbeddedCodeSegment* segment = *i;
out->print("%s", segment->ToCode(env).c_str());
}
foreach (i, EmbeddedCodeSegmentList, segments_) {
EmbeddedCodeSegment* segment = *i;
out->print("%s", segment->ToCode(env).c_str());
}
env->set_allow_undefined_id(false);
out->print("\n");
}
env->set_allow_undefined_id(false);
out->print("\n");
}

View file

@ -3,40 +3,38 @@
#include "pac_common.h"
class EmbeddedCodeSegment
{
class EmbeddedCodeSegment {
public:
explicit EmbeddedCodeSegment(const string& s);
explicit EmbeddedCodeSegment(PacPrimitive* primitive);
~EmbeddedCodeSegment();
explicit EmbeddedCodeSegment(const string& s);
explicit EmbeddedCodeSegment(PacPrimitive* primitive);
~EmbeddedCodeSegment();
string ToCode(Env* env);
string ToCode(Env* env);
private:
string s_;
PacPrimitive* primitive_;
};
string s_;
PacPrimitive* primitive_;
};
typedef vector<EmbeddedCodeSegment*> EmbeddedCodeSegmentList;
class EmbeddedCode : public Object
{
class EmbeddedCode : public Object {
public:
EmbeddedCode();
~EmbeddedCode();
EmbeddedCode();
~EmbeddedCode();
// Append a character
void Append(int atom);
void Append(const char* str);
// Append a character
void Append(int atom);
void Append(const char* str);
// Append a PAC primitive
void Append(PacPrimitive* primitive);
// Append a PAC primitive
void Append(PacPrimitive* primitive);
void GenCode(Output* out, Env* env);
void GenCode(Output* out, Env* env);
private:
string current_segment_;
EmbeddedCodeSegmentList* segments_;
};
string current_segment_;
EmbeddedCodeSegmentList* segments_;
};
#endif // pac_embedded_h

View file

@ -6,61 +6,52 @@
#include "pac_output.h"
#include "pac_typedecl.h"
Enum::Enum(ID* id, Expr* expr) : id_(id), expr_(expr) { }
Enum::Enum(ID* id, Expr* expr) : id_(id), expr_(expr) {}
Enum::~Enum()
{
delete id_;
delete expr_;
}
Enum::~Enum() {
delete id_;
delete expr_;
}
void Enum::GenHeader(Output* out_h, int* pval)
{
ASSERT(pval);
if ( expr_ )
{
if ( ! expr_->ConstFold(global_env(), pval) )
throw ExceptionNonConstExpr(expr_);
out_h->println("%s = %d,", id_->Name(), *pval);
}
else
out_h->println("%s,", id_->Name());
global_env()->AddConstID(id_, *pval);
}
void Enum::GenHeader(Output* out_h, int* pval) {
ASSERT(pval);
if ( expr_ ) {
if ( ! expr_->ConstFold(global_env(), pval) )
throw ExceptionNonConstExpr(expr_);
out_h->println("%s = %d,", id_->Name(), *pval);
}
else
out_h->println("%s,", id_->Name());
global_env()->AddConstID(id_, *pval);
}
EnumDecl::EnumDecl(ID* id, EnumList* enumlist) : Decl(id, ENUM), enumlist_(enumlist)
{
ID* type_id = id->clone();
datatype_ = new ExternType(type_id, ExternType::NUMBER);
extern_typedecl_ = new TypeDecl(type_id, nullptr, datatype_);
}
EnumDecl::EnumDecl(ID* id, EnumList* enumlist) : Decl(id, ENUM), enumlist_(enumlist) {
ID* type_id = id->clone();
datatype_ = new ExternType(type_id, ExternType::NUMBER);
extern_typedecl_ = new TypeDecl(type_id, nullptr, datatype_);
}
EnumDecl::~EnumDecl()
{
delete_list(EnumList, enumlist_);
delete extern_typedecl_;
}
EnumDecl::~EnumDecl() {
delete_list(EnumList, enumlist_);
delete extern_typedecl_;
}
void EnumDecl::Prepare()
{
// Do nothing
}
void EnumDecl::Prepare() {
// Do nothing
}
void EnumDecl::GenForwardDeclaration(Output* out_h)
{
out_h->println("enum %s {", id_->Name());
out_h->inc_indent();
int c = 0;
foreach (i, EnumList, enumlist_)
{
(*i)->GenHeader(out_h, &c);
++c;
}
out_h->dec_indent();
out_h->println("};");
}
void EnumDecl::GenForwardDeclaration(Output* out_h) {
out_h->println("enum %s {", id_->Name());
out_h->inc_indent();
int c = 0;
foreach (i, EnumList, enumlist_) {
(*i)->GenHeader(out_h, &c);
++c;
}
out_h->dec_indent();
out_h->println("};");
}
void EnumDecl::GenCode(Output* out_h, Output* /* out_cc */)
{
// Do nothing
}
void EnumDecl::GenCode(Output* out_h, Output* /* out_cc */) {
// Do nothing
}

View file

@ -3,35 +3,33 @@
#include "pac_decl.h"
class Enum
{
class Enum {
public:
Enum(ID* id, Expr* expr = 0);
~Enum();
Enum(ID* id, Expr* expr = 0);
~Enum();
void GenHeader(Output* out_h, int* pval);
void GenHeader(Output* out_h, int* pval);
private:
ID* id_;
Expr* expr_;
};
ID* id_;
Expr* expr_;
};
class EnumDecl : public Decl
{
class EnumDecl : public Decl {
public:
EnumDecl(ID* id, EnumList* enumlist);
~EnumDecl() override;
EnumDecl(ID* id, EnumList* enumlist);
~EnumDecl() override;
Type* DataType() const { return datatype_; }
Type* DataType() const { return datatype_; }
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
private:
EnumList* enumlist_;
Type* datatype_;
TypeDecl* extern_typedecl_;
};
EnumList* enumlist_;
Type* datatype_;
TypeDecl* extern_typedecl_;
};
#endif // pac_enum_h

View file

@ -4,75 +4,58 @@
#include "pac_id.h"
#include "pac_utils.h"
Exception::Exception(const Object* o, string msg)
{
if ( o )
{
msg_ = o->Location();
msg_ += ": error : ";
}
Exception::Exception(const Object* o, string msg) {
if ( o ) {
msg_ = o->Location();
msg_ += ": error : ";
}
msg_ += msg;
msg_ += msg;
if ( FLAGS_pac_debug )
{
DEBUG_MSG("Exception: %s\n", msg_.c_str());
abort();
}
}
if ( FLAGS_pac_debug ) {
DEBUG_MSG("Exception: %s\n", msg_.c_str());
abort();
}
}
ExceptionIDNotFound::ExceptionIDNotFound(const ID* id) : Exception(id), id_(id)
{
append(strfmt("`%s' undeclared", id_->Name()));
}
ExceptionIDNotFound::ExceptionIDNotFound(const ID* id) : Exception(id), id_(id) {
append(strfmt("`%s' undeclared", id_->Name()));
}
ExceptionIDRedefinition::ExceptionIDRedefinition(const ID* id) : Exception(id), id_(id)
{
append(strfmt("`%s' redefined", id_->Name()));
}
ExceptionIDRedefinition::ExceptionIDRedefinition(const ID* id) : Exception(id), id_(id) {
append(strfmt("`%s' redefined", id_->Name()));
}
ExceptionIDNotEvaluated::ExceptionIDNotEvaluated(const ID* id) : Exception(id), id_(id)
{
append(strfmt("ID `%s' not evaluated before used", id->Name()));
}
ExceptionIDNotEvaluated::ExceptionIDNotEvaluated(const ID* id) : Exception(id), id_(id) {
append(strfmt("ID `%s' not evaluated before used", id->Name()));
}
ExceptionIDNotField::ExceptionIDNotField(const ID* id) : Exception(id), id_(id)
{
append(strfmt("ID `%s' is not a field", id_->Name()));
}
ExceptionIDNotField::ExceptionIDNotField(const ID* id) : Exception(id), id_(id) {
append(strfmt("ID `%s' is not a field", id_->Name()));
}
ExceptionMemberNotFound::ExceptionMemberNotFound(const ID* type_id, const ID* member_id)
: Exception(member_id), type_id_(type_id), member_id_(member_id)
{
append(strfmt("type %s does not have member `%s'", type_id_->Name(), member_id_->Name()));
}
: Exception(member_id), type_id_(type_id), member_id_(member_id) {
append(strfmt("type %s does not have member `%s'", type_id_->Name(), member_id_->Name()));
}
ExceptionCyclicDependence::ExceptionCyclicDependence(const ID* id) : Exception(id), id_(id)
{
append(strfmt("cyclic dependence through `%s'", id_->Name()));
}
ExceptionCyclicDependence::ExceptionCyclicDependence(const ID* id) : Exception(id), id_(id) {
append(strfmt("cyclic dependence through `%s'", id_->Name()));
}
ExceptionPaddingError::ExceptionPaddingError(const Object* o, string msg) : Exception(o)
{
append(msg.c_str());
}
ExceptionPaddingError::ExceptionPaddingError(const Object* o, string msg) : Exception(o) { append(msg.c_str()); }
ExceptionNonConstExpr::ExceptionNonConstExpr(const Expr* expr) : Exception(expr), expr(expr)
{
append(strfmt("Expression `%s' is not constant", expr->orig()));
}
ExceptionNonConstExpr::ExceptionNonConstExpr(const Expr* expr) : Exception(expr), expr(expr) {
append(strfmt("Expression `%s' is not constant", expr->orig()));
}
ExceptionInvalidCaseSizeExpr::ExceptionInvalidCaseSizeExpr(const Expr* expr)
: Exception(expr), expr(expr)
{
append(strfmt("Expression `%s' is greater than the 32-bit limit for use as a case index",
expr->orig()));
}
ExceptionInvalidCaseSizeExpr::ExceptionInvalidCaseSizeExpr(const Expr* expr) : Exception(expr), expr(expr) {
append(strfmt("Expression `%s' is greater than the 32-bit limit for use as a case index", expr->orig()));
}
ExceptionInvalidCaseLimitExpr::ExceptionInvalidCaseLimitExpr(const Expr* expr)
: Exception(expr), expr(expr)
{
append(strfmt("Expression `%s' as a case index is outside the numeric limit of the type used "
"for the switch expression",
expr->orig()));
}
ExceptionInvalidCaseLimitExpr::ExceptionInvalidCaseLimitExpr(const Expr* expr) : Exception(expr), expr(expr) {
append(
strfmt("Expression `%s' as a case index is outside the numeric limit of the type used "
"for the switch expression",
expr->orig()));
}

View file

@ -6,108 +6,97 @@ using namespace std;
#include "pac_common.h"
class Exception
{
class Exception {
public:
Exception(const Object* o, string msg = "");
Exception(const Object* o, string msg = "");
const char* msg() const { return msg_.c_str(); }
void append(string s) { msg_ += s; }
const char* msg() const { return msg_.c_str(); }
void append(string s) { msg_ += s; }
private:
string msg_;
};
string msg_;
};
class ExceptionIDNotFound : public Exception
{
class ExceptionIDNotFound : public Exception {
public:
ExceptionIDNotFound(const ID* id);
const ID* id() const { return id_; }
ExceptionIDNotFound(const ID* id);
const ID* id() const { return id_; }
private:
const ID* id_;
};
const ID* id_;
};
class ExceptionIDRedefinition : public Exception
{
class ExceptionIDRedefinition : public Exception {
public:
ExceptionIDRedefinition(const ID* id);
const ID* id() const { return id_; }
ExceptionIDRedefinition(const ID* id);
const ID* id() const { return id_; }
private:
const ID* id_;
};
const ID* id_;
};
class ExceptionIDNotEvaluated : public Exception
{
class ExceptionIDNotEvaluated : public Exception {
public:
ExceptionIDNotEvaluated(const ID* id);
const ID* id() const { return id_; }
ExceptionIDNotEvaluated(const ID* id);
const ID* id() const { return id_; }
private:
const ID* id_;
};
const ID* id_;
};
class ExceptionCyclicDependence : public Exception
{
class ExceptionCyclicDependence : public Exception {
public:
ExceptionCyclicDependence(const ID* id);
const ID* id() const { return id_; }
ExceptionCyclicDependence(const ID* id);
const ID* id() const { return id_; }
private:
const ID* id_;
};
const ID* id_;
};
class ExceptionPaddingError : public Exception
{
class ExceptionPaddingError : public Exception {
public:
ExceptionPaddingError(const Object* o, string msg);
};
ExceptionPaddingError(const Object* o, string msg);
};
class ExceptionIDNotField : public Exception
{
class ExceptionIDNotField : public Exception {
public:
ExceptionIDNotField(const ID* id);
const ID* id() const { return id_; }
ExceptionIDNotField(const ID* id);
const ID* id() const { return id_; }
private:
const ID* id_;
};
const ID* id_;
};
class ExceptionMemberNotFound : public Exception
{
class ExceptionMemberNotFound : public Exception {
public:
ExceptionMemberNotFound(const ID* type_id, const ID* member_id);
ExceptionMemberNotFound(const ID* type_id, const ID* member_id);
private:
const ID *type_id_, *member_id_;
};
const ID *type_id_, *member_id_;
};
class ExceptionNonConstExpr : public Exception
{
class ExceptionNonConstExpr : public Exception {
public:
ExceptionNonConstExpr(const Expr* expr);
ExceptionNonConstExpr(const Expr* expr);
private:
const Expr* expr;
};
const Expr* expr;
};
class ExceptionInvalidCaseSizeExpr : public Exception
{
class ExceptionInvalidCaseSizeExpr : public Exception {
public:
ExceptionInvalidCaseSizeExpr(const Expr* expr);
ExceptionInvalidCaseSizeExpr(const Expr* expr);
private:
const Expr* expr;
};
const Expr* expr;
};
class ExceptionInvalidCaseLimitExpr : public Exception
{
class ExceptionInvalidCaseLimitExpr : public Exception {
public:
ExceptionInvalidCaseLimitExpr(const Expr* expr);
ExceptionInvalidCaseLimitExpr(const Expr* expr);
private:
const Expr* expr;
};
const Expr* expr;
};
#endif /* pac_exception_h */

File diff suppressed because it is too large Load diff

View file

@ -6,135 +6,132 @@
class CaseExpr;
class Expr : public Object, public DataDepElement
{
class Expr : public Object, public DataDepElement {
public:
enum ExprType
{
enum ExprType {
#define EXPR_DEF(type, x, y) type,
#include "pac_expr.def"
#undef EXPR_DEF
};
};
void init();
void init();
Expr(ID* id);
Expr(Number* num);
Expr(ConstString* s);
Expr(RegEx* regex);
Expr(ExprList* args); // for EXPR_CALLARGS
Expr(Expr* index, CaseExprList* cases);
Expr(ID* id);
Expr(Number* num);
Expr(ConstString* s);
Expr(RegEx* regex);
Expr(ExprList* args); // for EXPR_CALLARGS
Expr(Expr* index, CaseExprList* cases);
Expr(ExprType type, Expr* op1);
Expr(ExprType type, Expr* op1, Expr* op2);
Expr(ExprType type, Expr* op1, Expr* op2, Expr* op3);
Expr(ExprType type, Expr* op1);
Expr(ExprType type, Expr* op1, Expr* op2);
Expr(ExprType type, Expr* op1, Expr* op2, Expr* op3);
~Expr() override;
~Expr() override;
const char* orig() const { return orig_.c_str(); }
const ID* id() const { return id_; }
const char* str() const { return str_.c_str(); }
ExprType expr_type() const { return expr_type_; }
const char* orig() const { return orig_.c_str(); }
const ID* id() const { return id_; }
const char* str() const { return str_.c_str(); }
ExprType expr_type() const { return expr_type_; }
void AddCaseExpr(CaseExpr* case_expr);
void AddCaseExpr(CaseExpr* case_expr);
// Returns the data "type" of the expression. Here we only
// do a serious job for the EXPR_MEMBER and EXPR_SUBSCRIPT
// operators. For arithmetic operations, we fall back
// to "int".
Type* DataType(Env* env) const;
string DataTypeStr(Env* env) const;
// Returns the data "type" of the expression. Here we only
// do a serious job for the EXPR_MEMBER and EXPR_SUBSCRIPT
// operators. For arithmetic operations, we fall back
// to "int".
Type* DataType(Env* env) const;
string DataTypeStr(Env* env) const;
// Note: EvalExpr() may generate C++ statements in order to evaluate
// variables in the expression, so the following is wrong:
//
// out->print("int x = ");
// out->println("%s", expr->EvalExpr(out, env));
//
// While putting them together is right:
//
// out->println("int x = %s", expr->EvalExpr(out, env));
//
const char* EvalExpr(Output* out, Env* env);
// Note: EvalExpr() may generate C++ statements in order to evaluate
// variables in the expression, so the following is wrong:
//
// out->print("int x = ");
// out->println("%s", expr->EvalExpr(out, env));
//
// While putting them together is right:
//
// out->println("int x = %s", expr->EvalExpr(out, env));
//
const char* EvalExpr(Output* out, Env* env);
// force evaulation of IDs contained in this expression;
// necessary with case expr and conditional let fields (&if)
// for correct parsing of fields
void ForceIDEval(Output* out_cc, Env* env);
// force evaulation of IDs contained in this expression;
// necessary with case expr and conditional let fields (&if)
// for correct parsing of fields
void ForceIDEval(Output* out_cc, Env* env);
// Returns the set_* function of the expression.
// The expression must be of form ID or x.ID.
string SetFunc(Output* out, Env* env);
// Returns the set_* function of the expression.
// The expression must be of form ID or x.ID.
string SetFunc(Output* out, Env* env);
// Returns true if the expression folds to an integer
// constant with env, and puts the constant in *pn.
//
bool ConstFold(Env* env, int* pn) const;
// Returns true if the expression folds to an integer
// constant with env, and puts the constant in *pn.
//
bool ConstFold(Env* env, int* pn) const;
// Whether id is referenced in the expression
bool HasReference(const ID* id) const;
// Whether id is referenced in the expression
bool HasReference(const ID* id) const;
// Suppose the data for type might be incomplete, what is
// the minimal number of bytes from data head required to
// compute the expression? For example, how many bytes of frame
// header do we need to determine the length of the frame?
//
// The parameter <env> points to the Env of a type.
//
// Returns -1 if the number is not a constant.
//
int MinimalHeaderSize(Env* env);
// Suppose the data for type might be incomplete, what is
// the minimal number of bytes from data head required to
// compute the expression? For example, how many bytes of frame
// header do we need to determine the length of the frame?
//
// The parameter <env> points to the Env of a type.
//
// Returns -1 if the number is not a constant.
//
int MinimalHeaderSize(Env* env);
// Whether evaluation of the expression requires the analyzer context
bool RequiresAnalyzerContext() const;
// Whether evaluation of the expression requires the analyzer context
bool RequiresAnalyzerContext() const;
protected:
bool DoTraverse(DataDepVisitor* visitor) override;
bool DoTraverse(DataDepVisitor* visitor) override;
private:
ExprType expr_type_;
ExprType expr_type_;
int num_operands_;
Expr* operand_[3];
int num_operands_;
Expr* operand_[3];
ID* id_; // EXPR_ID
Number* num_; // EXPR_NUM
ConstString* cstr_; // EXPR_CSTR
RegEx* regex_; // EXPR_REGEX
ExprList* args_; // EXPR_CALLARGS
CaseExprList* cases_; // EXPR_CASE
ID* id_; // EXPR_ID
Number* num_; // EXPR_NUM
ConstString* cstr_; // EXPR_CSTR
RegEx* regex_; // EXPR_REGEX
ExprList* args_; // EXPR_CALLARGS
CaseExprList* cases_; // EXPR_CASE
string str_; // value string
string orig_; // original string for debugging info
string str_; // value string
string orig_; // original string for debugging info
void GenStrFromFormat(Env* env);
void GenEval(Output* out, Env* env);
void GenCaseEval(Output* out_cc, Env* env);
};
void GenStrFromFormat(Env* env);
void GenEval(Output* out, Env* env);
void GenCaseEval(Output* out_cc, Env* env);
};
string OrigExprList(ExprList* exprlist);
string EvalExprList(ExprList* exprlist, Output* out, Env* env);
// An entry of the case expression, consisting of one or more constant
// expressions for the case index and a value expression.
class CaseExpr : public Object, public DataDepElement
{
class CaseExpr : public Object, public DataDepElement {
public:
CaseExpr(ExprList* index, Expr* value);
~CaseExpr() override;
CaseExpr(ExprList* index, Expr* value);
~CaseExpr() override;
ExprList* index() const { return index_; }
Expr* value() const { return value_; }
ExprList* index() const { return index_; }
Expr* value() const { return value_; }
bool HasReference(const ID* id) const;
bool RequiresAnalyzerContext() const;
bool HasReference(const ID* id) const;
bool RequiresAnalyzerContext() const;
protected:
bool DoTraverse(DataDepVisitor* visitor) override;
bool DoTraverse(DataDepVisitor* visitor) override;
private:
ExprList* index_;
Expr* value_;
};
ExprList* index_;
Expr* value_;
};
#endif // pac_expr_h

View file

@ -4,66 +4,42 @@
#include "pac_id.h"
#include "pac_output.h"
bool ExternType::DefineValueVar() const
{
return true;
}
bool ExternType::DefineValueVar() const { return true; }
string ExternType::DataTypeStr() const
{
switch ( ext_type_ )
{
case PLAIN:
case NUMBER:
return id_->Name();
case POINTER:
return string(id_->Name()) + " *";
default:
ASSERT(0);
return "";
}
}
string ExternType::DataTypeStr() const {
switch ( ext_type_ ) {
case PLAIN:
case NUMBER: return id_->Name();
case POINTER: return string(id_->Name()) + " *";
default: ASSERT(0); return "";
}
}
int ExternType::StaticSize(Env* env) const
{
ASSERT(0);
return -1;
}
int ExternType::StaticSize(Env* env) const {
ASSERT(0);
return -1;
}
bool ExternType::ByteOrderSensitive() const
{
return false;
}
bool ExternType::ByteOrderSensitive() const { return false; }
string ExternType::EvalMember(const ID* member_id) const
{
return strfmt("%s%s", ext_type_ == POINTER ? "->" : ".", member_id->Name());
}
string ExternType::EvalMember(const ID* member_id) const {
return strfmt("%s%s", ext_type_ == POINTER ? "->" : ".", member_id->Name());
}
void ExternType::GenInitCode(Output* out_cc, Env* env)
{
if ( IsNumericType() )
out_cc->println("%s = 0;", env->LValue(value_var()));
else if ( IsPointerType() )
out_cc->println("%s = nullptr;", env->LValue(value_var()));
void ExternType::GenInitCode(Output* out_cc, Env* env) {
if ( IsNumericType() )
out_cc->println("%s = 0;", env->LValue(value_var()));
else if ( IsPointerType() )
out_cc->println("%s = nullptr;", env->LValue(value_var()));
Type::GenInitCode(out_cc, env);
}
Type::GenInitCode(out_cc, env);
}
void ExternType::DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags)
{
ASSERT(0);
}
void ExternType::DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) { ASSERT(0); }
void ExternType::GenDynamicSize(Output* out, Env* env, const DataPtr& data)
{
ASSERT(0);
}
void ExternType::GenDynamicSize(Output* out, Env* env, const DataPtr& data) { ASSERT(0); }
Type* ExternType::DoClone() const
{
return new ExternType(id_->clone(), ext_type_);
}
Type* ExternType::DoClone() const { return new ExternType(id_->clone(), ext_type_); }
// Definitions of pre-defined external types
@ -71,16 +47,15 @@ Type* ExternType::DoClone() const
#include "pac_externtype.def"
#undef EXTERNTYPE
void ExternType::static_init()
{
ID* id;
// TypeDecl *decl;
// decl = new TypeDecl(id, 0, extern_type_##name);
void ExternType::static_init() {
ID* id;
// TypeDecl *decl;
// decl = new TypeDecl(id, 0, extern_type_##name);
#define EXTERNTYPE(name, ctype, exttype) \
id = new ID(#ctype); \
extern_type_##name = new ExternType(id, ExternType::exttype); \
Type::AddPredefinedType(#name, extern_type_##name);
#define EXTERNTYPE(name, ctype, exttype) \
id = new ID(#ctype); \
extern_type_##name = new ExternType(id, ExternType::exttype); \
Type::AddPredefinedType(#name, extern_type_##name);
#include "pac_externtype.def"
#undef EXTERNTYPE
}
}

View file

@ -8,41 +8,35 @@
// spefication, e.g., in a record field). The type name is copied
// literally to the compiled code.
class ExternType : public Type
{
class ExternType : public Type {
public:
enum EXTType
{
PLAIN,
NUMBER,
POINTER
};
ExternType(const ID* id, EXTType ext_type) : Type(EXTERN), id_(id), ext_type_(ext_type) { }
enum EXTType { PLAIN, NUMBER, POINTER };
ExternType(const ID* id, EXTType ext_type) : Type(EXTERN), id_(id), ext_type_(ext_type) {}
bool DefineValueVar() const override;
string DataTypeStr() const override;
int StaticSize(Env* env) const override;
bool ByteOrderSensitive() const override;
bool DefineValueVar() const override;
string DataTypeStr() const override;
int StaticSize(Env* env) const override;
bool ByteOrderSensitive() const override;
string EvalMember(const ID* member_id) const override;
bool IsNumericType() const override { return ext_type_ == NUMBER; }
bool IsPointerType() const override { return ext_type_ == POINTER; }
string EvalMember(const ID* member_id) const override;
bool IsNumericType() const override { return ext_type_ == NUMBER; }
bool IsPointerType() const override { return ext_type_ == POINTER; }
void GenInitCode(Output* out_cc, Env* env) override;
void GenInitCode(Output* out_cc, Env* env) override;
protected:
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
Type* DoClone() const override;
Type* DoClone() const override;
private:
const ID* id_;
EXTType ext_type_;
const ID* id_;
EXTType ext_type_;
public:
static void static_init();
};
static void static_init();
};
#define EXTERNTYPE(name, ctype, exttype) extern ExternType* extern_type_##name;
#include "pac_externtype.def"

View file

@ -7,138 +7,117 @@
#include "pac_type.h"
Field::Field(FieldType tof, int flags, ID* id, Type* type)
: DataDepElement(DataDepElement::FIELD), tof_(tof), flags_(flags), id_(id), type_(type)
{
decl_id_ = current_decl_id;
field_id_str_ = strfmt("%s:%s", decl_id()->Name(), id_->Name());
attrs_ = nullptr;
}
: DataDepElement(DataDepElement::FIELD), tof_(tof), flags_(flags), id_(id), type_(type) {
decl_id_ = current_decl_id;
field_id_str_ = strfmt("%s:%s", decl_id()->Name(), id_->Name());
attrs_ = nullptr;
}
Field::~Field()
{
delete id_;
delete type_;
delete_list(AttrList, attrs_);
}
Field::~Field() {
delete id_;
delete type_;
delete_list(AttrList, attrs_);
}
void Field::AddAttr(AttrList* attrs)
{
bool delete_attrs = false;
void Field::AddAttr(AttrList* attrs) {
bool delete_attrs = false;
if ( ! attrs_ )
{
attrs_ = attrs;
}
else
{
attrs_->insert(attrs_->end(), attrs->begin(), attrs->end());
delete_attrs = true;
}
if ( ! attrs_ ) {
attrs_ = attrs;
}
else {
attrs_->insert(attrs_->end(), attrs->begin(), attrs->end());
delete_attrs = true;
}
foreach (i, AttrList, attrs)
ProcessAttr(*i);
foreach (i, AttrList, attrs)
ProcessAttr(*i);
if ( delete_attrs )
delete attrs;
}
if ( delete_attrs )
delete attrs;
}
void Field::ProcessAttr(Attr* a)
{
switch ( a->type() )
{
case ATTR_IF:
if ( tof() != LET_FIELD && tof() != WITHINPUT_FIELD )
{
throw Exception(a, "&if can only be applied to a "
"let field");
}
break;
default:
break;
}
void Field::ProcessAttr(Attr* a) {
switch ( a->type() ) {
case ATTR_IF:
if ( tof() != LET_FIELD && tof() != WITHINPUT_FIELD ) {
throw Exception(a,
"&if can only be applied to a "
"let field");
}
break;
default: break;
}
if ( type_ )
type_->ProcessAttr(a);
}
if ( type_ )
type_->ProcessAttr(a);
}
bool Field::anonymous_field() const
{
return type_ && type_->anonymous_value_var();
}
bool Field::anonymous_field() const { return type_ && type_->anonymous_value_var(); }
int Field::ValueVarType() const
{
if ( flags_ & CLASS_MEMBER )
return (flags_ & PUBLIC_READABLE) ? MEMBER_VAR : PRIV_MEMBER_VAR;
else
return TEMP_VAR;
}
int Field::ValueVarType() const {
if ( flags_ & CLASS_MEMBER )
return (flags_ & PUBLIC_READABLE) ? MEMBER_VAR : PRIV_MEMBER_VAR;
else
return TEMP_VAR;
}
void Field::Prepare(Env* env)
{
if ( type_ )
{
if ( anonymous_field() )
flags_ &= ~(CLASS_MEMBER | PUBLIC_READABLE);
if ( ! type_->persistent() )
flags_ &= (~PUBLIC_READABLE);
void Field::Prepare(Env* env) {
if ( type_ ) {
if ( anonymous_field() )
flags_ &= ~(CLASS_MEMBER | PUBLIC_READABLE);
if ( ! type_->persistent() )
flags_ &= (~PUBLIC_READABLE);
type_->set_value_var(id(), ValueVarType());
type_->Prepare(env, flags_ & TYPE_TO_BE_PARSED ? Type::TO_BE_PARSED : 0);
env->SetField(id(), this);
}
}
type_->set_value_var(id(), ValueVarType());
type_->Prepare(env, flags_ & TYPE_TO_BE_PARSED ? Type::TO_BE_PARSED : 0);
env->SetField(id(), this);
}
}
void Field::GenPubDecls(Output* out_h, Env* env)
{
if ( type_ && (flags_ & PUBLIC_READABLE) && (flags_ & CLASS_MEMBER) )
type_->GenPubDecls(out_h, env);
}
void Field::GenPubDecls(Output* out_h, Env* env) {
if ( type_ && (flags_ & PUBLIC_READABLE) && (flags_ & CLASS_MEMBER) )
type_->GenPubDecls(out_h, env);
}
void Field::GenPrivDecls(Output* out_h, Env* env)
{
// Generate private declaration only if it is a class member
if ( type_ && (flags_ & CLASS_MEMBER) )
type_->GenPrivDecls(out_h, env);
}
void Field::GenPrivDecls(Output* out_h, Env* env) {
// Generate private declaration only if it is a class member
if ( type_ && (flags_ & CLASS_MEMBER) )
type_->GenPrivDecls(out_h, env);
}
void Field::GenTempDecls(Output* out_h, Env* env)
{
// Generate temp field
if ( type_ && ! (flags_ & CLASS_MEMBER) )
type_->GenPrivDecls(out_h, env);
}
void Field::GenTempDecls(Output* out_h, Env* env) {
// Generate temp field
if ( type_ && ! (flags_ & CLASS_MEMBER) )
type_->GenPrivDecls(out_h, env);
}
void Field::GenInitCode(Output* out_cc, Env* env)
{
if ( type_ && ! anonymous_field() )
type_->GenInitCode(out_cc, env);
}
void Field::GenInitCode(Output* out_cc, Env* env) {
if ( type_ && ! anonymous_field() )
type_->GenInitCode(out_cc, env);
}
void Field::GenCleanUpCode(Output* out_cc, Env* env)
{
if ( type_ && ! anonymous_field() )
type_->GenCleanUpCode(out_cc, env);
}
void Field::GenCleanUpCode(Output* out_cc, Env* env) {
if ( type_ && ! anonymous_field() )
type_->GenCleanUpCode(out_cc, env);
}
bool Field::DoTraverse(DataDepVisitor* visitor)
{
// Check parameterized type
if ( type_ && ! type_->Traverse(visitor) )
return false;
foreach (i, AttrList, attrs_)
if ( ! (*i)->Traverse(visitor) )
return false;
return true;
}
bool Field::DoTraverse(DataDepVisitor* visitor) {
// Check parameterized type
if ( type_ && ! type_->Traverse(visitor) )
return false;
foreach (i, AttrList, attrs_)
if ( ! (*i)->Traverse(visitor) )
return false;
return true;
}
bool Field::RequiresAnalyzerContext() const
{
// Check parameterized type
if ( type_ && type_->RequiresAnalyzerContext() )
return true;
foreach (i, AttrList, attrs_)
if ( (*i)->RequiresAnalyzerContext() )
return true;
return false;
}
bool Field::RequiresAnalyzerContext() const {
// Check parameterized type
if ( type_ && type_->RequiresAnalyzerContext() )
return true;
foreach (i, AttrList, attrs_)
if ( (*i)->RequiresAnalyzerContext() )
return true;
return false;
}

View file

@ -6,80 +6,78 @@
// A "field" is a member of class.
enum FieldType
{
CASE_FIELD,
CONTEXT_FIELD,
FLOW_FIELD,
LET_FIELD,
PADDING_FIELD,
PARAM_FIELD,
RECORD_FIELD,
PARSE_VAR_FIELD,
PRIV_VAR_FIELD,
PUB_VAR_FIELD,
TEMP_VAR_FIELD,
WITHINPUT_FIELD,
};
enum FieldType {
CASE_FIELD,
CONTEXT_FIELD,
FLOW_FIELD,
LET_FIELD,
PADDING_FIELD,
PARAM_FIELD,
RECORD_FIELD,
PARSE_VAR_FIELD,
PRIV_VAR_FIELD,
PUB_VAR_FIELD,
TEMP_VAR_FIELD,
WITHINPUT_FIELD,
};
class Field : public Object, public DataDepElement
{
class Field : public Object, public DataDepElement {
public:
Field(FieldType tof, int flags, ID* id, Type* type);
// Field flags
Field(FieldType tof, int flags, ID* id, Type* type);
// Field flags
// Whether the field will be evaluated by calling the Parse()
// function of the type
static const int TYPE_TO_BE_PARSED = 1;
static const int TYPE_NOT_TO_BE_PARSED = 0;
// Whether the field will be evaluated by calling the Parse()
// function of the type
static const int TYPE_TO_BE_PARSED = 1;
static const int TYPE_NOT_TO_BE_PARSED = 0;
// Whether the field is a member of the class or a temp
// variable
static const int CLASS_MEMBER = 2;
static const int NOT_CLASS_MEMBER = 0;
// Whether the field is a member of the class or a temp
// variable
static const int CLASS_MEMBER = 2;
static const int NOT_CLASS_MEMBER = 0;
// Whether the field is public readable
static const int PUBLIC_READABLE = 4;
static const int NOT_PUBLIC_READABLE = 0;
// Whether the field is public readable
static const int PUBLIC_READABLE = 4;
static const int NOT_PUBLIC_READABLE = 0;
~Field() override;
~Field() override;
FieldType tof() const { return tof_; }
const ID* id() const { return id_; }
Type* type() const { return type_; }
const ID* decl_id() const { return decl_id_; }
FieldType tof() const { return tof_; }
const ID* id() const { return id_; }
Type* type() const { return type_; }
const ID* decl_id() const { return decl_id_; }
bool anonymous_field() const;
bool anonymous_field() const;
void AddAttr(AttrList* attrs);
void AddAttr(AttrList* attrs);
// The field interface
virtual void ProcessAttr(Attr* attr);
virtual void Prepare(Env* env);
// The field interface
virtual void ProcessAttr(Attr* attr);
virtual void Prepare(Env* env);
virtual void GenPubDecls(Output* out, Env* env);
virtual void GenPrivDecls(Output* out, Env* env);
virtual void GenTempDecls(Output* out, Env* env);
virtual void GenPubDecls(Output* out, Env* env);
virtual void GenPrivDecls(Output* out, Env* env);
virtual void GenTempDecls(Output* out, Env* env);
virtual void GenInitCode(Output* out, Env* env);
virtual void GenCleanUpCode(Output* out, Env* env);
virtual void GenInitCode(Output* out, Env* env);
virtual void GenCleanUpCode(Output* out, Env* env);
virtual bool RequiresAnalyzerContext() const;
virtual bool RequiresAnalyzerContext() const;
protected:
int ValueVarType() const;
bool ToBeParsed() const;
int ValueVarType() const;
bool ToBeParsed() const;
bool DoTraverse(DataDepVisitor* visitor) override;
bool DoTraverse(DataDepVisitor* visitor) override;
protected:
FieldType tof_;
int flags_;
ID* id_;
Type* type_;
const ID* decl_id_;
string field_id_str_;
AttrList* attrs_;
};
FieldType tof_;
int flags_;
ID* id_;
Type* type_;
const ID* decl_id_;
string field_id_str_;
AttrList* attrs_;
};
#endif // pac_field_h

View file

@ -15,298 +15,257 @@
#include "pac_type.h"
#include "pac_varfield.h"
FlowDecl::FlowDecl(ID* id, ParamList* params, AnalyzerElementList* elemlist)
: AnalyzerDecl(id, FLOW, params)
{
dataunit_ = nullptr;
conn_decl_ = nullptr;
flow_buffer_var_field_ = nullptr;
AddElements(elemlist);
}
FlowDecl::FlowDecl(ID* id, ParamList* params, AnalyzerElementList* elemlist) : AnalyzerDecl(id, FLOW, params) {
dataunit_ = nullptr;
conn_decl_ = nullptr;
flow_buffer_var_field_ = nullptr;
AddElements(elemlist);
}
FlowDecl::~FlowDecl()
{
delete flow_buffer_var_field_;
delete dataunit_;
}
FlowDecl::~FlowDecl() {
delete flow_buffer_var_field_;
delete dataunit_;
}
ParameterizedType* FlowDecl::flow_buffer_type_ = nullptr;
ParameterizedType* FlowDecl::flow_buffer_type()
{
if ( ! flow_buffer_type_ )
{
flow_buffer_type_ = new ParameterizedType(new ID(kFlowBufferClass), nullptr);
}
return flow_buffer_type_;
}
ParameterizedType* FlowDecl::flow_buffer_type() {
if ( ! flow_buffer_type_ ) {
flow_buffer_type_ = new ParameterizedType(new ID(kFlowBufferClass), nullptr);
}
return flow_buffer_type_;
}
void FlowDecl::AddBaseClass(vector<string>* base_classes) const
{
base_classes->push_back("binpac::FlowAnalyzer");
}
void FlowDecl::AddBaseClass(vector<string>* base_classes) const { base_classes->push_back("binpac::FlowAnalyzer"); }
void FlowDecl::ProcessFlowElement(AnalyzerFlow* flow_elem)
{
throw Exception(flow_elem, "flow should be defined in only a connection declaration");
}
void FlowDecl::ProcessFlowElement(AnalyzerFlow* flow_elem) {
throw Exception(flow_elem, "flow should be defined in only a connection declaration");
}
void FlowDecl::ProcessDataUnitElement(AnalyzerDataUnit* dataunit_elem)
{
if ( dataunit_ )
{
throw Exception(dataunit_elem, "dataunit already defined");
}
dataunit_ = dataunit_elem;
void FlowDecl::ProcessDataUnitElement(AnalyzerDataUnit* dataunit_elem) {
if ( dataunit_ ) {
throw Exception(dataunit_elem, "dataunit already defined");
}
dataunit_ = dataunit_elem;
if ( dataunit_->type() == AnalyzerDataUnit::FLOWUNIT )
{
dataunit_->data_type()->MarkIncrementalInput();
if ( dataunit_->type() == AnalyzerDataUnit::FLOWUNIT ) {
dataunit_->data_type()->MarkIncrementalInput();
flow_buffer_var_field_ = new PubVarField(flow_buffer_id->clone(),
FlowDecl::flow_buffer_type()->Clone());
type_->AddField(flow_buffer_var_field_);
flow_buffer_var_field_ = new PubVarField(flow_buffer_id->clone(), FlowDecl::flow_buffer_type()->Clone());
type_->AddField(flow_buffer_var_field_);
ASSERT(AnalyzerContextDecl::current_analyzer_context());
AnalyzerContextDecl::current_analyzer_context()->AddFlowBuffer();
ASSERT(AnalyzerContextDecl::current_analyzer_context());
AnalyzerContextDecl::current_analyzer_context()->AddFlowBuffer();
// Add an argument to the context initiation
dataunit_->context_type()->AddParamArg(new Expr(flow_buffer_var_field_->id()->clone()));
}
}
// Add an argument to the context initiation
dataunit_->context_type()->AddParamArg(new Expr(flow_buffer_var_field_->id()->clone()));
}
}
void FlowDecl::Prepare()
{
// Add the connection parameter
if ( ! conn_decl_ )
{
throw Exception(this, "no connection is not declared for the flow");
}
void FlowDecl::Prepare() {
// Add the connection parameter
if ( ! conn_decl_ ) {
throw Exception(this, "no connection is not declared for the flow");
}
if ( ! params_ )
params_ = new ParamList();
if ( ! params_ )
params_ = new ParamList();
params_->insert(params_->begin(), new Param(connection_id->clone(), conn_decl_->DataType()));
params_->insert(params_->begin(), new Param(connection_id->clone(), conn_decl_->DataType()));
AnalyzerDecl::Prepare();
AnalyzerDecl::Prepare();
dataunit_->Prepare(env_);
}
dataunit_->Prepare(env_);
}
void FlowDecl::GenPubDecls(Output* out_h, Output* out_cc)
{
AnalyzerDecl::GenPubDecls(out_h, out_cc);
}
void FlowDecl::GenPubDecls(Output* out_h, Output* out_cc) { AnalyzerDecl::GenPubDecls(out_h, out_cc); }
void FlowDecl::GenPrivDecls(Output* out_h, Output* out_cc)
{
// Declare the data unit
dataunit_->dataunit_var_field()->GenPrivDecls(out_h, env_);
void FlowDecl::GenPrivDecls(Output* out_h, Output* out_cc) {
// Declare the data unit
dataunit_->dataunit_var_field()->GenPrivDecls(out_h, env_);
// Declare the analyzer context
dataunit_->context_var_field()->GenPrivDecls(out_h, env_);
// Declare the analyzer context
dataunit_->context_var_field()->GenPrivDecls(out_h, env_);
AnalyzerDecl::GenPrivDecls(out_h, out_cc);
}
AnalyzerDecl::GenPrivDecls(out_h, out_cc);
}
void FlowDecl::GenInitCode(Output* out_cc)
{
AnalyzerDecl::GenInitCode(out_cc);
void FlowDecl::GenInitCode(Output* out_cc) {
AnalyzerDecl::GenInitCode(out_cc);
out_cc->println("%s = nullptr;", env_->LValue(dataunit_id));
out_cc->println("%s = nullptr;", env_->LValue(analyzer_context_id));
out_cc->println("%s = nullptr;", env_->LValue(dataunit_id));
out_cc->println("%s = nullptr;", env_->LValue(analyzer_context_id));
if ( dataunit_->type() == AnalyzerDataUnit::FLOWUNIT )
{
flow_buffer_var_field_->type()->GenPreParsing(out_cc, env_);
env_->SetEvaluated(flow_buffer_var_field_->id());
}
}
if ( dataunit_->type() == AnalyzerDataUnit::FLOWUNIT ) {
flow_buffer_var_field_->type()->GenPreParsing(out_cc, env_);
env_->SetEvaluated(flow_buffer_var_field_->id());
}
}
void FlowDecl::GenCleanUpCode(Output* out_cc)
{
GenDeleteDataUnit(out_cc);
AnalyzerDecl::GenCleanUpCode(out_cc);
}
void FlowDecl::GenCleanUpCode(Output* out_cc) {
GenDeleteDataUnit(out_cc);
AnalyzerDecl::GenCleanUpCode(out_cc);
}
void FlowDecl::GenEOFFunc(Output* out_h, Output* out_cc)
{
string proto = strfmt("%s()", kFlowEOF);
void FlowDecl::GenEOFFunc(Output* out_h, Output* out_cc) {
string proto = strfmt("%s()", kFlowEOF);
out_h->println("void %s;", proto.c_str());
out_h->println("void %s;", proto.c_str());
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
foreach (i, AnalyzerHelperList, eof_helpers_)
{
(*i)->GenCode(nullptr, out_cc, this);
}
foreach (i, AnalyzerHelperList, eof_helpers_) {
(*i)->GenCode(nullptr, out_cc, this);
}
if ( dataunit_->type() == AnalyzerDataUnit::FLOWUNIT )
{
out_cc->println("%s->set_eof();", env_->LValue(flow_buffer_id));
out_cc->println("%s(nullptr, nullptr);", kNewData);
}
if ( dataunit_->type() == AnalyzerDataUnit::FLOWUNIT ) {
out_cc->println("%s->set_eof();", env_->LValue(flow_buffer_id));
out_cc->println("%s(nullptr, nullptr);", kNewData);
}
out_cc->println("}");
out_cc->dec_indent();
}
out_cc->println("}");
out_cc->dec_indent();
}
void FlowDecl::GenGapFunc(Output* out_h, Output* out_cc)
{
string proto = strfmt("%s(int gap_length)", kFlowGap);
void FlowDecl::GenGapFunc(Output* out_h, Output* out_cc) {
string proto = strfmt("%s(int gap_length)", kFlowGap);
out_h->println("void %s;", proto.c_str());
out_h->println("void %s;", proto.c_str());
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
if ( dataunit_->type() == AnalyzerDataUnit::FLOWUNIT )
{
out_cc->println("%s->NewGap(gap_length);", env_->LValue(flow_buffer_id));
}
if ( dataunit_->type() == AnalyzerDataUnit::FLOWUNIT ) {
out_cc->println("%s->NewGap(gap_length);", env_->LValue(flow_buffer_id));
}
out_cc->println("}");
out_cc->dec_indent();
}
out_cc->println("}");
out_cc->dec_indent();
}
void FlowDecl::GenProcessFunc(Output* out_h, Output* out_cc)
{
env_->AddID(begin_of_data, TEMP_VAR, extern_type_const_byteptr);
env_->AddID(end_of_data, TEMP_VAR, extern_type_const_byteptr);
void FlowDecl::GenProcessFunc(Output* out_h, Output* out_cc) {
env_->AddID(begin_of_data, TEMP_VAR, extern_type_const_byteptr);
env_->AddID(end_of_data, TEMP_VAR, extern_type_const_byteptr);
string proto = strfmt("%s(const_byteptr %s, const_byteptr %s)", kNewData,
env_->LValue(begin_of_data), env_->LValue(end_of_data));
string proto = strfmt("%s(const_byteptr %s, const_byteptr %s)", kNewData, env_->LValue(begin_of_data),
env_->LValue(end_of_data));
out_h->println("void %s;", proto.c_str());
out_h->println("void %s;", proto.c_str());
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("void %s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("try");
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("try");
out_cc->inc_indent();
out_cc->println("{");
env_->SetEvaluated(begin_of_data);
env_->SetEvaluated(end_of_data);
env_->SetEvaluated(begin_of_data);
env_->SetEvaluated(end_of_data);
switch ( dataunit_->type() )
{
case AnalyzerDataUnit::DATAGRAM:
GenCodeDatagram(out_cc);
break;
case AnalyzerDataUnit::FLOWUNIT:
GenCodeFlowUnit(out_cc);
break;
default:
ASSERT(0);
}
switch ( dataunit_->type() ) {
case AnalyzerDataUnit::DATAGRAM: GenCodeDatagram(out_cc); break;
case AnalyzerDataUnit::FLOWUNIT: GenCodeFlowUnit(out_cc); break;
default: ASSERT(0);
}
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("catch ( binpac::Exception const &e )");
out_cc->inc_indent();
out_cc->println("{");
GenCleanUpCode(out_cc);
if ( dataunit_->type() == AnalyzerDataUnit::FLOWUNIT )
{
out_cc->println("%s->DiscardData();", env_->LValue(flow_buffer_id));
}
out_cc->println("throw e;");
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("catch ( binpac::Exception const &e )");
out_cc->inc_indent();
out_cc->println("{");
GenCleanUpCode(out_cc);
if ( dataunit_->type() == AnalyzerDataUnit::FLOWUNIT ) {
out_cc->println("%s->DiscardData();", env_->LValue(flow_buffer_id));
}
out_cc->println("throw e;");
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("");
}
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("");
}
void FlowDecl::GenNewDataUnit(Output* out_cc)
{
Type* unit_datatype = dataunit_->data_type();
// dataunit_->data_type()->GenPreParsing(out_cc, env_);
dataunit_->GenNewDataUnit(out_cc, env_);
if ( unit_datatype->buffer_input() && unit_datatype->buffer_mode() == Type::BUFFER_BY_LENGTH )
{
out_cc->println("%s->NewFrame(0, false);", env_->LValue(flow_buffer_id));
}
dataunit_->GenNewContext(out_cc, env_);
}
void FlowDecl::GenNewDataUnit(Output* out_cc) {
Type* unit_datatype = dataunit_->data_type();
// dataunit_->data_type()->GenPreParsing(out_cc, env_);
dataunit_->GenNewDataUnit(out_cc, env_);
if ( unit_datatype->buffer_input() && unit_datatype->buffer_mode() == Type::BUFFER_BY_LENGTH ) {
out_cc->println("%s->NewFrame(0, false);", env_->LValue(flow_buffer_id));
}
dataunit_->GenNewContext(out_cc, env_);
}
void FlowDecl::GenDeleteDataUnit(Output* out_cc)
{
// Do not just delete dataunit, because we may just want to Unref it.
// out_cc->println("delete %s;", env_->LValue(dataunit_id));
dataunit_->data_type()->GenCleanUpCode(out_cc, env_);
dataunit_->context_type()->GenCleanUpCode(out_cc, env_);
}
void FlowDecl::GenDeleteDataUnit(Output* out_cc) {
// Do not just delete dataunit, because we may just want to Unref it.
// out_cc->println("delete %s;", env_->LValue(dataunit_id));
dataunit_->data_type()->GenCleanUpCode(out_cc, env_);
dataunit_->context_type()->GenCleanUpCode(out_cc, env_);
}
void FlowDecl::GenCodeFlowUnit(Output* out_cc)
{
Type* unit_datatype = dataunit_->data_type();
void FlowDecl::GenCodeFlowUnit(Output* out_cc) {
Type* unit_datatype = dataunit_->data_type();
out_cc->println("%s->NewData(%s, %s);", env_->LValue(flow_buffer_id),
env_->RValue(begin_of_data), env_->RValue(end_of_data));
out_cc->println("%s->NewData(%s, %s);", env_->LValue(flow_buffer_id), env_->RValue(begin_of_data),
env_->RValue(end_of_data));
out_cc->println("while ( %s->data_available() && ", env_->LValue(flow_buffer_id));
out_cc->inc_indent();
out_cc->println("( !%s->have_pending_request() || %s->ready() ) )",
env_->LValue(flow_buffer_id), env_->LValue(flow_buffer_id));
out_cc->println("{");
out_cc->println("while ( %s->data_available() && ", env_->LValue(flow_buffer_id));
out_cc->inc_indent();
out_cc->println("( !%s->have_pending_request() || %s->ready() ) )", env_->LValue(flow_buffer_id),
env_->LValue(flow_buffer_id));
out_cc->println("{");
// Generate a new dataunit if necessary
out_cc->println("if ( ! %s )", env_->LValue(dataunit_id));
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("BINPAC_ASSERT(!%s);", env_->LValue(analyzer_context_id));
GenNewDataUnit(out_cc);
out_cc->println("}");
out_cc->dec_indent();
// Generate a new dataunit if necessary
out_cc->println("if ( ! %s )", env_->LValue(dataunit_id));
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("BINPAC_ASSERT(!%s);", env_->LValue(analyzer_context_id));
GenNewDataUnit(out_cc);
out_cc->println("}");
out_cc->dec_indent();
DataPtr data(env_, nullptr, 0);
unit_datatype->GenParseCode(out_cc, env_, data, 0);
DataPtr data(env_, nullptr, 0);
unit_datatype->GenParseCode(out_cc, env_, data, 0);
out_cc->println("if ( %s )", unit_datatype->parsing_complete(env_).c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("// Clean up the flow unit after parsing");
GenDeleteDataUnit(out_cc);
// out_cc->println("BINPAC_ASSERT(%s == 0);", env_->LValue(dataunit_id));
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("else");
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("// Resume upon next input segment");
out_cc->println("BINPAC_ASSERT(!%s->ready());", env_->RValue(flow_buffer_id));
out_cc->println("break;");
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("if ( %s )", unit_datatype->parsing_complete(env_).c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("// Clean up the flow unit after parsing");
GenDeleteDataUnit(out_cc);
// out_cc->println("BINPAC_ASSERT(%s == 0);", env_->LValue(dataunit_id));
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("else");
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("// Resume upon next input segment");
out_cc->println("BINPAC_ASSERT(!%s->ready());", env_->RValue(flow_buffer_id));
out_cc->println("break;");
out_cc->println("}");
out_cc->dec_indent();
out_cc->println("}");
out_cc->dec_indent();
}
out_cc->println("}");
out_cc->dec_indent();
}
void FlowDecl::GenCodeDatagram(Output* out_cc)
{
Type* unit_datatype = dataunit_->data_type();
GenNewDataUnit(out_cc);
void FlowDecl::GenCodeDatagram(Output* out_cc) {
Type* unit_datatype = dataunit_->data_type();
GenNewDataUnit(out_cc);
string parse_params = strfmt("%s, %s", env_->RValue(begin_of_data), env_->RValue(end_of_data));
string parse_params = strfmt("%s, %s", env_->RValue(begin_of_data), env_->RValue(end_of_data));
if ( RequiresAnalyzerContext::compute(unit_datatype) )
{
parse_params += ", ";
parse_params += env_->RValue(analyzer_context_id);
}
if ( RequiresAnalyzerContext::compute(unit_datatype) ) {
parse_params += ", ";
parse_params += env_->RValue(analyzer_context_id);
}
DataPtr dataptr(env_, begin_of_data, 0);
unit_datatype->GenParseCode(out_cc, env_, dataptr, 0);
DataPtr dataptr(env_, begin_of_data, 0);
unit_datatype->GenParseCode(out_cc, env_, dataptr, 0);
GenDeleteDataUnit(out_cc);
}
GenDeleteDataUnit(out_cc);
}

View file

@ -3,45 +3,44 @@
#include "pac_analyzer.h"
class FlowDecl : public AnalyzerDecl
{
class FlowDecl : public AnalyzerDecl {
public:
FlowDecl(ID* flow_id, ParamList* params, AnalyzerElementList* elemlist);
~FlowDecl() override;
FlowDecl(ID* flow_id, ParamList* params, AnalyzerElementList* elemlist);
~FlowDecl() override;
void Prepare() override;
void Prepare() override;
void set_conn_decl(ConnDecl* c) { conn_decl_ = c; }
void set_conn_decl(ConnDecl* c) { conn_decl_ = c; }
static ParameterizedType* flow_buffer_type();
static ParameterizedType* flow_buffer_type();
protected:
void AddBaseClass(vector<string>* base_classes) const override;
void AddBaseClass(vector<string>* base_classes) const override;
void GenInitCode(Output* out_cc) override;
void GenCleanUpCode(Output* out_cc) override;
void GenProcessFunc(Output* out_h, Output* out_cc) override;
void GenEOFFunc(Output* out_h, Output* out_cc) override;
void GenGapFunc(Output* out_h, Output* out_cc) override;
void GenInitCode(Output* out_cc) override;
void GenCleanUpCode(Output* out_cc) override;
void GenProcessFunc(Output* out_h, Output* out_cc) override;
void GenEOFFunc(Output* out_h, Output* out_cc) override;
void GenGapFunc(Output* out_h, Output* out_cc) override;
void GenPubDecls(Output* out_h, Output* out_cc) override;
void GenPrivDecls(Output* out_h, Output* out_cc) override;
void GenPubDecls(Output* out_h, Output* out_cc) override;
void GenPrivDecls(Output* out_h, Output* out_cc) override;
void ProcessFlowElement(AnalyzerFlow* flow_elem) override;
void ProcessDataUnitElement(AnalyzerDataUnit* dataunit_elem) override;
void ProcessFlowElement(AnalyzerFlow* flow_elem) override;
void ProcessDataUnitElement(AnalyzerDataUnit* dataunit_elem) override;
private:
void GenNewDataUnit(Output* out_cc);
void GenDeleteDataUnit(Output* out_cc);
void GenCodeFlowUnit(Output* out_cc);
void GenCodeDatagram(Output* out_cc);
void GenNewDataUnit(Output* out_cc);
void GenDeleteDataUnit(Output* out_cc);
void GenCodeFlowUnit(Output* out_cc);
void GenCodeDatagram(Output* out_cc);
AnalyzerDataUnit* dataunit_;
ConnDecl* conn_decl_;
AnalyzerDataUnit* dataunit_;
ConnDecl* conn_decl_;
Field* flow_buffer_var_field_;
Field* flow_buffer_var_field_;
static ParameterizedType* flow_buffer_type_;
};
static ParameterizedType* flow_buffer_type_;
};
#endif // pac_flow_h

View file

@ -7,109 +7,86 @@
#include "pac_type.h"
Function::Function(ID* id, Type* type, ParamList* params)
: id_(id), type_(type), params_(params), expr_(nullptr), code_(nullptr)
{
analyzer_decl_ = nullptr;
env_ = nullptr;
}
: id_(id), type_(type), params_(params), expr_(nullptr), code_(nullptr) {
analyzer_decl_ = nullptr;
env_ = nullptr;
}
Function::~Function()
{
delete id_;
delete type_;
delete_list(ParamList, params_);
delete env_;
delete expr_;
delete code_;
}
Function::~Function() {
delete id_;
delete type_;
delete_list(ParamList, params_);
delete env_;
delete expr_;
delete code_;
}
void Function::Prepare(Env* env)
{
env->AddID(id_, FUNC_ID, type_);
env->SetEvaluated(id_);
void Function::Prepare(Env* env) {
env->AddID(id_, FUNC_ID, type_);
env->SetEvaluated(id_);
env_ = new Env(env, this);
env_ = new Env(env, this);
foreach (i, ParamList, params_)
{
Param* p = *i;
env_->AddID(p->id(), FUNC_PARAM, p->type());
env_->SetEvaluated(p->id());
}
}
foreach (i, ParamList, params_) {
Param* p = *i;
env_->AddID(p->id(), FUNC_PARAM, p->type());
env_->SetEvaluated(p->id());
}
}
void Function::GenForwardDeclaration(Output* out_h)
{
// Do nothing
}
void Function::GenForwardDeclaration(Output* out_h) {
// Do nothing
}
void Function::GenCode(Output* out_h, Output* out_cc)
{
out_h->println("%s %s(%s);", type_->DataTypeStr().c_str(), id_->Name(),
ParamDecls(params_).c_str());
void Function::GenCode(Output* out_h, Output* out_cc) {
out_h->println("%s %s(%s);", type_->DataTypeStr().c_str(), id_->Name(), ParamDecls(params_).c_str());
string class_str = "";
if ( analyzer_decl_ )
class_str = strfmt("%s::", analyzer_decl_->id()->Name());
string class_str = "";
if ( analyzer_decl_ )
class_str = strfmt("%s::", analyzer_decl_->id()->Name());
string proto_str = strfmt("%s %s%s(%s)", type_->DataTypeStr().c_str(), class_str.c_str(),
id_->Name(), ParamDecls(params_).c_str());
string proto_str = strfmt("%s %s%s(%s)", type_->DataTypeStr().c_str(), class_str.c_str(), id_->Name(),
ParamDecls(params_).c_str());
ASSERT(! (expr_ && code_));
ASSERT(! (expr_ && code_));
if ( expr_ )
{
out_cc->println("%s", proto_str.c_str());
if ( expr_ ) {
out_cc->println("%s", proto_str.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("return static_cast<%s>(%s);", type_->DataTypeStr().c_str(),
expr_->EvalExpr(out_cc, env_));
out_cc->println("return static_cast<%s>(%s);", type_->DataTypeStr().c_str(), expr_->EvalExpr(out_cc, env_));
out_cc->println("}");
out_cc->dec_indent();
}
out_cc->println("}");
out_cc->dec_indent();
}
else if ( code_ )
{
out_cc->println("%s", proto_str.c_str());
else if ( code_ ) {
out_cc->println("%s", proto_str.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->inc_indent();
out_cc->println("{");
code_->GenCode(out_cc, env_);
code_->GenCode(out_cc, env_);
out_cc->println("}");
out_cc->dec_indent();
}
out_cc->println("}");
out_cc->dec_indent();
}
out_cc->println("");
}
out_cc->println("");
}
FuncDecl::FuncDecl(Function* function) : Decl(function->id()->clone(), FUNC), function_(function)
{
function_->Prepare(global_env());
}
FuncDecl::FuncDecl(Function* function) : Decl(function->id()->clone(), FUNC), function_(function) {
function_->Prepare(global_env());
}
FuncDecl::~FuncDecl()
{
delete function_;
}
FuncDecl::~FuncDecl() { delete function_; }
void FuncDecl::Prepare() { }
void FuncDecl::Prepare() {}
void FuncDecl::GenForwardDeclaration(Output* out_h)
{
function_->GenForwardDeclaration(out_h);
}
void FuncDecl::GenForwardDeclaration(Output* out_h) { function_->GenForwardDeclaration(out_h); }
void FuncDecl::GenCode(Output* out_h, Output* out_cc)
{
function_->GenCode(out_h, out_cc);
}
void FuncDecl::GenCode(Output* out_h, Output* out_cc) { function_->GenCode(out_h, out_cc); }
AnalyzerFunction::AnalyzerFunction(Function* function)
: AnalyzerElement(FUNCTION), function_(function)
{
}
AnalyzerFunction::AnalyzerFunction(Function* function) : AnalyzerElement(FUNCTION), function_(function) {}

View file

@ -4,65 +4,62 @@
#include "pac_analyzer.h"
#include "pac_decl.h"
class Function : public Object
{
class Function : public Object {
public:
Function(ID* id, Type* type, ParamList* params);
~Function();
Function(ID* id, Type* type, ParamList* params);
~Function();
ID* id() const { return id_; }
ID* id() const { return id_; }
AnalyzerDecl* analyzer_decl() const { return analyzer_decl_; }
void set_analyzer_decl(AnalyzerDecl* decl) { analyzer_decl_ = decl; }
AnalyzerDecl* analyzer_decl() const { return analyzer_decl_; }
void set_analyzer_decl(AnalyzerDecl* decl) { analyzer_decl_ = decl; }
Expr* expr() const { return expr_; }
void set_expr(Expr* expr) { expr_ = expr; }
Expr* expr() const { return expr_; }
void set_expr(Expr* expr) { expr_ = expr; }
EmbeddedCode* code() const { return code_; }
void set_code(EmbeddedCode* code) { code_ = code; }
EmbeddedCode* code() const { return code_; }
void set_code(EmbeddedCode* code) { code_ = code; }
void Prepare(Env* env);
void GenForwardDeclaration(Output* out_h);
void GenCode(Output* out_h, Output* out_cc);
void Prepare(Env* env);
void GenForwardDeclaration(Output* out_h);
void GenCode(Output* out_h, Output* out_cc);
private:
Env* env_;
Env* env_;
ID* id_;
Type* type_;
ParamList* params_;
ID* id_;
Type* type_;
ParamList* params_;
AnalyzerDecl* analyzer_decl_;
AnalyzerDecl* analyzer_decl_;
Expr* expr_;
EmbeddedCode* code_;
};
Expr* expr_;
EmbeddedCode* code_;
};
class FuncDecl : public Decl
{
class FuncDecl : public Decl {
public:
FuncDecl(Function* function);
~FuncDecl() override;
FuncDecl(Function* function);
~FuncDecl() override;
Function* function() const { return function_; }
Function* function() const { return function_; }
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
private:
Function* function_;
};
Function* function_;
};
class AnalyzerFunction : public AnalyzerElement
{
class AnalyzerFunction : public AnalyzerElement {
public:
AnalyzerFunction(Function* function);
AnalyzerFunction(Function* function);
Function* function() const { return function_; }
Function* function() const { return function_; }
private:
Function* function_;
};
Function* function_;
};
#endif // pac_func_h

View file

@ -38,402 +38,338 @@ const ID* buffering_state_id = nullptr;
int ID::anonymous_id_seq = 0;
ID* ID::NewAnonymousID(const string& prefix)
{
ID* id = new ID(strfmt("%s%03d", prefix.c_str(), ++anonymous_id_seq));
id->anonymous_id_ = true;
return id;
}
ID* ID::NewAnonymousID(const string& prefix) {
ID* id = new ID(strfmt("%s%03d", prefix.c_str(), ++anonymous_id_seq));
id->anonymous_id_ = true;
return id;
}
IDRecord::IDRecord(Env* arg_env, const ID* arg_id, IDType arg_id_type)
: env(arg_env), id(arg_id), id_type(arg_id_type)
{
eval = nullptr;
evaluated = in_evaluation = false;
setfunc = ""; // except for STATE_VAR
switch ( id_type )
{
case MEMBER_VAR:
rvalue = strfmt("%s()", id->Name());
lvalue = strfmt("%s_", id->Name());
break;
case PRIV_MEMBER_VAR:
rvalue = strfmt("%s_", id->Name());
lvalue = strfmt("%s_", id->Name());
break;
case UNION_VAR:
rvalue = strfmt("%s()", id->Name());
lvalue = strfmt("%s_", id->Name());
break;
case CONST:
case GLOBAL_VAR:
rvalue = strfmt("%s", id->Name());
lvalue = strfmt("%s", id->Name());
break;
case TEMP_VAR:
rvalue = strfmt("t_%s", id->Name());
lvalue = strfmt("t_%s", id->Name());
break;
case STATE_VAR:
rvalue = strfmt("%s()", id->Name());
lvalue = strfmt("%s_", id->Name());
break;
case MACRO:
rvalue = "@MACRO@";
lvalue = "@MACRO@";
break;
case FUNC_ID:
rvalue = strfmt("%s", id->Name());
lvalue = "@FUNC_ID@";
break;
case FUNC_PARAM:
rvalue = strfmt("%s", id->Name());
lvalue = "@FUNC_PARAM@";
break;
}
: env(arg_env), id(arg_id), id_type(arg_id_type) {
eval = nullptr;
evaluated = in_evaluation = false;
setfunc = ""; // except for STATE_VAR
switch ( id_type ) {
case MEMBER_VAR:
rvalue = strfmt("%s()", id->Name());
lvalue = strfmt("%s_", id->Name());
break;
case PRIV_MEMBER_VAR:
rvalue = strfmt("%s_", id->Name());
lvalue = strfmt("%s_", id->Name());
break;
case UNION_VAR:
rvalue = strfmt("%s()", id->Name());
lvalue = strfmt("%s_", id->Name());
break;
case CONST:
case GLOBAL_VAR:
rvalue = strfmt("%s", id->Name());
lvalue = strfmt("%s", id->Name());
break;
case TEMP_VAR:
rvalue = strfmt("t_%s", id->Name());
lvalue = strfmt("t_%s", id->Name());
break;
case STATE_VAR:
rvalue = strfmt("%s()", id->Name());
lvalue = strfmt("%s_", id->Name());
break;
case MACRO:
rvalue = "@MACRO@";
lvalue = "@MACRO@";
break;
case FUNC_ID:
rvalue = strfmt("%s", id->Name());
lvalue = "@FUNC_ID@";
break;
case FUNC_PARAM:
rvalue = strfmt("%s", id->Name());
lvalue = "@FUNC_PARAM@";
break;
}
data_type = nullptr;
field = nullptr;
constant = constant_set = false;
macro = nullptr;
}
data_type = nullptr;
field = nullptr;
constant = constant_set = false;
macro = nullptr;
}
IDRecord::~IDRecord() { }
IDRecord::~IDRecord() {}
void IDRecord::SetConstant(int c)
{
ASSERT(id_type == CONST);
constant_set = true;
constant = c;
}
void IDRecord::SetConstant(int c) {
ASSERT(id_type == CONST);
constant_set = true;
constant = c;
}
bool IDRecord::GetConstant(int* pc) const
{
if ( constant_set )
*pc = constant;
return constant_set;
}
bool IDRecord::GetConstant(int* pc) const {
if ( constant_set )
*pc = constant;
return constant_set;
}
void IDRecord::SetMacro(Expr* e)
{
ASSERT(id_type == MACRO);
macro = e;
}
void IDRecord::SetMacro(Expr* e) {
ASSERT(id_type == MACRO);
macro = e;
}
Expr* IDRecord::GetMacro() const
{
ASSERT(id_type == MACRO);
return macro;
}
Expr* IDRecord::GetMacro() const {
ASSERT(id_type == MACRO);
return macro;
}
void IDRecord::SetEvaluated(bool v)
{
if ( v )
ASSERT(! evaluated);
evaluated = v;
}
void IDRecord::SetEvaluated(bool v) {
if ( v )
ASSERT(! evaluated);
evaluated = v;
}
void IDRecord::Evaluate(Output* out, Env* env)
{
if ( evaluated )
return;
void IDRecord::Evaluate(Output* out, Env* env) {
if ( evaluated )
return;
if ( ! out )
throw ExceptionIDNotEvaluated(id);
if ( ! out )
throw ExceptionIDNotEvaluated(id);
if ( ! eval )
throw Exception(id, "no evaluation method");
if ( in_evaluation )
throw ExceptionCyclicDependence(id);
if ( ! eval )
throw Exception(id, "no evaluation method");
in_evaluation = true;
eval->GenEval(out, env);
in_evaluation = false;
if ( in_evaluation )
throw ExceptionCyclicDependence(id);
evaluated = true;
}
in_evaluation = true;
eval->GenEval(out, env);
in_evaluation = false;
const char* IDRecord::RValue() const
{
if ( id_type == MACRO )
return macro->EvalExpr(nullptr, env);
evaluated = true;
}
if ( id_type == TEMP_VAR && ! evaluated )
throw ExceptionIDNotEvaluated(id);
const char* IDRecord::RValue() const {
if ( id_type == MACRO )
return macro->EvalExpr(nullptr, env);
return rvalue.c_str();
}
if ( id_type == TEMP_VAR && ! evaluated )
throw ExceptionIDNotEvaluated(id);
const char* IDRecord::LValue() const
{
ASSERT(id_type != MACRO && id_type != FUNC_ID);
return lvalue.c_str();
}
return rvalue.c_str();
}
Env::Env(Env* parent_env, Object* context_object)
: parent(parent_env), context_object_(context_object)
{
allow_undefined_id_ = false;
in_branch_ = false;
}
const char* IDRecord::LValue() const {
ASSERT(id_type != MACRO && id_type != FUNC_ID);
return lvalue.c_str();
}
Env::~Env()
{
for ( id_map_t::iterator it = id_map.begin(); it != id_map.end(); ++it )
{
delete it->second;
it->second = 0;
}
}
Env::Env(Env* parent_env, Object* context_object) : parent(parent_env), context_object_(context_object) {
allow_undefined_id_ = false;
in_branch_ = false;
}
void Env::AddID(const ID* id, IDType id_type, Type* data_type)
{
DEBUG_MSG("To add ID `%s'...\n", id->Name());
id_map_t::iterator it = id_map.find(id);
if ( it != id_map.end() )
{
DEBUG_MSG("Duplicate definition: `%s'\n", it->first->Name());
throw ExceptionIDRedefinition(id);
}
id_map[id] = new IDRecord(this, id, id_type);
// TODO: figure out when data_type must be non-NULL
// ASSERT(data_type);
SetDataType(id, data_type);
}
Env::~Env() {
for ( id_map_t::iterator it = id_map.begin(); it != id_map.end(); ++it ) {
delete it->second;
it->second = 0;
}
}
void Env::AddConstID(const ID* id, const int c, Type* type)
{
if ( ! type )
type = extern_type_int;
AddID(id, CONST, type);
SetConstant(id, c);
SetEvaluated(id); // a constant is always evaluated
}
void Env::AddID(const ID* id, IDType id_type, Type* data_type) {
DEBUG_MSG("To add ID `%s'...\n", id->Name());
id_map_t::iterator it = id_map.find(id);
if ( it != id_map.end() ) {
DEBUG_MSG("Duplicate definition: `%s'\n", it->first->Name());
throw ExceptionIDRedefinition(id);
}
id_map[id] = new IDRecord(this, id, id_type);
// TODO: figure out when data_type must be non-NULL
// ASSERT(data_type);
SetDataType(id, data_type);
}
void Env::AddMacro(const ID* id, Expr* macro)
{
AddID(id, MACRO, macro->DataType(this));
SetMacro(id, macro);
SetEvaluated(id);
}
void Env::AddConstID(const ID* id, const int c, Type* type) {
if ( ! type )
type = extern_type_int;
AddID(id, CONST, type);
SetConstant(id, c);
SetEvaluated(id); // a constant is always evaluated
}
ID* Env::AddTempID(Type* type)
{
ID* id = ID::NewAnonymousID("t_var_");
AddID(id, TEMP_VAR, type);
return id;
}
void Env::AddMacro(const ID* id, Expr* macro) {
AddID(id, MACRO, macro->DataType(this));
SetMacro(id, macro);
SetEvaluated(id);
}
IDRecord* Env::lookup(const ID* id, bool recursive, bool raise_exception) const
{
ASSERT(id);
ID* Env::AddTempID(Type* type) {
ID* id = ID::NewAnonymousID("t_var_");
AddID(id, TEMP_VAR, type);
return id;
}
id_map_t::const_iterator it = id_map.find(id);
if ( it != id_map.end() )
return it->second;
IDRecord* Env::lookup(const ID* id, bool recursive, bool raise_exception) const {
ASSERT(id);
if ( recursive && parent )
return parent->lookup(id, recursive, raise_exception);
id_map_t::const_iterator it = id_map.find(id);
if ( it != id_map.end() )
return it->second;
if ( raise_exception )
throw ExceptionIDNotFound(id);
else
return nullptr;
}
if ( recursive && parent )
return parent->lookup(id, recursive, raise_exception);
IDType Env::GetIDType(const ID* id) const
{
return lookup(id, true, true)->GetType();
}
if ( raise_exception )
throw ExceptionIDNotFound(id);
else
return nullptr;
}
const char* Env::RValue(const ID* id) const
{
IDRecord* r = lookup(id, true, false);
if ( r )
return r->RValue();
else
{
if ( allow_undefined_id() )
return id->Name();
else
throw ExceptionIDNotFound(id);
}
}
IDType Env::GetIDType(const ID* id) const { return lookup(id, true, true)->GetType(); }
const char* Env::LValue(const ID* id) const
{
return lookup(id, true, true)->LValue();
}
const char* Env::RValue(const ID* id) const {
IDRecord* r = lookup(id, true, false);
if ( r )
return r->RValue();
else {
if ( allow_undefined_id() )
return id->Name();
else
throw ExceptionIDNotFound(id);
}
}
void Env::SetEvalMethod(const ID* id, Evaluatable* eval)
{
lookup(id, true, true)->SetEvalMethod(eval);
}
const char* Env::LValue(const ID* id) const { return lookup(id, true, true)->LValue(); }
void Env::Evaluate(Output* out, const ID* id)
{
IDRecord* r = lookup(id, true, ! allow_undefined_id());
if ( r )
r->Evaluate(out, this);
}
void Env::SetEvalMethod(const ID* id, Evaluatable* eval) { lookup(id, true, true)->SetEvalMethod(eval); }
bool Env::Evaluated(const ID* id) const
{
IDRecord* r = lookup(id, true, ! allow_undefined_id());
if ( r )
return r->Evaluated();
else
// Assume undefined variables are already evaluated
return true;
}
void Env::Evaluate(Output* out, const ID* id) {
IDRecord* r = lookup(id, true, ! allow_undefined_id());
if ( r )
r->Evaluate(out, this);
}
void Env::SetEvaluated(const ID* id, bool v)
{
if ( in_branch() )
{
Field* f = GetField(id);
if ( f && f->tof() == LET_FIELD )
{
throw Exception(context_object_, strfmt("INTERNAL ERROR: "
"evaluating let field '%s' in a branch! "
"To work around this problem, "
"add '&requires(%s)' to the case type. "
"Sorry for the inconvenience.\n",
id->Name(), id->Name()));
ASSERT(0);
}
}
bool Env::Evaluated(const ID* id) const {
IDRecord* r = lookup(id, true, ! allow_undefined_id());
if ( r )
return r->Evaluated();
else
// Assume undefined variables are already evaluated
return true;
}
IDRecord* r = lookup(id, false, false);
if ( r )
r->SetEvaluated(v);
else if ( parent )
parent->SetEvaluated(id, v);
else
throw ExceptionIDNotFound(id);
}
void Env::SetEvaluated(const ID* id, bool v) {
if ( in_branch() ) {
Field* f = GetField(id);
if ( f && f->tof() == LET_FIELD ) {
throw Exception(context_object_, strfmt("INTERNAL ERROR: "
"evaluating let field '%s' in a branch! "
"To work around this problem, "
"add '&requires(%s)' to the case type. "
"Sorry for the inconvenience.\n",
id->Name(), id->Name()));
ASSERT(0);
}
}
void Env::SetField(const ID* id, Field* field)
{
lookup(id, false, true)->SetField(field);
}
IDRecord* r = lookup(id, false, false);
if ( r )
r->SetEvaluated(v);
else if ( parent )
parent->SetEvaluated(id, v);
else
throw ExceptionIDNotFound(id);
}
Field* Env::GetField(const ID* id) const
{
return lookup(id, true, true)->GetField();
}
void Env::SetField(const ID* id, Field* field) { lookup(id, false, true)->SetField(field); }
void Env::SetDataType(const ID* id, Type* type)
{
lookup(id, true, true)->SetDataType(type);
}
Field* Env::GetField(const ID* id) const { return lookup(id, true, true)->GetField(); }
Type* Env::GetDataType(const ID* id) const
{
IDRecord* r = lookup(id, true, false);
if ( r )
return r->GetDataType();
else
return nullptr;
}
void Env::SetDataType(const ID* id, Type* type) { lookup(id, true, true)->SetDataType(type); }
string Env::DataTypeStr(const ID* id) const
{
Type* type = GetDataType(id);
if ( ! type )
throw Exception(id, "data type not defined");
return type->DataTypeStr();
}
Type* Env::GetDataType(const ID* id) const {
IDRecord* r = lookup(id, true, false);
if ( r )
return r->GetDataType();
else
return nullptr;
}
void Env::SetConstant(const ID* id, int constant)
{
lookup(id, false, true)->SetConstant(constant);
}
string Env::DataTypeStr(const ID* id) const {
Type* type = GetDataType(id);
if ( ! type )
throw Exception(id, "data type not defined");
return type->DataTypeStr();
}
bool Env::GetConstant(const ID* id, int* pc) const
{
ASSERT(pc);
// lookup without raising exception
IDRecord* r = lookup(id, true, false);
if ( r )
return r->GetConstant(pc);
else
return false;
}
void Env::SetConstant(const ID* id, int constant) { lookup(id, false, true)->SetConstant(constant); }
void Env::SetMacro(const ID* id, Expr* macro)
{
lookup(id, true, true)->SetMacro(macro);
}
bool Env::GetConstant(const ID* id, int* pc) const {
ASSERT(pc);
// lookup without raising exception
IDRecord* r = lookup(id, true, false);
if ( r )
return r->GetConstant(pc);
else
return false;
}
Expr* Env::GetMacro(const ID* id) const
{
return lookup(id, true, true)->GetMacro();
}
void Env::SetMacro(const ID* id, Expr* macro) { lookup(id, true, true)->SetMacro(macro); }
void init_builtin_identifiers()
{
default_value_var = new ID("val");
null_id = new ID("NULL");
null_byteseg_id = new ID("null_byteseg");
begin_of_data = new ID("begin_of_data");
end_of_data = new ID("end_of_data");
len_of_data = new ID("length_of_data");
byteorder_id = new ID("byteorder");
bigendian_id = new ID("bigendian");
littleendian_id = new ID("littleendian");
unspecified_byteorder_id = new ID("unspecified_byteorder");
const_true_id = new ID("true");
const_false_id = new ID("false");
analyzer_context_id = new ID("context");
this_id = new ID("this");
sourcedata_id = new ID("sourcedata");
connection_id = new ID("connection");
upflow_id = new ID("upflow");
downflow_id = new ID("downflow");
dataunit_id = new ID("dataunit");
flow_buffer_id = new ID("flow_buffer");
element_macro_id = new ID("$element");
input_macro_id = new ID("$input");
context_macro_id = new ID("$context");
parsing_state_id = new ID("parsing_state");
buffering_state_id = new ID("buffering_state");
Expr* Env::GetMacro(const ID* id) const { return lookup(id, true, true)->GetMacro(); }
null_decl_id = new ID("<null-decl>");
current_decl_id = null_decl_id;
}
void init_builtin_identifiers() {
default_value_var = new ID("val");
null_id = new ID("NULL");
null_byteseg_id = new ID("null_byteseg");
begin_of_data = new ID("begin_of_data");
end_of_data = new ID("end_of_data");
len_of_data = new ID("length_of_data");
byteorder_id = new ID("byteorder");
bigendian_id = new ID("bigendian");
littleendian_id = new ID("littleendian");
unspecified_byteorder_id = new ID("unspecified_byteorder");
const_true_id = new ID("true");
const_false_id = new ID("false");
analyzer_context_id = new ID("context");
this_id = new ID("this");
sourcedata_id = new ID("sourcedata");
connection_id = new ID("connection");
upflow_id = new ID("upflow");
downflow_id = new ID("downflow");
dataunit_id = new ID("dataunit");
flow_buffer_id = new ID("flow_buffer");
element_macro_id = new ID("$element");
input_macro_id = new ID("$input");
context_macro_id = new ID("$context");
parsing_state_id = new ID("parsing_state");
buffering_state_id = new ID("buffering_state");
Env* global_env()
{
static Env* the_global_env = nullptr;
null_decl_id = new ID("<null-decl>");
current_decl_id = null_decl_id;
}
if ( ! the_global_env )
{
the_global_env = new Env(nullptr, nullptr);
Env* global_env() {
static Env* the_global_env = nullptr;
// These two are defined in binpac.h, so we do not need to
// generate code for them.
the_global_env->AddConstID(bigendian_id, 0);
the_global_env->AddConstID(littleendian_id, 1);
the_global_env->AddConstID(unspecified_byteorder_id, -1);
the_global_env->AddConstID(const_false_id, 0);
the_global_env->AddConstID(const_true_id, 1);
// A hack for ID "this"
the_global_env->AddConstID(this_id, 0);
the_global_env->AddConstID(null_id, 0, extern_type_nullptr);
if ( ! the_global_env ) {
the_global_env = new Env(nullptr, nullptr);
// These two are defined in binpac.h, so we do not need to
// generate code for them.
the_global_env->AddConstID(bigendian_id, 0);
the_global_env->AddConstID(littleendian_id, 1);
the_global_env->AddConstID(unspecified_byteorder_id, -1);
the_global_env->AddConstID(const_false_id, 0);
the_global_env->AddConstID(const_true_id, 1);
// A hack for ID "this"
the_global_env->AddConstID(this_id, 0);
the_global_env->AddConstID(null_id, 0, extern_type_nullptr);
#if 0
the_global_env->AddID(null_byteseg_id,
GLOBAL_VAR,
extern_type_const_byteseg);
#endif
}
}
return the_global_env;
}
return the_global_env;
}
string set_function(const ID* id)
{
return strfmt("set_%s", id->Name());
}
string set_function(const ID* id) { return strfmt("set_%s", id->Name()); }

View file

@ -22,189 +22,179 @@ using namespace std;
// Env -- a mapping from ID names to their L/R-value expressions and evaluation
// methods.
enum IDType
{
CONST,
GLOBAL_VAR,
TEMP_VAR,
MEMBER_VAR,
PRIV_MEMBER_VAR,
UNION_VAR,
STATE_VAR,
MACRO,
FUNC_ID,
FUNC_PARAM,
};
enum IDType {
CONST,
GLOBAL_VAR,
TEMP_VAR,
MEMBER_VAR,
PRIV_MEMBER_VAR,
UNION_VAR,
STATE_VAR,
MACRO,
FUNC_ID,
FUNC_PARAM,
};
class ID;
class IDRecord;
class Env;
class Evaluatable;
class ID : public Object
{
class ID : public Object {
public:
ID(string arg_name) : name(arg_name), anonymous_id_(false)
{
locname = nfmt("%s:%s", Location(), Name());
}
~ID() { delete[] locname; }
ID(string arg_name) : name(arg_name), anonymous_id_(false) { locname = nfmt("%s:%s", Location(), Name()); }
~ID() { delete[] locname; }
bool operator==(ID const& x) const { return name == x.Name(); }
bool operator==(ID const& x) const { return name == x.Name(); }
const char* Name() const { return name.c_str(); }
const char* LocName() const { return locname; }
bool is_anonymous() const { return anonymous_id_; }
const char* Name() const { return name.c_str(); }
const char* LocName() const { return locname; }
bool is_anonymous() const { return anonymous_id_; }
ID* clone() const { return new ID(Name()); }
ID* clone() const { return new ID(Name()); }
protected:
string name;
bool anonymous_id_;
char* locname;
friend class ID_ptr_cmp;
string name;
bool anonymous_id_;
char* locname;
friend class ID_ptr_cmp;
public:
static ID* NewAnonymousID(const string& prefix);
static ID* NewAnonymousID(const string& prefix);
private:
static int anonymous_id_seq;
};
static int anonymous_id_seq;
};
// A comparison operator for pointers to ID's.
class ID_ptr_cmp
{
class ID_ptr_cmp {
public:
bool operator()(const ID* const& id1, const ID* const& id2) const
{
ASSERT(id1);
ASSERT(id2);
return id1->name < id2->name;
}
};
bool operator()(const ID* const& id1, const ID* const& id2) const {
ASSERT(id1);
ASSERT(id2);
return id1->name < id2->name;
}
};
class IDRecord
{
class IDRecord {
public:
IDRecord(Env* env, const ID* id, IDType id_type);
~IDRecord();
IDRecord(Env* env, const ID* id, IDType id_type);
~IDRecord();
IDType GetType() const { return id_type; }
IDType GetType() const { return id_type; }
void SetDataType(Type* type) { data_type = type; }
Type* GetDataType() const { return data_type; }
void SetDataType(Type* type) { data_type = type; }
Type* GetDataType() const { return data_type; }
void SetEvalMethod(Evaluatable* arg_eval) { eval = arg_eval; }
void Evaluate(Output* out, Env* env);
void SetEvaluated(bool v);
bool Evaluated() const { return evaluated; }
void SetEvalMethod(Evaluatable* arg_eval) { eval = arg_eval; }
void Evaluate(Output* out, Env* env);
void SetEvaluated(bool v);
bool Evaluated() const { return evaluated; }
void SetField(Field* f) { field = f; }
Field* GetField() const { return field; }
void SetField(Field* f) { field = f; }
Field* GetField() const { return field; }
void SetConstant(int c);
bool GetConstant(int* pc) const;
void SetConstant(int c);
bool GetConstant(int* pc) const;
void SetMacro(Expr* expr);
Expr* GetMacro() const;
void SetMacro(Expr* expr);
Expr* GetMacro() const;
const char* RValue() const;
const char* LValue() const;
const char* RValue() const;
const char* LValue() const;
protected:
Env* env;
const ID* id;
IDType id_type;
Env* env;
const ID* id;
IDType id_type;
string rvalue;
string lvalue;
string setfunc;
string rvalue;
string lvalue;
string setfunc;
Type* data_type;
Type* data_type;
Field* field;
Field* field;
int constant;
bool constant_set;
int constant;
bool constant_set;
Expr* macro;
Expr* macro;
bool evaluated;
bool in_evaluation; // to detect cyclic dependence
Evaluatable* eval;
};
bool evaluated;
bool in_evaluation; // to detect cyclic dependence
Evaluatable* eval;
};
class Evaluatable
{
class Evaluatable {
public:
virtual ~Evaluatable() { }
virtual void GenEval(Output* out, Env* env) = 0;
};
virtual ~Evaluatable() {}
virtual void GenEval(Output* out, Env* env) = 0;
};
class Env
{
class Env {
public:
Env(Env* parent_env, Object* context_object);
~Env();
Env(Env* parent_env, Object* context_object);
~Env();
bool allow_undefined_id() const { return allow_undefined_id_; }
void set_allow_undefined_id(bool x) { allow_undefined_id_ = x; }
bool allow_undefined_id() const { return allow_undefined_id_; }
void set_allow_undefined_id(bool x) { allow_undefined_id_ = x; }
bool in_branch() const { return in_branch_; }
void set_in_branch(bool x) { in_branch_ = x; }
bool in_branch() const { return in_branch_; }
void set_in_branch(bool x) { in_branch_ = x; }
void AddID(const ID* id, IDType id_type, Type* type);
void AddConstID(const ID* id, const int c, Type* type = 0);
void AddMacro(const ID* id, Expr* expr);
void AddID(const ID* id, IDType id_type, Type* type);
void AddConstID(const ID* id, const int c, Type* type = 0);
void AddMacro(const ID* id, Expr* expr);
// Generate a temp ID with a unique name
ID* AddTempID(Type* type);
// Generate a temp ID with a unique name
ID* AddTempID(Type* type);
IDType GetIDType(const ID* id) const;
const char* RValue(const ID* id) const;
const char* LValue(const ID* id) const;
// const char *SetFunc(const ID *id) const;
IDType GetIDType(const ID* id) const;
const char* RValue(const ID* id) const;
const char* LValue(const ID* id) const;
// const char *SetFunc(const ID *id) const;
// Set evaluation method for the ID
void SetEvalMethod(const ID* id, Evaluatable* eval);
// Set evaluation method for the ID
void SetEvalMethod(const ID* id, Evaluatable* eval);
// Evaluate the ID according to the evaluation method. It
// assumes the ID has an evaluation emthod. It does nothing
// if the ID has already been evaluated.
void Evaluate(Output* out, const ID* id);
// Evaluate the ID according to the evaluation method. It
// assumes the ID has an evaluation emthod. It does nothing
// if the ID has already been evaluated.
void Evaluate(Output* out, const ID* id);
// Whether the ID has already been evaluated.
bool Evaluated(const ID* id) const;
// Whether the ID has already been evaluated.
bool Evaluated(const ID* id) const;
// Set the ID as evaluated (or not).
void SetEvaluated(const ID* id, bool v = true);
// Set the ID as evaluated (or not).
void SetEvaluated(const ID* id, bool v = true);
void SetField(const ID* id, Field* field);
Field* GetField(const ID* id) const;
void SetField(const ID* id, Field* field);
Field* GetField(const ID* id) const;
bool GetConstant(const ID* id, int* pc) const;
bool GetConstant(const ID* id, int* pc) const;
Expr* GetMacro(const ID* id) const;
Expr* GetMacro(const ID* id) const;
Type* GetDataType(const ID* id) const;
Type* GetDataType(const ID* id) const;
string DataTypeStr(const ID* id) const;
string DataTypeStr(const ID* id) const;
protected:
IDRecord* lookup(const ID* id, bool recursive, bool raise_exception) const;
IDRecord* lookup(const ID* id, bool recursive, bool raise_exception) const;
void SetDataType(const ID* id, Type* type);
void SetConstant(const ID* id, int constant);
void SetMacro(const ID* id, Expr* macro);
void SetDataType(const ID* id, Type* type);
void SetConstant(const ID* id, int constant);
void SetMacro(const ID* id, Expr* macro);
private:
Env* parent;
Object* context_object_;
typedef map<const ID*, IDRecord*, ID_ptr_cmp> id_map_t;
id_map_t id_map;
bool allow_undefined_id_;
bool in_branch_;
};
Env* parent;
Object* context_object_;
typedef map<const ID*, IDRecord*, ID_ptr_cmp> id_map_t;
id_map_t id_map;
bool allow_undefined_id_;
bool in_branch_;
};
extern const ID* default_value_var;
extern const ID* null_id;

View file

@ -6,33 +6,28 @@
#include "pac_output.h"
#include "pac_type.h"
InputBuffer::InputBuffer(Expr* expr) : DataDepElement(INPUT_BUFFER), expr_(expr) { }
InputBuffer::InputBuffer(Expr* expr) : DataDepElement(INPUT_BUFFER), expr_(expr) {}
bool InputBuffer::DoTraverse(DataDepVisitor* visitor)
{
if ( expr_ && ! expr_->Traverse(visitor) )
return false;
return true;
}
bool InputBuffer::DoTraverse(DataDepVisitor* visitor) {
if ( expr_ && ! expr_->Traverse(visitor) )
return false;
return true;
}
bool InputBuffer::RequiresAnalyzerContext() const
{
return expr_->RequiresAnalyzerContext();
}
bool InputBuffer::RequiresAnalyzerContext() const { return expr_->RequiresAnalyzerContext(); }
DataPtr InputBuffer::GenDataBeginEnd(Output* out_cc, Env* env)
{
env->AddID(begin_of_data, TEMP_VAR, extern_type_const_byteptr);
env->AddID(end_of_data, TEMP_VAR, extern_type_const_byteptr);
DataPtr InputBuffer::GenDataBeginEnd(Output* out_cc, Env* env) {
env->AddID(begin_of_data, TEMP_VAR, extern_type_const_byteptr);
env->AddID(end_of_data, TEMP_VAR, extern_type_const_byteptr);
out_cc->println("%s %s, %s;", extern_type_const_byteptr->DataTypeStr().c_str(),
env->LValue(begin_of_data), env->LValue(end_of_data));
out_cc->println("%s %s, %s;", extern_type_const_byteptr->DataTypeStr().c_str(), env->LValue(begin_of_data),
env->LValue(end_of_data));
out_cc->println("get_pointers(%s, &%s, &%s);", expr_->EvalExpr(out_cc, env),
env->LValue(begin_of_data), env->LValue(end_of_data));
out_cc->println("get_pointers(%s, &%s, &%s);", expr_->EvalExpr(out_cc, env), env->LValue(begin_of_data),
env->LValue(end_of_data));
env->SetEvaluated(begin_of_data);
env->SetEvaluated(end_of_data);
env->SetEvaluated(begin_of_data);
env->SetEvaluated(end_of_data);
return DataPtr(env, begin_of_data, 0);
}
return DataPtr(env, begin_of_data, 0);
}

View file

@ -6,19 +6,18 @@
class Expr;
class InputBuffer : public Object, public DataDepElement
{
class InputBuffer : public Object, public DataDepElement {
public:
InputBuffer(Expr* expr);
InputBuffer(Expr* expr);
bool RequiresAnalyzerContext() const;
DataPtr GenDataBeginEnd(Output* out_cc, Env* env);
bool RequiresAnalyzerContext() const;
DataPtr GenDataBeginEnd(Output* out_cc, Env* env);
protected:
bool DoTraverse(DataDepVisitor* visitor) override;
bool DoTraverse(DataDepVisitor* visitor) override;
private:
Expr* expr_;
};
Expr* expr_;
};
#endif // pac_inputbuf_h

View file

@ -5,143 +5,118 @@
#include "pac_output.h"
#include "pac_type.h"
namespace
{
namespace {
void GenLetEval(const ID* id, Expr* expr, string prefix, Output* out, Env* env) { }
void GenLetEval(const ID* id, Expr* expr, string prefix, Output* out, Env* env) {}
} // private namespace
} // namespace
LetField::LetField(ID* id, Type* type, Expr* expr)
: Field(LET_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, id, type),
expr_(expr)
{
ASSERT(expr_);
}
: Field(LET_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, id, type), expr_(expr) {
ASSERT(expr_);
}
LetField::~LetField()
{
delete expr_;
}
LetField::~LetField() { delete expr_; }
bool LetField::DoTraverse(DataDepVisitor* visitor)
{
return Field::DoTraverse(visitor) && expr()->Traverse(visitor);
}
bool LetField::DoTraverse(DataDepVisitor* visitor) { return Field::DoTraverse(visitor) && expr()->Traverse(visitor); }
bool LetField::RequiresAnalyzerContext() const
{
return Field::RequiresAnalyzerContext() || (expr() && expr()->RequiresAnalyzerContext());
}
bool LetField::RequiresAnalyzerContext() const {
return Field::RequiresAnalyzerContext() || (expr() && expr()->RequiresAnalyzerContext());
}
void LetField::Prepare(Env* env)
{
if ( ! type_ )
{
ASSERT(expr_);
type_ = expr_->DataType(env);
if ( type_ )
type_ = type_->Clone();
else
type_ = extern_type_int->Clone();
void LetField::Prepare(Env* env) {
if ( ! type_ ) {
ASSERT(expr_);
type_ = expr_->DataType(env);
if ( type_ )
type_ = type_->Clone();
else
type_ = extern_type_int->Clone();
foreach (i, AttrList, attrs_)
ProcessAttr(*i);
}
foreach (i, AttrList, attrs_)
ProcessAttr(*i);
}
Field::Prepare(env);
env->SetEvalMethod(id_, this);
}
Field::Prepare(env);
env->SetEvalMethod(id_, this);
}
void LetField::GenInitCode(Output* out_cc, Env* env)
{
int v;
if ( expr_ && expr_->ConstFold(env, &v) )
{
DEBUG_MSG("Folding const for `%s'\n", id_->Name());
GenEval(out_cc, env);
}
else
type_->GenInitCode(out_cc, env);
}
void LetField::GenInitCode(Output* out_cc, Env* env) {
int v;
if ( expr_ && expr_->ConstFold(env, &v) ) {
DEBUG_MSG("Folding const for `%s'\n", id_->Name());
GenEval(out_cc, env);
}
else
type_->GenInitCode(out_cc, env);
}
void LetField::GenParseCode(Output* out_cc, Env* env)
{
if ( env->Evaluated(id_) )
return;
void LetField::GenParseCode(Output* out_cc, Env* env) {
if ( env->Evaluated(id_) )
return;
if ( type_->attr_if_expr() )
{
// A conditional field
if ( type_->attr_if_expr() ) {
// A conditional field
env->Evaluate(out_cc, type_->has_value_var());
env->Evaluate(out_cc, type_->has_value_var());
// force evaluation of IDs contained in this expr
expr()->ForceIDEval(out_cc, env);
// force evaluation of IDs contained in this expr
expr()->ForceIDEval(out_cc, env);
out_cc->println("if ( %s )", env->RValue(type_->has_value_var()));
out_cc->inc_indent();
out_cc->println("{");
}
out_cc->println("if ( %s )", env->RValue(type_->has_value_var()));
out_cc->inc_indent();
out_cc->println("{");
}
out_cc->println("%s = %s;", env->LValue(id_), expr()->EvalExpr(out_cc, env));
if ( ! env->Evaluated(id_) )
env->SetEvaluated(id_);
out_cc->println("%s = %s;", env->LValue(id_), expr()->EvalExpr(out_cc, env));
if ( ! env->Evaluated(id_) )
env->SetEvaluated(id_);
if ( type_->attr_if_expr() )
{
out_cc->println("}");
out_cc->dec_indent();
}
}
if ( type_->attr_if_expr() ) {
out_cc->println("}");
out_cc->dec_indent();
}
}
void LetField::GenEval(Output* out_cc, Env* env)
{
GenParseCode(out_cc, env);
}
void LetField::GenEval(Output* out_cc, Env* env) { GenParseCode(out_cc, env); }
LetDecl::LetDecl(ID* id, Type* type, Expr* expr) : Decl(id, LET), type_(type), expr_(expr)
{
if ( ! type_ )
{
ASSERT(expr_);
type_ = expr_->DataType(global_env());
if ( type_ )
type_ = type_->Clone();
else
type_ = extern_type_int->Clone();
}
LetDecl::LetDecl(ID* id, Type* type, Expr* expr) : Decl(id, LET), type_(type), expr_(expr) {
if ( ! type_ ) {
ASSERT(expr_);
type_ = expr_->DataType(global_env());
if ( type_ )
type_ = type_->Clone();
else
type_ = extern_type_int->Clone();
}
Env* env = global_env();
int c;
if ( expr_ && expr_->ConstFold(env, &c) )
env->AddConstID(id_, c, type);
else
env->AddID(id_, GLOBAL_VAR, type_);
}
Env* env = global_env();
int c;
if ( expr_ && expr_->ConstFold(env, &c) )
env->AddConstID(id_, c, type);
else
env->AddID(id_, GLOBAL_VAR, type_);
}
LetDecl::~LetDecl()
{
delete type_;
delete expr_;
}
LetDecl::~LetDecl() {
delete type_;
delete expr_;
}
void LetDecl::Prepare() { }
void LetDecl::Prepare() {}
void LetDecl::GenForwardDeclaration(Output* out_h) { }
void LetDecl::GenForwardDeclaration(Output* out_h) {}
void LetDecl::GenCode(Output* out_h, Output* out_cc)
{
out_h->println("extern %s const %s;", type_->DataTypeStr().c_str(), global_env()->RValue(id_));
GenEval(out_cc, global_env());
}
void LetDecl::GenCode(Output* out_h, Output* out_cc) {
out_h->println("extern %s const %s;", type_->DataTypeStr().c_str(), global_env()->RValue(id_));
GenEval(out_cc, global_env());
}
void LetDecl::GenEval(Output* out_cc, Env* /* env */)
{
Env* env = global_env();
string tmp = strfmt("%s const", type_->DataTypeStr().c_str());
out_cc->println("%s %s = %s;", tmp.c_str(), env->LValue(id_), expr_->EvalExpr(out_cc, env));
void LetDecl::GenEval(Output* out_cc, Env* /* env */) {
Env* env = global_env();
string tmp = strfmt("%s const", type_->DataTypeStr().c_str());
out_cc->println("%s %s = %s;", tmp.c_str(), env->LValue(id_), expr_->EvalExpr(out_cc, env));
if ( ! env->Evaluated(id_) )
env->SetEvaluated(id_);
}
if ( ! env->Evaluated(id_) )
env->SetEvaluated(id_);
}

View file

@ -4,45 +4,43 @@
#include "pac_decl.h"
#include "pac_field.h"
class LetField : public Field, Evaluatable
{
class LetField : public Field, Evaluatable {
public:
LetField(ID* arg_id, Type* type, Expr* arg_expr);
~LetField() override;
LetField(ID* arg_id, Type* type, Expr* arg_expr);
~LetField() override;
Expr* expr() const { return expr_; }
Expr* expr() const { return expr_; }
void Prepare(Env* env) override;
void Prepare(Env* env) override;
void GenInitCode(Output* out, Env* env) override;
void GenParseCode(Output* out, Env* env);
void GenEval(Output* out, Env* env) override;
void GenInitCode(Output* out, Env* env) override;
void GenParseCode(Output* out, Env* env);
void GenEval(Output* out, Env* env) override;
bool RequiresAnalyzerContext() const override;
bool RequiresAnalyzerContext() const override;
protected:
bool DoTraverse(DataDepVisitor* visitor) override;
bool DoTraverse(DataDepVisitor* visitor) override;
protected:
Expr* expr_;
};
Expr* expr_;
};
class LetDecl : public Decl, Evaluatable
{
class LetDecl : public Decl, Evaluatable {
public:
LetDecl(ID* id, Type* type, Expr* expr);
~LetDecl() override;
LetDecl(ID* id, Type* type, Expr* expr);
~LetDecl() override;
Expr* expr() const { return expr_; }
Expr* expr() const { return expr_; }
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
void GenEval(Output* out, Env* env) override;
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
void GenEval(Output* out, Env* env) override;
private:
Type* type_;
Expr* expr_;
};
Type* type_;
Expr* expr_;
};
#endif // pac_let_h

View file

@ -25,185 +25,168 @@ vector<string> FLAGS_include_directories;
Output* header_output = nullptr;
Output* source_output = nullptr;
void add_to_include_directories(string dirs)
{
unsigned int dir_begin = 0, dir_end;
while ( dir_begin < dirs.length() )
{
for ( dir_end = dir_begin; dir_end < dirs.length(); ++dir_end )
if ( dirs[dir_end] == ':' )
break;
void add_to_include_directories(string dirs) {
unsigned int dir_begin = 0, dir_end;
while ( dir_begin < dirs.length() ) {
for ( dir_end = dir_begin; dir_end < dirs.length(); ++dir_end )
if ( dirs[dir_end] == ':' )
break;
string dir = dirs.substr(dir_begin, dir_end - dir_begin);
string dir = dirs.substr(dir_begin, dir_end - dir_begin);
// Add a trailing '/' if necessary
if ( dir.length() > 0 && *(dir.end() - 1) != '/' )
dir += '/';
FLAGS_include_directories.push_back(dir);
dir_begin = dir_end + 1;
}
}
// Add a trailing '/' if necessary
if ( dir.length() > 0 && *(dir.end() - 1) != '/' )
dir += '/';
void pac_init()
{
init_builtin_identifiers();
Type::init();
}
FLAGS_include_directories.push_back(dir);
dir_begin = dir_end + 1;
}
}
void insert_comments(Output* out, const char* source_filename)
{
out->println("// This file is automatically generated from %s.\n", source_filename);
}
void pac_init() {
init_builtin_identifiers();
Type::init();
}
void insert_basictype_defs(Output* out)
{
out->println("#ifndef pac_type_defs");
out->println("#define pac_type_defs");
out->println("");
out->println("typedef char int8;");
out->println("typedef short int16;");
out->println("typedef long int32;");
out->println("typedef long long int64;");
out->println("typedef unsigned char uint8;");
out->println("typedef unsigned short uint16;");
out->println("typedef unsigned long uint32;");
out->println("typedef unsigned long long uint64;");
out->println("");
out->println("#endif /* pac_type_defs */");
out->println("");
}
void insert_comments(Output* out, const char* source_filename) {
out->println("// This file is automatically generated from %s.\n", source_filename);
}
void insert_byteorder_macros(Output* out)
{
out->println("#define FixByteOrder16(x) (byteorder == HOST_BYTEORDER ? (x) : pac_swap16(x))");
out->println("#define FixByteOrder32(x) (byteorder == HOST_BYTEORDER ? (x) : pac_swap32(x))");
out->println("#define FixByteOrder64(x) (byteorder == HOST_BYTEORDER ? (x) : pac_swap64(x))");
out->println("");
}
void insert_basictype_defs(Output* out) {
out->println("#ifndef pac_type_defs");
out->println("#define pac_type_defs");
out->println("");
out->println("typedef char int8;");
out->println("typedef short int16;");
out->println("typedef long int32;");
out->println("typedef long long int64;");
const char* to_id(const char* s)
{
static char t[1024];
int i;
for ( i = 0; s[i] && i < (int)sizeof(t) - 1; ++i )
t[i] = isalnum(s[i]) ? s[i] : '_';
if ( isdigit(t[0]) )
t[0] = '_';
t[i] = '\0';
return t;
}
out->println("typedef unsigned char uint8;");
out->println("typedef unsigned short uint16;");
out->println("typedef unsigned long uint32;");
out->println("typedef unsigned long long uint64;");
int compile(const char* filename)
{
FILE* fp_input = fopen(filename, "r");
if ( ! fp_input )
{
string tmp = strfmt("Error in opening %s", filename);
perror(tmp.c_str());
return -1;
}
input_filename = filename;
out->println("");
out->println("#endif /* pac_type_defs */");
out->println("");
}
string basename;
void insert_byteorder_macros(Output* out) {
out->println("#define FixByteOrder16(x) (byteorder == HOST_BYTEORDER ? (x) : pac_swap16(x))");
out->println("#define FixByteOrder32(x) (byteorder == HOST_BYTEORDER ? (x) : pac_swap32(x))");
out->println("#define FixByteOrder64(x) (byteorder == HOST_BYTEORDER ? (x) : pac_swap64(x))");
out->println("");
}
if ( ! FLAGS_output_directory.empty() )
{
// Strip leading directories of filename
const char* last_slash = strrchr(filename, '/');
if ( last_slash )
basename = last_slash + 1;
else
basename = filename;
basename = FLAGS_output_directory + "/" + basename;
}
else
basename = filename;
const char* to_id(const char* s) {
static char t[1024];
int i;
for ( i = 0; s[i] && i < (int)sizeof(t) - 1; ++i )
t[i] = isalnum(s[i]) ? s[i] : '_';
if ( isdigit(t[0]) )
t[0] = '_';
t[i] = '\0';
return t;
}
// If the file name ends with ".pac"
if ( basename.length() > 4 && basename.substr(basename.length() - 4) == ".pac" )
{
basename = basename.substr(0, basename.length() - 4);
}
int compile(const char* filename) {
FILE* fp_input = fopen(filename, "r");
if ( ! fp_input ) {
string tmp = strfmt("Error in opening %s", filename);
perror(tmp.c_str());
return -1;
}
input_filename = filename;
basename += "_pac";
string basename;
DEBUG_MSG("Output file: %s.{h,cc}\n", basename.c_str());
if ( ! FLAGS_output_directory.empty() ) {
// Strip leading directories of filename
const char* last_slash = strrchr(filename, '/');
if ( last_slash )
basename = last_slash + 1;
else
basename = filename;
basename = FLAGS_output_directory + "/" + basename;
}
else
basename = filename;
int ret = 0;
// If the file name ends with ".pac"
if ( basename.length() > 4 && basename.substr(basename.length() - 4) == ".pac" ) {
basename = basename.substr(0, basename.length() - 4);
}
try
{
switch_to_file(fp_input);
if ( yyparse() )
return 1;
basename += "_pac";
Output out_h(strfmt("%s.h", basename.c_str()));
Output out_cc(strfmt("%s.cc", basename.c_str()));
DEBUG_MSG("Output file: %s.{h,cc}\n", basename.c_str());
header_output = &out_h;
source_output = &out_cc;
int ret = 0;
insert_comments(&out_h, filename);
insert_comments(&out_cc, filename);
try {
switch_to_file(fp_input);
if ( yyparse() )
return 1;
const char* filename_id = to_id(filename);
Output out_h(strfmt("%s.h", basename.c_str()));
Output out_cc(strfmt("%s.cc", basename.c_str()));
out_h.println("#ifndef %s_h", filename_id);
out_h.println("#define %s_h", filename_id);
out_h.println("");
out_h.println("#include <vector>");
out_h.println("");
out_h.println("#include \"binpac.h\"");
out_h.println("");
header_output = &out_h;
source_output = &out_cc;
out_cc.println("");
out_cc.println("#ifdef __clang__");
out_cc.println("#pragma clang diagnostic ignored \"-Wparentheses-equality\"");
out_cc.println("#endif");
out_cc.println("");
insert_comments(&out_h, filename);
insert_comments(&out_cc, filename);
out_cc.println("#include \"%s.h\"\n", basename.c_str());
const char* filename_id = to_id(filename);
Decl::ProcessDecls(&out_h, &out_cc);
out_h.println("#ifndef %s_h", filename_id);
out_h.println("#define %s_h", filename_id);
out_h.println("");
out_h.println("#include <vector>");
out_h.println("");
out_h.println("#include \"binpac.h\"");
out_h.println("");
out_h.println("#endif /* %s_h */", filename_id);
}
catch ( OutputException& e )
{
fprintf(stderr, "Error in compiling %s: %s\n", filename, e.errmsg());
ret = 1;
}
catch ( Exception& e )
{
fprintf(stderr, "%s\n", e.msg());
exit(1);
}
out_cc.println("");
out_cc.println("#ifdef __clang__");
out_cc.println("#pragma clang diagnostic ignored \"-Wparentheses-equality\"");
out_cc.println("#endif");
out_cc.println("");
header_output = nullptr;
source_output = nullptr;
input_filename = "";
fclose(fp_input);
out_cc.println("#include \"%s.h\"\n", basename.c_str());
return ret;
}
Decl::ProcessDecls(&out_h, &out_cc);
void usage()
{
out_h.println("#endif /* %s_h */", filename_id);
} catch ( OutputException& e ) {
fprintf(stderr, "Error in compiling %s: %s\n", filename, e.errmsg());
ret = 1;
} catch ( Exception& e ) {
fprintf(stderr, "%s\n", e.msg());
exit(1);
}
header_output = nullptr;
source_output = nullptr;
input_filename = "";
fclose(fp_input);
return ret;
}
void usage() {
#ifdef BINPAC_VERSION
fprintf(stderr, "binpac version %s\n", BINPAC_VERSION);
fprintf(stderr, "binpac version %s\n", BINPAC_VERSION);
#endif
fprintf(stderr, "usage: binpac [options] <pac files>\n");
fprintf(stderr, " <pac files> | pac-language input files\n");
fprintf(stderr, " -d <dir> | use given directory for compiler output\n");
fprintf(stderr, " -D | enable debugging output\n");
fprintf(stderr, " -q | stay quiet\n");
fprintf(stderr, " -h | show command line help\n");
fprintf(stderr, " -I <dir> | include <dir> in input file search path\n");
exit(1);
}
fprintf(stderr, "usage: binpac [options] <pac files>\n");
fprintf(stderr, " <pac files> | pac-language input files\n");
fprintf(stderr, " -d <dir> | use given directory for compiler output\n");
fprintf(stderr, " -D | enable debugging output\n");
fprintf(stderr, " -q | stay quiet\n");
fprintf(stderr, " -h | show command line help\n");
fprintf(stderr, " -I <dir> | include <dir> in input file search path\n");
exit(1);
}
// GCC uses __SANITIZE_ADDRESS__, Clang uses __has_feature
#if defined(__SANITIZE_ADDRESS__)
@ -224,68 +207,56 @@ void usage()
#define BINPAC_LSAN_DISABLE()
#endif
int main(int argc, char* argv[])
{
// We generally do not care at all if binpac is leaking and other
// projects that use it, like Zeek, only have their build tripped up
// by the default behavior of LSAN to treat leaks as errors.
BINPAC_LSAN_DISABLE();
int main(int argc, char* argv[]) {
// We generally do not care at all if binpac is leaking and other
// projects that use it, like Zeek, only have their build tripped up
// by the default behavior of LSAN to treat leaks as errors.
BINPAC_LSAN_DISABLE();
#ifdef HAVE_MALLOC_OPTIONS
extern char* malloc_options;
extern char* malloc_options;
#endif
int o;
while ( (o = getopt(argc, argv, "DqI:d:h")) != -1 )
{
switch ( o )
{
case 'D':
yydebug = 1;
FLAGS_pac_debug = true;
int o;
while ( (o = getopt(argc, argv, "DqI:d:h")) != -1 ) {
switch ( o ) {
case 'D': yydebug = 1; FLAGS_pac_debug = true;
#ifdef HAVE_MALLOC_OPTIONS
malloc_options = "A";
malloc_options = "A";
#endif
break;
case 'q':
FLAGS_quiet = true;
break;
break;
case 'I':
// Add to FLAGS_include_directories
add_to_include_directories(optarg);
break;
case 'q': FLAGS_quiet = true; break;
case 'd':
FLAGS_output_directory = optarg;
break;
case 'I':
// Add to FLAGS_include_directories
add_to_include_directories(optarg);
break;
case 'h':
usage();
break;
}
}
case 'd': FLAGS_output_directory = optarg; break;
// Strip the trailing '/'s
while ( ! FLAGS_output_directory.empty() && *(FLAGS_output_directory.end() - 1) == '/' )
{
FLAGS_output_directory.erase(FLAGS_output_directory.end() - 1);
}
case 'h': usage(); break;
}
}
// Add the current directory to FLAGS_include_directories
add_to_include_directories(".");
// Strip the trailing '/'s
while ( ! FLAGS_output_directory.empty() && *(FLAGS_output_directory.end() - 1) == '/' ) {
FLAGS_output_directory.erase(FLAGS_output_directory.end() - 1);
}
pac_init();
// Add the current directory to FLAGS_include_directories
add_to_include_directories(".");
argc -= optind;
argv += optind;
if ( argc == 0 )
compile("-");
pac_init();
int ret = 0;
for ( int i = 0; i < argc; ++i )
if ( compile(argv[i]) )
ret = 1;
argc -= optind;
argv += optind;
if ( argc == 0 )
compile("-");
return ret;
}
int ret = 0;
for ( int i = 0; i < argc; ++i )
if ( compile(argv[i]) )
ret = 1;
return ret;
}

View file

@ -3,17 +3,16 @@
#include "pac_common.h"
class Number : public Object
{
class Number : public Object {
public:
Number(int arg_n) : s(strfmt("%d", arg_n)), n(arg_n) { }
Number(const char* arg_s, int arg_n) : s(arg_s), n(arg_n) { }
const char* Str() const { return s.c_str(); }
int Num() const { return n; }
Number(int arg_n) : s(strfmt("%d", arg_n)), n(arg_n) {}
Number(const char* arg_s, int arg_n) : s(arg_s), n(arg_n) {}
const char* Str() const { return s.c_str(); }
int Num() const { return n; }
protected:
const string s;
const int n;
};
const string s;
const int n;
};
#endif // pac_number_h

View file

@ -7,77 +7,65 @@
#include "pac_utils.h"
OutputException::OutputException(const char* arg_msg)
{
msg = arg_msg;
}
OutputException::OutputException(const char* arg_msg) { msg = arg_msg; }
OutputException::~OutputException() { }
OutputException::~OutputException() {}
Output::Output(string filename)
{
fp = fopen(filename.c_str(), "w");
if ( ! fp )
throw OutputException(strerror(errno));
indent_ = 0;
}
Output::Output(string filename) {
fp = fopen(filename.c_str(), "w");
if ( ! fp )
throw OutputException(strerror(errno));
indent_ = 0;
}
Output::~Output()
{
if ( fp )
fclose(fp);
}
Output::~Output() {
if ( fp )
fclose(fp);
}
int Output::print(const char* fmt, va_list ap)
{
int r = vfprintf(fp, fmt, ap);
if ( r == -1 )
throw OutputException(strerror(errno));
return r;
}
int Output::print(const char* fmt, va_list ap) {
int r = vfprintf(fp, fmt, ap);
if ( r == -1 )
throw OutputException(strerror(errno));
return r;
}
int Output::print(const char* fmt, ...)
{
va_list ap;
va_start(ap, fmt);
int r = -1;
int Output::print(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
int r = -1;
try
{
r = print(fmt, ap);
}
try {
r = print(fmt, ap);
}
catch ( ... )
{
va_end(ap);
throw;
}
catch ( ... ) {
va_end(ap);
throw;
}
va_end(ap);
return r;
}
va_end(ap);
return r;
}
int Output::println(const char* fmt, ...)
{
for ( int i = 0; i < indent(); ++i )
fprintf(fp, "\t");
int Output::println(const char* fmt, ...) {
for ( int i = 0; i < indent(); ++i )
fprintf(fp, "\t");
va_list ap;
va_start(ap, fmt);
int r = -1;
va_list ap;
va_start(ap, fmt);
int r = -1;
try
{
r = print(fmt, ap);
}
try {
r = print(fmt, ap);
}
catch ( ... )
{
va_end(ap);
throw;
}
catch ( ... ) {
va_end(ap);
throw;
}
va_end(ap);
fprintf(fp, "\n");
return r;
}
va_end(ap);
fprintf(fp, "\n");
return r;
}

View file

@ -7,36 +7,34 @@
using namespace std;
class OutputException
{
class OutputException {
public:
OutputException(const char* arg_msg);
~OutputException();
const char* errmsg() const { return msg.c_str(); }
OutputException(const char* arg_msg);
~OutputException();
const char* errmsg() const { return msg.c_str(); }
protected:
string msg;
};
string msg;
};
class Output
{
class Output {
public:
Output(string filename);
~Output();
Output(string filename);
~Output();
int println(const char* fmt, ...);
int print(const char* fmt, ...);
int println(const char* fmt, ...);
int print(const char* fmt, ...);
int indent() const { return indent_; }
int indent() const { return indent_; }
void inc_indent() { ++indent_; }
void dec_indent() { --indent_; }
void inc_indent() { ++indent_; }
void dec_indent() { --indent_; }
protected:
int print(const char* fmt, va_list ap);
int print(const char* fmt, va_list ap);
FILE* fp;
int indent_;
};
FILE* fp;
int indent_;
};
#endif /* pac_output_h */

View file

@ -8,55 +8,46 @@
#include "pac_type.h"
#include "pac_utils.h"
Param::Param(ID* id, Type* type) : id_(id), type_(type)
{
if ( ! type_ )
type_ = extern_type_int->Clone();
Param::Param(ID* id, Type* type) : id_(id), type_(type) {
if ( ! type_ )
type_ = extern_type_int->Clone();
decl_str_ = strfmt("%s %s", type_->DataTypeConstRefStr().c_str(), id_->Name());
decl_str_ = strfmt("%s %s", type_->DataTypeConstRefStr().c_str(), id_->Name());
param_field_ = new ParamField(this);
}
param_field_ = new ParamField(this);
}
Param::~Param() { }
Param::~Param() {}
const string& Param::decl_str() const
{
ASSERT(! decl_str_.empty());
return decl_str_;
}
const string& Param::decl_str() const {
ASSERT(! decl_str_.empty());
return decl_str_;
}
string ParamDecls(ParamList* params)
{
string param_decls;
string ParamDecls(ParamList* params) {
string param_decls;
int first = 1;
foreach (i, ParamList, params)
{
Param* p = *i;
const char* decl_str = p->decl_str().c_str();
if ( first )
first = 0;
else
param_decls += ", ";
param_decls += decl_str;
}
return param_decls;
}
int first = 1;
foreach (i, ParamList, params) {
Param* p = *i;
const char* decl_str = p->decl_str().c_str();
if ( first )
first = 0;
else
param_decls += ", ";
param_decls += decl_str;
}
return param_decls;
}
ParamField::ParamField(const Param* param)
: Field(PARAM_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, param->id(),
param->type())
{
}
: Field(PARAM_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, param->id(), param->type()) {}
void ParamField::GenInitCode(Output* out_cc, Env* env)
{
out_cc->println("%s = %s;", env->LValue(id()), id()->Name());
env->SetEvaluated(id());
}
void ParamField::GenInitCode(Output* out_cc, Env* env) {
out_cc->println("%s = %s;", env->LValue(id()), id()->Name());
env->SetEvaluated(id());
}
void ParamField::GenCleanUpCode(Output* out_cc, Env* env)
{
// Do nothing
}
void ParamField::GenCleanUpCode(Output* out_cc, Env* env) {
// Do nothing
}

View file

@ -4,32 +4,30 @@
#include "pac_common.h"
#include "pac_field.h"
class Param : public Object
{
class Param : public Object {
public:
Param(ID* id, Type* type);
~Param();
Param(ID* id, Type* type);
~Param();
ID* id() const { return id_; }
Type* type() const { return type_; }
const string& decl_str() const;
Field* param_field() const { return param_field_; }
ID* id() const { return id_; }
Type* type() const { return type_; }
const string& decl_str() const;
Field* param_field() const { return param_field_; }
private:
ID* id_;
Type* type_;
string decl_str_;
Field* param_field_;
};
ID* id_;
Type* type_;
string decl_str_;
Field* param_field_;
};
class ParamField : public Field
{
class ParamField : public Field {
public:
ParamField(const Param* param);
ParamField(const Param* param);
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
};
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
};
// Returns the string with a list of param declarations separated by ','.
string ParamDecls(ParamList* params);

View file

@ -8,266 +8,214 @@
#include "pac_typedecl.h"
ParameterizedType::ParameterizedType(ID* type_id, ExprList* args)
: Type(PARAMETERIZED), type_id_(type_id), args_(args)
{
checking_requires_analyzer_context_ = false;
}
: Type(PARAMETERIZED), type_id_(type_id), args_(args) {
checking_requires_analyzer_context_ = false;
}
ParameterizedType::~ParameterizedType() { }
ParameterizedType::~ParameterizedType() {}
string ParameterizedType::EvalMember(const ID* member_id) const
{
Type* ty = ReferredDataType(true);
return strfmt("->%s", ty->env()->RValue(member_id));
}
string ParameterizedType::EvalMember(const ID* member_id) const {
Type* ty = ReferredDataType(true);
return strfmt("->%s", ty->env()->RValue(member_id));
}
string ParameterizedType::class_name() const
{
return type_id_->Name();
}
string ParameterizedType::class_name() const { return type_id_->Name(); }
Type* ParameterizedType::DoClone() const
{
return new ParameterizedType(type_id_->clone(), args_);
}
Type* ParameterizedType::DoClone() const { return new ParameterizedType(type_id_->clone(), args_); }
void ParameterizedType::AddParamArg(Expr* arg)
{
args_->push_back(arg);
}
void ParameterizedType::AddParamArg(Expr* arg) { args_->push_back(arg); }
bool ParameterizedType::DefineValueVar() const
{
return true;
}
bool ParameterizedType::DefineValueVar() const { return true; }
string ParameterizedType::DataTypeStr() const
{
return strfmt("%s *", type_id_->Name());
}
string ParameterizedType::DataTypeStr() const { return strfmt("%s *", type_id_->Name()); }
Type* ParameterizedType::MemberDataType(const ID* member_id) const
{
Type* ref_type = TypeDecl::LookUpType(type_id_);
if ( ! ref_type )
return nullptr;
return ref_type->MemberDataType(member_id);
}
Type* ParameterizedType::MemberDataType(const ID* member_id) const {
Type* ref_type = TypeDecl::LookUpType(type_id_);
if ( ! ref_type )
return nullptr;
return ref_type->MemberDataType(member_id);
}
Type* ParameterizedType::ReferredDataType(bool throw_exception) const
{
Type* type = TypeDecl::LookUpType(type_id_);
if ( ! type )
{
DEBUG_MSG("WARNING: cannot find referenced type for %s\n", type_id_->Name());
if ( throw_exception )
throw ExceptionIDNotFound(type_id_);
}
return type;
}
Type* ParameterizedType::ReferredDataType(bool throw_exception) const {
Type* type = TypeDecl::LookUpType(type_id_);
if ( ! type ) {
DEBUG_MSG("WARNING: cannot find referenced type for %s\n", type_id_->Name());
if ( throw_exception )
throw ExceptionIDNotFound(type_id_);
}
return type;
}
int ParameterizedType::StaticSize(Env* env) const
{
return ReferredDataType(true)->StaticSize(env);
}
int ParameterizedType::StaticSize(Env* env) const { return ReferredDataType(true)->StaticSize(env); }
void ParameterizedType::DoMarkIncrementalInput()
{
Type* ty = ReferredDataType(true);
void ParameterizedType::DoMarkIncrementalInput() {
Type* ty = ReferredDataType(true);
ty->MarkIncrementalInput();
ty->MarkIncrementalInput();
buffer_input_ = ty->buffer_input();
incremental_parsing_ = ty->incremental_parsing();
}
buffer_input_ = ty->buffer_input();
incremental_parsing_ = ty->incremental_parsing();
}
Type::BufferMode ParameterizedType::buffer_mode() const
{
// Note that the precedence is on attributes (&oneline or &length)
// specified on the parameterized type directly than on the type
// declaration.
//
// If both &oneline and &length are specified at the same place,
// use &length.
//
BufferMode mode = Type::buffer_mode();
Type* ty = ReferredDataType(true);
Type::BufferMode ParameterizedType::buffer_mode() const {
// Note that the precedence is on attributes (&oneline or &length)
// specified on the parameterized type directly than on the type
// declaration.
//
// If both &oneline and &length are specified at the same place,
// use &length.
//
BufferMode mode = Type::buffer_mode();
Type* ty = ReferredDataType(true);
if ( mode != NOT_BUFFERABLE )
return mode;
else if ( ty->BufferableByLength() )
return BUFFER_BY_LENGTH;
else if ( ty->BufferableByLine() )
return BUFFER_BY_LINE;
if ( mode != NOT_BUFFERABLE )
return mode;
else if ( ty->BufferableByLength() )
return BUFFER_BY_LENGTH;
else if ( ty->BufferableByLine() )
return BUFFER_BY_LINE;
return NOT_BUFFERABLE;
}
return NOT_BUFFERABLE;
}
bool ParameterizedType::ByteOrderSensitive() const
{
return ReferredDataType(true)->RequiresByteOrder();
}
bool ParameterizedType::ByteOrderSensitive() const { return ReferredDataType(true)->RequiresByteOrder(); }
bool ParameterizedType::DoTraverse(DataDepVisitor* visitor)
{
if ( ! Type::DoTraverse(visitor) )
return false;
bool ParameterizedType::DoTraverse(DataDepVisitor* visitor) {
if ( ! Type::DoTraverse(visitor) )
return false;
foreach (i, ExprList, args_)
if ( ! (*i)->Traverse(visitor) )
return false;
foreach (i, ExprList, args_)
if ( ! (*i)->Traverse(visitor) )
return false;
Type* ty = ReferredDataType(false);
if ( ty && ! ty->Traverse(visitor) )
return false;
Type* ty = ReferredDataType(false);
if ( ty && ! ty->Traverse(visitor) )
return false;
return true;
}
return true;
}
bool ParameterizedType::RequiresAnalyzerContext()
{
if ( checking_requires_analyzer_context_ )
return false;
checking_requires_analyzer_context_ = true;
bool ParameterizedType::RequiresAnalyzerContext() {
if ( checking_requires_analyzer_context_ )
return false;
checking_requires_analyzer_context_ = true;
bool ret = false;
// If any argument expression refers to analyzer context
foreach (i, ExprList, args_)
if ( (*i)->RequiresAnalyzerContext() )
{
ret = true;
break;
}
ret = ret || Type::RequiresAnalyzerContext();
bool ret = false;
// If any argument expression refers to analyzer context
foreach (i, ExprList, args_)
if ( (*i)->RequiresAnalyzerContext() ) {
ret = true;
break;
}
ret = ret || Type::RequiresAnalyzerContext();
if ( ! ret )
{
Type* ty = ReferredDataType(false);
if ( ty )
ret = ty->RequiresAnalyzerContext();
}
if ( ! ret ) {
Type* ty = ReferredDataType(false);
if ( ty )
ret = ty->RequiresAnalyzerContext();
}
checking_requires_analyzer_context_ = false;
return ret;
}
checking_requires_analyzer_context_ = false;
return ret;
}
void ParameterizedType::GenInitCode(Output* out_cc, Env* env)
{
ASSERT(persistent());
out_cc->println("%s = nullptr;", env->LValue(value_var()));
Type::GenInitCode(out_cc, env);
}
void ParameterizedType::GenInitCode(Output* out_cc, Env* env) {
ASSERT(persistent());
out_cc->println("%s = nullptr;", env->LValue(value_var()));
Type::GenInitCode(out_cc, env);
}
void ParameterizedType::GenCleanUpCode(Output* out_cc, Env* env)
{
Type* ty = ReferredDataType(false);
if ( ty && ty->attr_refcount() )
out_cc->println("Unref(%s);", lvalue());
else
out_cc->println("delete %s;", lvalue());
out_cc->println("%s = nullptr;", lvalue());
Type::GenCleanUpCode(out_cc, env);
}
void ParameterizedType::GenCleanUpCode(Output* out_cc, Env* env) {
Type* ty = ReferredDataType(false);
if ( ty && ty->attr_refcount() )
out_cc->println("Unref(%s);", lvalue());
else
out_cc->println("delete %s;", lvalue());
out_cc->println("%s = nullptr;", lvalue());
Type::GenCleanUpCode(out_cc, env);
}
string ParameterizedType::EvalParameters(Output* out_cc, Env* env) const
{
string arg_str;
string ParameterizedType::EvalParameters(Output* out_cc, Env* env) const {
string arg_str;
int first = 1;
foreach (i, ExprList, args_)
{
Expr* e = *i;
if ( first )
first = 0;
else
arg_str += ", ";
arg_str += e->EvalExpr(out_cc, env);
}
int first = 1;
foreach (i, ExprList, args_) {
Expr* e = *i;
if ( first )
first = 0;
else
arg_str += ", ";
arg_str += e->EvalExpr(out_cc, env);
}
return arg_str;
}
return arg_str;
}
void ParameterizedType::GenNewInstance(Output* out_cc, Env* env)
{
out_cc->println("%s = new %s(%s);", lvalue(), type_id_->Name(),
EvalParameters(out_cc, env).c_str());
}
void ParameterizedType::GenNewInstance(Output* out_cc, Env* env) {
out_cc->println("%s = new %s(%s);", lvalue(), type_id_->Name(), EvalParameters(out_cc, env).c_str());
}
void ParameterizedType::DoGenParseCode(Output* out_cc, Env* env, const DataPtr& data, int flags)
{
DEBUG_MSG("DoGenParseCode for %s\n", type_id_->Name());
void ParameterizedType::DoGenParseCode(Output* out_cc, Env* env, const DataPtr& data, int flags) {
DEBUG_MSG("DoGenParseCode for %s\n", type_id_->Name());
Type* ref_type = ReferredDataType(true);
Type* ref_type = ReferredDataType(true);
const char* parse_func;
string parse_params;
const char* parse_func;
string parse_params;
if ( buffer_mode() == BUFFER_NOTHING )
{
ASSERT(! ref_type->incremental_input());
parse_func = kParseFuncWithoutBuffer;
parse_params = "nullptr, nullptr";
}
else if ( ref_type->incremental_input() )
{
parse_func = kParseFuncWithBuffer;
parse_params = env->RValue(flow_buffer_id);
}
else
{
parse_func = kParseFuncWithoutBuffer;
parse_params = strfmt("%s, %s", data.ptr_expr(), env->RValue(end_of_data));
}
if ( buffer_mode() == BUFFER_NOTHING ) {
ASSERT(! ref_type->incremental_input());
parse_func = kParseFuncWithoutBuffer;
parse_params = "nullptr, nullptr";
}
else if ( ref_type->incremental_input() ) {
parse_func = kParseFuncWithBuffer;
parse_params = env->RValue(flow_buffer_id);
}
else {
parse_func = kParseFuncWithoutBuffer;
parse_params = strfmt("%s, %s", data.ptr_expr(), env->RValue(end_of_data));
}
if ( RequiresAnalyzerContext::compute(ref_type) )
{
parse_params += strfmt(", %s", env->RValue(analyzer_context_id));
}
if ( RequiresAnalyzerContext::compute(ref_type) ) {
parse_params += strfmt(", %s", env->RValue(analyzer_context_id));
}
if ( ref_type->RequiresByteOrder() )
{
env->Evaluate(out_cc, byteorder_id);
parse_params += strfmt(", %s", env->RValue(byteorder_id));
}
if ( ref_type->RequiresByteOrder() ) {
env->Evaluate(out_cc, byteorder_id);
parse_params += strfmt(", %s", env->RValue(byteorder_id));
}
string call_parse_func = strfmt("%s->%s(%s)",
lvalue(), // parse() needs an LValue
parse_func, parse_params.c_str());
string call_parse_func = strfmt("%s->%s(%s)",
lvalue(), // parse() needs an LValue
parse_func, parse_params.c_str());
if ( incremental_input() )
{
if ( buffer_mode() == BUFFER_NOTHING )
{
out_cc->println("%s;", call_parse_func.c_str());
out_cc->println("%s = true;", env->LValue(parsing_complete_var()));
}
else
{
ASSERT(parsing_complete_var());
out_cc->println("%s = %s;", env->LValue(parsing_complete_var()),
call_parse_func.c_str());
if ( incremental_input() ) {
if ( buffer_mode() == BUFFER_NOTHING ) {
out_cc->println("%s;", call_parse_func.c_str());
out_cc->println("%s = true;", env->LValue(parsing_complete_var()));
}
else {
ASSERT(parsing_complete_var());
out_cc->println("%s = %s;", env->LValue(parsing_complete_var()), call_parse_func.c_str());
// parsing_complete_var might have been already
// evaluated when set to false
if ( ! env->Evaluated(parsing_complete_var()) )
env->SetEvaluated(parsing_complete_var());
}
}
else
{
if ( AddSizeVar(out_cc, env) )
{
out_cc->println("%s = %s;", env->LValue(size_var()), call_parse_func.c_str());
env->SetEvaluated(size_var());
}
else
{
out_cc->println("%s;", call_parse_func.c_str());
}
}
}
// parsing_complete_var might have been already
// evaluated when set to false
if ( ! env->Evaluated(parsing_complete_var()) )
env->SetEvaluated(parsing_complete_var());
}
}
else {
if ( AddSizeVar(out_cc, env) ) {
out_cc->println("%s = %s;", env->LValue(size_var()), call_parse_func.c_str());
env->SetEvaluated(size_var());
}
else {
out_cc->println("%s;", call_parse_func.c_str());
}
}
}
void ParameterizedType::GenDynamicSize(Output* out_cc, Env* env, const DataPtr& data)
{
GenParseCode(out_cc, env, data, 0);
}
void ParameterizedType::GenDynamicSize(Output* out_cc, Env* env, const DataPtr& data) {
GenParseCode(out_cc, env, data, 0);
}

View file

@ -4,58 +4,57 @@
#include "pac_type.h"
// An instantiated type: ID + expression list
class ParameterizedType : public Type
{
class ParameterizedType : public Type {
public:
ParameterizedType(ID* type_id, ExprList* args);
~ParameterizedType() override;
ParameterizedType(ID* type_id, ExprList* args);
~ParameterizedType() override;
Type* clone() const;
Type* clone() const;
string EvalMember(const ID* member_id) const override;
// Env *member_env() const;
string EvalMember(const ID* member_id) const override;
// Env *member_env() const;
void AddParamArg(Expr* arg);
void AddParamArg(Expr* arg);
bool DefineValueVar() const override;
string DataTypeStr() const override;
string DefaultValue() const override { return "0"; }
Type* MemberDataType(const ID* member_id) const override;
bool DefineValueVar() const override;
string DataTypeStr() const override;
string DefaultValue() const override { return "0"; }
Type* MemberDataType(const ID* member_id) const override;
// "throw_exception" specifies whether to throw an exception
// if the referred data type is not found
Type* ReferredDataType(bool throw_exception) const;
// "throw_exception" specifies whether to throw an exception
// if the referred data type is not found
Type* ReferredDataType(bool throw_exception) const;
void GenCleanUpCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
int StaticSize(Env* env) const override;
int StaticSize(Env* env) const override;
bool IsPointerType() const override { return true; }
bool IsPointerType() const override { return true; }
bool ByteOrderSensitive() const override;
bool RequiresAnalyzerContext() override;
bool ByteOrderSensitive() const override;
bool RequiresAnalyzerContext() override;
void GenInitCode(Output* out_cc, Env* env) override;
void GenInitCode(Output* out_cc, Env* env) override;
string class_name() const;
string EvalParameters(Output* out_cc, Env* env) const;
string class_name() const;
string EvalParameters(Output* out_cc, Env* env) const;
BufferMode buffer_mode() const override;
BufferMode buffer_mode() const override;
protected:
void GenNewInstance(Output* out, Env* env) override;
void GenNewInstance(Output* out, Env* env) override;
bool DoTraverse(DataDepVisitor* visitor) override;
Type* DoClone() const override;
void DoMarkIncrementalInput() override;
bool DoTraverse(DataDepVisitor* visitor) override;
Type* DoClone() const override;
void DoMarkIncrementalInput() override;
private:
ID* type_id_;
ExprList* args_;
bool checking_requires_analyzer_context_;
ID* type_id_;
ExprList* args_;
bool checking_requires_analyzer_context_;
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
};
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
};
#endif // pac_paramtype_h

View file

@ -5,30 +5,26 @@
#include "pac_id.h"
#include "pac_type.h"
string PPVal::ToCode(Env* env)
{
ASSERT(expr_);
return string(expr_->EvalExpr(nullptr, env));
}
string PPVal::ToCode(Env* env) {
ASSERT(expr_);
return string(expr_->EvalExpr(nullptr, env));
}
string PPSet::ToCode(Env* env)
{
ASSERT(expr_);
return expr_->SetFunc(nullptr, env);
}
string PPSet::ToCode(Env* env) {
ASSERT(expr_);
return expr_->SetFunc(nullptr, env);
}
string PPType::ToCode(Env* env)
{
Type* type = expr_->DataType(env);
return type->DataTypeStr();
}
string PPType::ToCode(Env* env) {
Type* type = expr_->DataType(env);
return type->DataTypeStr();
}
string PPConstDef::ToCode(Env* env)
{
Type* type = expr_->DataType(env);
env->AddID(id_, TEMP_VAR, type);
env->SetEvaluated(id_);
string PPConstDef::ToCode(Env* env) {
Type* type = expr_->DataType(env);
env->AddID(id_, TEMP_VAR, type);
env->SetEvaluated(id_);
string type_str = type->DataTypeStr();
return strfmt("%s %s = %s", type_str.c_str(), env->LValue(id_), expr_->EvalExpr(nullptr, env));
}
string type_str = type->DataTypeStr();
return strfmt("%s %s = %s", type_str.c_str(), env->LValue(id_), expr_->EvalExpr(nullptr, env));
}

View file

@ -3,76 +3,65 @@
#include "pac_common.h"
class PacPrimitive
{
class PacPrimitive {
public:
enum PrimitiveType
{
VAL,
SET,
TYPE,
CONST_DEF
};
enum PrimitiveType { VAL, SET, TYPE, CONST_DEF };
explicit PacPrimitive(PrimitiveType type) : type_(type) { }
virtual ~PacPrimitive() { }
explicit PacPrimitive(PrimitiveType type) : type_(type) {}
virtual ~PacPrimitive() {}
PrimitiveType type() const { return type_; }
PrimitiveType type() const { return type_; }
virtual string ToCode(Env* env) = 0;
virtual string ToCode(Env* env) = 0;
private:
PrimitiveType type_;
};
PrimitiveType type_;
};
class PPVal : public PacPrimitive
{
class PPVal : public PacPrimitive {
public:
PPVal(Expr* expr) : PacPrimitive(VAL), expr_(expr) { }
Expr* expr() const { return expr_; }
PPVal(Expr* expr) : PacPrimitive(VAL), expr_(expr) {}
Expr* expr() const { return expr_; }
string ToCode(Env* env) override;
string ToCode(Env* env) override;
private:
Expr* expr_;
};
Expr* expr_;
};
class PPSet : public PacPrimitive
{
class PPSet : public PacPrimitive {
public:
PPSet(Expr* expr) : PacPrimitive(SET), expr_(expr) { }
Expr* expr() const { return expr_; }
PPSet(Expr* expr) : PacPrimitive(SET), expr_(expr) {}
Expr* expr() const { return expr_; }
string ToCode(Env* env) override;
string ToCode(Env* env) override;
private:
Expr* expr_;
};
Expr* expr_;
};
class PPType : public PacPrimitive
{
class PPType : public PacPrimitive {
public:
PPType(Expr* expr) : PacPrimitive(TYPE), expr_(expr) { }
Expr* expr() const { return expr_; }
PPType(Expr* expr) : PacPrimitive(TYPE), expr_(expr) {}
Expr* expr() const { return expr_; }
string ToCode(Env* env) override;
string ToCode(Env* env) override;
private:
Expr* expr_;
};
Expr* expr_;
};
class PPConstDef : public PacPrimitive
{
class PPConstDef : public PacPrimitive {
public:
PPConstDef(const ID* id, Expr* expr) : PacPrimitive(CONST_DEF), id_(id), expr_(expr) { }
const ID* id() const { return id_; }
Expr* expr() const { return expr_; }
PPConstDef(const ID* id, Expr* expr) : PacPrimitive(CONST_DEF), id_(id), expr_(expr) {}
const ID* id() const { return id_; }
Expr* expr() const { return expr_; }
string ToCode(Env* env) override;
string ToCode(Env* env) override;
private:
const ID* id_;
Expr* expr_;
};
const ID* id_;
Expr* expr_;
};
#endif // pac_primitive_h

File diff suppressed because it is too large Load diff

View file

@ -7,179 +7,165 @@
#include "pac_let.h"
#include "pac_type.h"
class RecordType : public Type
{
class RecordType : public Type {
public:
RecordType(RecordFieldList* fields);
~RecordType() override;
RecordType(RecordFieldList* fields);
~RecordType() override;
bool DefineValueVar() const override;
string DataTypeStr() const override;
bool DefineValueVar() const override;
string DataTypeStr() const override;
void Prepare(Env* env, int flags) override;
void Prepare(Env* env, int flags) override;
void GenPubDecls(Output* out, Env* env) override;
void GenPrivDecls(Output* out, Env* env) override;
void GenPubDecls(Output* out, Env* env) override;
void GenPrivDecls(Output* out, Env* env) override;
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
int StaticSize(Env* env) const override;
int StaticSize(Env* env) const override;
void SetBoundaryChecked() override;
void SetBoundaryChecked() override;
const ID* parsing_dataptr_var() const;
const ID* parsing_dataptr_var() const;
bool IsPointerType() const override
{
ASSERT(0);
return false;
}
bool IsPointerType() const override {
ASSERT(0);
return false;
}
protected:
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
Type* DoClone() const override { return nullptr; }
Type* DoClone() const override { return nullptr; }
void DoMarkIncrementalInput() override;
void DoMarkIncrementalInput() override;
bool DoTraverse(DataDepVisitor* visitor) override;
bool ByteOrderSensitive() const override;
bool DoTraverse(DataDepVisitor* visitor) override;
bool ByteOrderSensitive() const override;
private:
Field* parsing_dataptr_var_field_;
RecordFieldList* record_fields_;
};
Field* parsing_dataptr_var_field_;
RecordFieldList* record_fields_;
};
// A data field of a record type. A RecordField corresponds to a
// segment of input data, and therefore RecordField's are ordered---each
// of them has a known previous and next field.
class RecordField : public Field
{
class RecordField : public Field {
public:
RecordField(FieldType tof, ID* id, Type* type);
~RecordField() override;
RecordField(FieldType tof, ID* id, Type* type);
~RecordField() override;
RecordType* record_type() const { return record_type_; }
void set_record_type(RecordType* ty) { record_type_ = ty; }
RecordType* record_type() const { return record_type_; }
void set_record_type(RecordType* ty) { record_type_ = ty; }
virtual void GenParseCode(Output* out, Env* env) = 0;
virtual void GenParseCode(Output* out, Env* env) = 0;
RecordField* prev() const { return prev_; }
RecordField* next() const { return next_; }
void set_prev(RecordField* f) { prev_ = f; }
void set_next(RecordField* f) { next_ = f; }
RecordField* prev() const { return prev_; }
RecordField* next() const { return next_; }
void set_prev(RecordField* f) { prev_ = f; }
void set_next(RecordField* f) { next_ = f; }
int static_offset() const { return static_offset_; }
void set_static_offset(int offset) { static_offset_ = offset; }
int static_offset() const { return static_offset_; }
void set_static_offset(int offset) { static_offset_ = offset; }
int parsing_state_seq() const { return parsing_state_seq_; }
void set_parsing_state_seq(int x) { parsing_state_seq_ = x; }
int parsing_state_seq() const { return parsing_state_seq_; }
void set_parsing_state_seq(int x) { parsing_state_seq_ = x; }
virtual int StaticSize(Env* env, int offset) const = 0;
const char* FieldSize(Output* out, Env* env);
const char* FieldOffset(Output* out, Env* env);
virtual int StaticSize(Env* env, int offset) const = 0;
const char* FieldSize(Output* out, Env* env);
const char* FieldOffset(Output* out, Env* env);
virtual bool BoundaryChecked() const { return boundary_checked_; }
virtual void SetBoundaryChecked() { boundary_checked_ = true; }
virtual bool BoundaryChecked() const { return boundary_checked_; }
virtual void SetBoundaryChecked() { boundary_checked_ = true; }
virtual bool RequiresByteOrder() const = 0;
virtual bool RequiresByteOrder() const = 0;
friend class RecordType;
friend class RecordType;
protected:
RecordType* record_type_;
RecordField* prev_;
RecordField* next_;
bool boundary_checked_;
int static_offset_;
int parsing_state_seq_;
RecordType* record_type_;
RecordField* prev_;
RecordField* next_;
bool boundary_checked_;
int static_offset_;
int parsing_state_seq_;
DataPtr* begin_of_field_dataptr;
DataPtr* end_of_field_dataptr;
char* field_size_expr;
char* field_offset_expr;
ID* end_of_field_dataptr_var;
DataPtr* begin_of_field_dataptr;
DataPtr* end_of_field_dataptr;
char* field_size_expr;
char* field_offset_expr;
ID* end_of_field_dataptr_var;
const DataPtr& getFieldBegin(Output* out_cc, Env* env);
const DataPtr& getFieldEnd(Output* out_cc, Env* env);
virtual void GenFieldEnd(Output* out, Env* env, const DataPtr& begin) = 0;
const DataPtr& getFieldBegin(Output* out_cc, Env* env);
const DataPtr& getFieldEnd(Output* out_cc, Env* env);
virtual void GenFieldEnd(Output* out, Env* env, const DataPtr& begin) = 0;
bool AttemptBoundaryCheck(Output* out_cc, Env* env);
virtual bool GenBoundaryCheck(Output* out_cc, Env* env) = 0;
};
bool AttemptBoundaryCheck(Output* out_cc, Env* env);
virtual bool GenBoundaryCheck(Output* out_cc, Env* env) = 0;
};
class RecordDataField : public RecordField, public Evaluatable
{
class RecordDataField : public RecordField, public Evaluatable {
public:
RecordDataField(ID* arg_id, Type* arg_type);
~RecordDataField() override;
RecordDataField(ID* arg_id, Type* arg_type);
~RecordDataField() override;
// Instantiates abstract class Field
void Prepare(Env* env) override;
void GenParseCode(Output* out, Env* env) override;
// Instantiates abstract class Field
void Prepare(Env* env) override;
void GenParseCode(Output* out, Env* env) override;
// Instantiates abstract class Evaluatable
void GenEval(Output* out, Env* env) override;
// Instantiates abstract class Evaluatable
void GenEval(Output* out, Env* env) override;
int StaticSize(Env* env, int) const override { return type()->StaticSize(env); }
int StaticSize(Env* env, int) const override { return type()->StaticSize(env); }
void SetBoundaryChecked() override;
void SetBoundaryChecked() override;
bool RequiresByteOrder() const override { return type()->RequiresByteOrder(); }
bool RequiresAnalyzerContext() const override;
bool RequiresByteOrder() const override { return type()->RequiresByteOrder(); }
bool RequiresAnalyzerContext() const override;
protected:
void GenFieldEnd(Output* out, Env* env, const DataPtr& begin) override;
bool GenBoundaryCheck(Output* out_cc, Env* env) override;
bool DoTraverse(DataDepVisitor* visitor) override;
};
void GenFieldEnd(Output* out, Env* env, const DataPtr& begin) override;
bool GenBoundaryCheck(Output* out_cc, Env* env) override;
bool DoTraverse(DataDepVisitor* visitor) override;
};
enum PaddingType
{
PAD_BY_LENGTH,
PAD_TO_OFFSET,
PAD_TO_NEXT_WORD
};
enum PaddingType { PAD_BY_LENGTH, PAD_TO_OFFSET, PAD_TO_NEXT_WORD };
class RecordPaddingField : public RecordField
{
class RecordPaddingField : public RecordField {
public:
RecordPaddingField(ID* id, PaddingType ptype, Expr* expr);
~RecordPaddingField() override;
RecordPaddingField(ID* id, PaddingType ptype, Expr* expr);
~RecordPaddingField() override;
void Prepare(Env* env) override;
void Prepare(Env* env) override;
void GenPubDecls(Output* out, Env* env) override
{ /* nothing */
}
void GenPrivDecls(Output* out, Env* env) override
{ /* nothing */
}
void GenPubDecls(Output* out, Env* env) override { /* nothing */
}
void GenPrivDecls(Output* out, Env* env) override { /* nothing */
}
void GenInitCode(Output* out, Env* env) override
{ /* nothing */
}
void GenCleanUpCode(Output* out, Env* env) override
{ /* nothing */
}
void GenParseCode(Output* out, Env* env) override;
void GenInitCode(Output* out, Env* env) override { /* nothing */
}
void GenCleanUpCode(Output* out, Env* env) override { /* nothing */
}
void GenParseCode(Output* out, Env* env) override;
int StaticSize(Env* env, int offset) const override;
int StaticSize(Env* env, int offset) const override;
bool RequiresByteOrder() const override { return false; }
bool RequiresByteOrder() const override { return false; }
protected:
void GenFieldEnd(Output* out, Env* env, const DataPtr& begin) override;
bool GenBoundaryCheck(Output* out_cc, Env* env) override;
bool DoTraverse(DataDepVisitor* visitor) override;
void GenFieldEnd(Output* out, Env* env, const DataPtr& begin) override;
bool GenBoundaryCheck(Output* out_cc, Env* env) override;
bool DoTraverse(DataDepVisitor* visitor) override;
private:
PaddingType ptype_;
Expr* expr_;
int wordsize_;
};
PaddingType ptype_;
Expr* expr_;
int wordsize_;
};
#endif // pac_record_h

View file

@ -9,145 +9,124 @@
#include "pac_type.h"
#include "pac_typedecl.h"
namespace
{
namespace {
Decl* find_decl(const ID* id)
{
Decl* decl = Decl::LookUpDecl(id);
if ( ! decl )
{
throw Exception(id, strfmt("cannot find declaration for %s", id->Name()));
}
Decl* find_decl(const ID* id) {
Decl* decl = Decl::LookUpDecl(id);
if ( ! decl ) {
throw Exception(id, strfmt("cannot find declaration for %s", id->Name()));
}
return decl;
}
return decl;
}
}
} // namespace
Decl* ProcessTypeRedef(const ID* id, FieldList* fieldlist)
{
Decl* decl = find_decl(id);
Decl* ProcessTypeRedef(const ID* id, FieldList* fieldlist) {
Decl* decl = find_decl(id);
if ( decl->decl_type() != Decl::TYPE )
{
throw Exception(id, strfmt("not a type declaration: %s", id->Name()));
}
if ( decl->decl_type() != Decl::TYPE ) {
throw Exception(id, strfmt("not a type declaration: %s", id->Name()));
}
TypeDecl* type_decl = static_cast<TypeDecl*>(decl);
ASSERT(type_decl);
Type* type = type_decl->type();
TypeDecl* type_decl = static_cast<TypeDecl*>(decl);
ASSERT(type_decl);
Type* type = type_decl->type();
foreach (i, FieldList, fieldlist)
{
Field* f = *i;
foreach (i, FieldList, fieldlist) {
Field* f = *i;
// One cannot change data layout in 'redef'.
// Only 'let' or 'action' can be added
if ( f->tof() == LET_FIELD || f->tof() == WITHINPUT_FIELD )
{
type->AddField(f);
}
else if ( f->tof() == RECORD_FIELD || f->tof() == PADDING_FIELD )
{
throw Exception(f, "cannot change data layout in redef");
}
else if ( f->tof() == CASE_FIELD )
{
throw Exception(f, "use 'redef case' adding cases");
}
}
// One cannot change data layout in 'redef'.
// Only 'let' or 'action' can be added
if ( f->tof() == LET_FIELD || f->tof() == WITHINPUT_FIELD ) {
type->AddField(f);
}
else if ( f->tof() == RECORD_FIELD || f->tof() == PADDING_FIELD ) {
throw Exception(f, "cannot change data layout in redef");
}
else if ( f->tof() == CASE_FIELD ) {
throw Exception(f, "use 'redef case' adding cases");
}
}
return decl;
}
return decl;
}
Decl* ProcessCaseTypeRedef(const ID* id, CaseFieldList* casefieldlist)
{
Decl* decl = find_decl(id);
Decl* ProcessCaseTypeRedef(const ID* id, CaseFieldList* casefieldlist) {
Decl* decl = find_decl(id);
if ( decl->decl_type() != Decl::TYPE )
{
throw Exception(id, strfmt("not a type declaration: %s", id->Name()));
}
if ( decl->decl_type() != Decl::TYPE ) {
throw Exception(id, strfmt("not a type declaration: %s", id->Name()));
}
TypeDecl* type_decl = static_cast<TypeDecl*>(decl);
ASSERT(type_decl);
TypeDecl* type_decl = static_cast<TypeDecl*>(decl);
ASSERT(type_decl);
Type* type = type_decl->type();
if ( type->tot() != Type::CASE )
{
throw Exception(id, strfmt("not a case type: %s", id->Name()));
}
Type* type = type_decl->type();
if ( type->tot() != Type::CASE ) {
throw Exception(id, strfmt("not a case type: %s", id->Name()));
}
CaseType* casetype = static_cast<CaseType*>(type);
ASSERT(casetype);
CaseType* casetype = static_cast<CaseType*>(type);
ASSERT(casetype);
foreach (i, CaseFieldList, casefieldlist)
{
CaseField* f = *i;
casetype->AddCaseField(f);
}
foreach (i, CaseFieldList, casefieldlist) {
CaseField* f = *i;
casetype->AddCaseField(f);
}
return decl;
}
return decl;
}
Decl* ProcessCaseExprRedef(const ID* id, CaseExprList* caseexprlist)
{
Decl* decl = find_decl(id);
Decl* ProcessCaseExprRedef(const ID* id, CaseExprList* caseexprlist) {
Decl* decl = find_decl(id);
if ( decl->decl_type() != Decl::FUNC )
{
throw Exception(id, strfmt("not a function declaration: %s", id->Name()));
}
if ( decl->decl_type() != Decl::FUNC ) {
throw Exception(id, strfmt("not a function declaration: %s", id->Name()));
}
FuncDecl* func_decl = static_cast<FuncDecl*>(decl);
ASSERT(func_decl);
FuncDecl* func_decl = static_cast<FuncDecl*>(decl);
ASSERT(func_decl);
Expr* expr = func_decl->function()->expr();
if ( ! expr || expr->expr_type() != Expr::EXPR_CASE )
{
throw Exception(id, strfmt("function not defined by a case expression: %s", id->Name()));
}
Expr* expr = func_decl->function()->expr();
if ( ! expr || expr->expr_type() != Expr::EXPR_CASE ) {
throw Exception(id, strfmt("function not defined by a case expression: %s", id->Name()));
}
foreach (i, CaseExprList, caseexprlist)
{
CaseExpr* e = *i;
expr->AddCaseExpr(e);
}
foreach (i, CaseExprList, caseexprlist) {
CaseExpr* e = *i;
expr->AddCaseExpr(e);
}
return decl;
}
return decl;
}
Decl* ProcessAnalyzerRedef(const ID* id, Decl::DeclType decl_type, AnalyzerElementList* elements)
{
Decl* decl = find_decl(id);
Decl* ProcessAnalyzerRedef(const ID* id, Decl::DeclType decl_type, AnalyzerElementList* elements) {
Decl* decl = find_decl(id);
if ( decl->decl_type() != decl_type )
{
throw Exception(id, strfmt("not a connection/flow declaration: %s", id->Name()));
}
if ( decl->decl_type() != decl_type ) {
throw Exception(id, strfmt("not a connection/flow declaration: %s", id->Name()));
}
AnalyzerDecl* analyzer_decl = static_cast<AnalyzerDecl*>(decl);
ASSERT(analyzer_decl);
AnalyzerDecl* analyzer_decl = static_cast<AnalyzerDecl*>(decl);
ASSERT(analyzer_decl);
analyzer_decl->AddElements(elements);
analyzer_decl->AddElements(elements);
return decl;
}
return decl;
}
Decl* ProcessTypeAttrRedef(const ID* id, AttrList* attrlist)
{
Decl* decl = find_decl(id);
Decl* ProcessTypeAttrRedef(const ID* id, AttrList* attrlist) {
Decl* decl = find_decl(id);
if ( decl->decl_type() != Decl::TYPE )
{
throw Exception(id, strfmt("not a type declaration: %s", id->Name()));
}
if ( decl->decl_type() != Decl::TYPE ) {
throw Exception(id, strfmt("not a type declaration: %s", id->Name()));
}
TypeDecl* type_decl = static_cast<TypeDecl*>(decl);
ASSERT(type_decl);
TypeDecl* type_decl = static_cast<TypeDecl*>(decl);
ASSERT(type_decl);
type_decl->AddAttrs(attrlist);
type_decl->AddAttrs(attrlist);
return decl;
}
return decl;
}

View file

@ -9,71 +9,55 @@
const char* RegEx::kREMatcherType = "RegExMatcher";
const char* RegEx::kMatchPrefix = "MatchPrefix";
string escape_char(const string& s)
{
char* buf = new char[s.length() * 2 + 1];
int j = 0;
for ( int i = 0; i < (int)s.length(); ++i )
{
if ( s[i] == '\\' )
{
if ( i + 1 < (int)s.length() )
{
buf[j++] = '\\';
if ( s[i + 1] == '/' )
buf[j - 1] = s[++i];
else if ( s[i + 1] == '/' || s[i + 1] == '\\' || s[i + 1] == '"' )
buf[j++] = s[++i];
else
buf[j++] = '\\';
}
}
else if ( s[i] == '"' )
{
buf[j++] = '\\';
buf[j++] = '"';
}
else
{
buf[j++] = s[i];
}
}
string escape_char(const string& s) {
char* buf = new char[s.length() * 2 + 1];
int j = 0;
for ( int i = 0; i < (int)s.length(); ++i ) {
if ( s[i] == '\\' ) {
if ( i + 1 < (int)s.length() ) {
buf[j++] = '\\';
if ( s[i + 1] == '/' )
buf[j - 1] = s[++i];
else if ( s[i + 1] == '/' || s[i + 1] == '\\' || s[i + 1] == '"' )
buf[j++] = s[++i];
else
buf[j++] = '\\';
}
}
else if ( s[i] == '"' ) {
buf[j++] = '\\';
buf[j++] = '"';
}
else {
buf[j++] = s[i];
}
}
buf[j++] = '\0';
buf[j++] = '\0';
string rval = buf;
delete[] buf;
return rval;
}
string rval = buf;
delete[] buf;
return rval;
}
RegEx::RegEx(const string& s)
{
str_ = escape_char(s);
string prefix = strfmt("%s_re_", current_decl_id->Name());
matcher_id_ = ID::NewAnonymousID(prefix);
decl_ = new RegExDecl(this);
}
RegEx::RegEx(const string& s) {
str_ = escape_char(s);
string prefix = strfmt("%s_re_", current_decl_id->Name());
matcher_id_ = ID::NewAnonymousID(prefix);
decl_ = new RegExDecl(this);
}
RegEx::~RegEx() { }
RegEx::~RegEx() {}
RegExDecl::RegExDecl(RegEx* regex) : Decl(regex->matcher_id(), REGEX)
{
regex_ = regex;
}
RegExDecl::RegExDecl(RegEx* regex) : Decl(regex->matcher_id(), REGEX) { regex_ = regex; }
void RegExDecl::Prepare()
{
global_env()->AddID(id(), GLOBAL_VAR, extern_type_re_matcher);
}
void RegExDecl::Prepare() { global_env()->AddID(id(), GLOBAL_VAR, extern_type_re_matcher); }
void RegExDecl::GenForwardDeclaration(Output* out_h)
{
out_h->println("extern %s %s;\n", RegEx::kREMatcherType,
global_env()->LValue(regex_->matcher_id()));
}
void RegExDecl::GenForwardDeclaration(Output* out_h) {
out_h->println("extern %s %s;\n", RegEx::kREMatcherType, global_env()->LValue(regex_->matcher_id()));
}
void RegExDecl::GenCode(Output* out_h, Output* out_cc)
{
out_cc->println("%s %s(\"%s\");\n", RegEx::kREMatcherType,
global_env()->LValue(regex_->matcher_id()), regex_->str().c_str());
}
void RegExDecl::GenCode(Output* out_h, Output* out_cc) {
out_cc->println("%s %s(\"%s\");\n", RegEx::kREMatcherType, global_env()->LValue(regex_->matcher_id()),
regex_->str().c_str());
}

View file

@ -6,36 +6,34 @@
class RegExDecl;
class RegEx : public Object
{
class RegEx : public Object {
public:
RegEx(const string& str);
~RegEx();
RegEx(const string& str);
~RegEx();
const string& str() const { return str_; }
ID* matcher_id() const { return matcher_id_; }
const string& str() const { return str_; }
ID* matcher_id() const { return matcher_id_; }
private:
string str_;
ID* matcher_id_;
RegExDecl* decl_;
string str_;
ID* matcher_id_;
RegExDecl* decl_;
public:
static const char* kREMatcherType;
static const char* kMatchPrefix;
};
static const char* kREMatcherType;
static const char* kMatchPrefix;
};
class RegExDecl : public Decl
{
class RegExDecl : public Decl {
public:
RegExDecl(RegEx* regex);
RegExDecl(RegEx* regex);
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
private:
RegEx* regex_;
};
RegEx* regex_;
};
#endif // pac_regex_h

View file

@ -4,23 +4,20 @@
#include "pac_output.h"
#include "pac_type.h"
void StateVar::GenDecl(Output* out_h, Env* env)
{
out_h->println("%s %s;", type_->DataTypeStr().c_str(), env->LValue(id_));
}
void StateVar::GenDecl(Output* out_h, Env* env) {
out_h->println("%s %s;", type_->DataTypeStr().c_str(), env->LValue(id_));
}
void StateVar::GenAccessFunction(Output* out_h, Env* env)
{
out_h->println("%s %s const { return %s; }", type_->DataTypeConstRefStr().c_str(),
env->RValue(id_), env->LValue(id_));
}
void StateVar::GenAccessFunction(Output* out_h, Env* env) {
out_h->println("%s %s const { return %s; }", type_->DataTypeConstRefStr().c_str(), env->RValue(id_),
env->LValue(id_));
}
void StateVar::GenSetFunction(Output* out_h, Env* env)
{
out_h->println("void %s(%s x) { %s = x; }", set_function(id_).c_str(),
type_->DataTypeConstRefStr().c_str(), env->LValue(id_));
}
void StateVar::GenSetFunction(Output* out_h, Env* env) {
out_h->println("void %s(%s x) { %s = x; }", set_function(id_).c_str(), type_->DataTypeConstRefStr().c_str(),
env->LValue(id_));
}
void StateVar::GenInitCode(Output* out_cc, Env* env) { }
void StateVar::GenInitCode(Output* out_cc, Env* env) {}
void StateVar::GenCleanUpCode(Output* out_cc, Env* env) { }
void StateVar::GenCleanUpCode(Output* out_cc, Env* env) {}

View file

@ -5,23 +5,22 @@
#include "pac_common.h"
class StateVar
{
class StateVar {
public:
StateVar(ID* id, Type* type) : id_(id), type_(type) { }
StateVar(ID* id, Type* type) : id_(id), type_(type) {}
const ID* id() const { return id_; }
Type* type() const { return type_; }
const ID* id() const { return id_; }
Type* type() const { return type_; }
void GenDecl(Output* out_h, Env* env);
void GenAccessFunction(Output* out_h, Env* env);
void GenSetFunction(Output* out_h, Env* env);
void GenInitCode(Output* out_cc, Env* env);
void GenCleanUpCode(Output* out_cc, Env* env);
void GenDecl(Output* out_h, Env* env);
void GenAccessFunction(Output* out_h, Env* env);
void GenSetFunction(Output* out_h, Env* env);
void GenInitCode(Output* out_cc, Env* env);
void GenCleanUpCode(Output* out_cc, Env* env);
private:
ID* id_;
Type* type_;
};
ID* id_;
Type* type_;
};
#endif // pac_state_h

View file

@ -15,388 +15,293 @@
const char* StringType::kStringTypeName = "bytestring";
const char* StringType::kConstStringTypeName = "const_bytestring";
StringType::StringType(StringTypeEnum anystr)
: Type(STRING), type_(ANYSTR), str_(nullptr), regex_(nullptr)
{
ASSERT(anystr == ANYSTR);
init();
}
StringType::StringType(StringTypeEnum anystr) : Type(STRING), type_(ANYSTR), str_(nullptr), regex_(nullptr) {
ASSERT(anystr == ANYSTR);
init();
}
StringType::StringType(ConstString* str) : Type(STRING), type_(CSTR), str_(str), regex_(nullptr)
{
init();
}
StringType::StringType(ConstString* str) : Type(STRING), type_(CSTR), str_(str), regex_(nullptr) { init(); }
StringType::StringType(RegEx* regex) : Type(STRING), type_(REGEX), str_(nullptr), regex_(regex)
{
ASSERT(regex_);
init();
}
StringType::StringType(RegEx* regex) : Type(STRING), type_(REGEX), str_(nullptr), regex_(regex) {
ASSERT(regex_);
init();
}
void StringType::init()
{
string_length_var_field_ = nullptr;
elem_datatype_ = new BuiltInType(BuiltInType::UINT8);
}
void StringType::init() {
string_length_var_field_ = nullptr;
elem_datatype_ = new BuiltInType(BuiltInType::UINT8);
}
StringType::~StringType()
{
// TODO: Unref for Objects
// Question: why Unref?
//
// Unref(str_);
// Unref(regex_);
StringType::~StringType() {
// TODO: Unref for Objects
// Question: why Unref?
//
// Unref(str_);
// Unref(regex_);
delete string_length_var_field_;
delete elem_datatype_;
}
delete string_length_var_field_;
delete elem_datatype_;
}
Type* StringType::DoClone() const
{
StringType* clone;
Type* StringType::DoClone() const {
StringType* clone;
switch ( type_ )
{
case ANYSTR:
clone = new StringType(ANYSTR);
break;
case CSTR:
clone = new StringType(str_);
break;
case REGEX:
clone = new StringType(regex_);
break;
default:
ASSERT(0);
return nullptr;
}
switch ( type_ ) {
case ANYSTR: clone = new StringType(ANYSTR); break;
case CSTR: clone = new StringType(str_); break;
case REGEX: clone = new StringType(regex_); break;
default: ASSERT(0); return nullptr;
}
return clone;
}
return clone;
}
bool StringType::DefineValueVar() const
{
return true;
}
bool StringType::DefineValueVar() const { return true; }
string StringType::DataTypeStr() const
{
return strfmt("%s", persistent() ? kStringTypeName : kConstStringTypeName);
}
string StringType::DataTypeStr() const { return strfmt("%s", persistent() ? kStringTypeName : kConstStringTypeName); }
Type* StringType::ElementDataType() const
{
return elem_datatype_;
}
Type* StringType::ElementDataType() const { return elem_datatype_; }
void StringType::ProcessAttr(Attr* a)
{
Type::ProcessAttr(a);
void StringType::ProcessAttr(Attr* a) {
Type::ProcessAttr(a);
switch ( a->type() )
{
case ATTR_CHUNKED:
{
if ( type_ != ANYSTR )
{
throw Exception(a, "&chunked can be applied"
" to only type bytestring");
}
attr_chunked_ = true;
SetBoundaryChecked();
}
break;
switch ( a->type() ) {
case ATTR_CHUNKED: {
if ( type_ != ANYSTR ) {
throw Exception(a,
"&chunked can be applied"
" to only type bytestring");
}
attr_chunked_ = true;
SetBoundaryChecked();
} break;
case ATTR_RESTOFDATA:
{
if ( type_ != ANYSTR )
{
throw Exception(a, "&restofdata can be applied"
" to only type bytestring");
}
attr_restofdata_ = true;
// As the string automatically extends to the end of
// data, we do not have to check boundary.
SetBoundaryChecked();
}
break;
case ATTR_RESTOFDATA: {
if ( type_ != ANYSTR ) {
throw Exception(a,
"&restofdata can be applied"
" to only type bytestring");
}
attr_restofdata_ = true;
// As the string automatically extends to the end of
// data, we do not have to check boundary.
SetBoundaryChecked();
} break;
case ATTR_RESTOFFLOW:
{
if ( type_ != ANYSTR )
{
throw Exception(a, "&restofflow can be applied"
" to only type bytestring");
}
attr_restofflow_ = true;
// As the string automatically extends to the end of
// flow, we do not have to check boundary.
SetBoundaryChecked();
}
break;
case ATTR_RESTOFFLOW: {
if ( type_ != ANYSTR ) {
throw Exception(a,
"&restofflow can be applied"
" to only type bytestring");
}
attr_restofflow_ = true;
// As the string automatically extends to the end of
// flow, we do not have to check boundary.
SetBoundaryChecked();
} break;
default:
break;
}
}
default: break;
}
}
void StringType::Prepare(Env* env, int flags)
{
if ( (flags & TO_BE_PARSED) && StaticSize(env) < 0 )
{
ID* string_length_var = new ID(
strfmt("%s_string_length", value_var() ? value_var()->Name() : "val"));
string_length_var_field_ = new TempVarField(string_length_var, extern_type_int->Clone());
string_length_var_field_->Prepare(env);
}
Type::Prepare(env, flags);
}
void StringType::Prepare(Env* env, int flags) {
if ( (flags & TO_BE_PARSED) && StaticSize(env) < 0 ) {
ID* string_length_var = new ID(strfmt("%s_string_length", value_var() ? value_var()->Name() : "val"));
string_length_var_field_ = new TempVarField(string_length_var, extern_type_int->Clone());
string_length_var_field_->Prepare(env);
}
Type::Prepare(env, flags);
}
void StringType::GenPubDecls(Output* out_h, Env* env)
{
Type::GenPubDecls(out_h, env);
}
void StringType::GenPubDecls(Output* out_h, Env* env) { Type::GenPubDecls(out_h, env); }
void StringType::GenPrivDecls(Output* out_h, Env* env)
{
Type::GenPrivDecls(out_h, env);
}
void StringType::GenPrivDecls(Output* out_h, Env* env) { Type::GenPrivDecls(out_h, env); }
void StringType::GenInitCode(Output* out_cc, Env* env)
{
Type::GenInitCode(out_cc, env);
}
void StringType::GenInitCode(Output* out_cc, Env* env) { Type::GenInitCode(out_cc, env); }
void StringType::GenCleanUpCode(Output* out_cc, Env* env)
{
Type::GenCleanUpCode(out_cc, env);
if ( persistent() )
out_cc->println("%s.free();", env->LValue(value_var()));
}
void StringType::GenCleanUpCode(Output* out_cc, Env* env) {
Type::GenCleanUpCode(out_cc, env);
if ( persistent() )
out_cc->println("%s.free();", env->LValue(value_var()));
}
void StringType::DoMarkIncrementalInput()
{
if ( attr_restofflow_ )
{
// Do nothing
ASSERT(type_ == ANYSTR);
}
else
{
Type::DoMarkIncrementalInput();
}
}
void StringType::DoMarkIncrementalInput() {
if ( attr_restofflow_ ) {
// Do nothing
ASSERT(type_ == ANYSTR);
}
else {
Type::DoMarkIncrementalInput();
}
}
int StringType::StaticSize(Env* env) const
{
switch ( type_ )
{
case CSTR:
// Use length of the unescaped string
return str_->unescaped().length();
case REGEX:
// TODO: static size for a regular expression?
case ANYSTR:
return -1;
int StringType::StaticSize(Env* env) const {
switch ( type_ ) {
case CSTR:
// Use length of the unescaped string
return str_->unescaped().length();
case REGEX:
// TODO: static size for a regular expression?
case ANYSTR: return -1;
default:
ASSERT(0);
return -1;
}
}
default: ASSERT(0); return -1;
}
}
const ID* StringType::string_length_var() const
{
return string_length_var_field_ ? string_length_var_field_->id() : nullptr;
}
const ID* StringType::string_length_var() const {
return string_length_var_field_ ? string_length_var_field_->id() : nullptr;
}
void StringType::GenDynamicSize(Output* out_cc, Env* env, const DataPtr& data)
{
ASSERT(StaticSize(env) < 0);
DEBUG_MSG("Generating dynamic size for string `%s'\n", value_var()->Name());
void StringType::GenDynamicSize(Output* out_cc, Env* env, const DataPtr& data) {
ASSERT(StaticSize(env) < 0);
DEBUG_MSG("Generating dynamic size for string `%s'\n", value_var()->Name());
if ( env->Evaluated(string_length_var()) )
return;
if ( env->Evaluated(string_length_var()) )
return;
string_length_var_field_->GenTempDecls(out_cc, env);
string_length_var_field_->GenTempDecls(out_cc, env);
switch ( type_ )
{
case ANYSTR:
GenDynamicSizeAnyStr(out_cc, env, data);
break;
case CSTR:
ASSERT(0);
break;
case REGEX:
// TODO: static size for a regular expression?
GenDynamicSizeRegEx(out_cc, env, data);
break;
}
switch ( type_ ) {
case ANYSTR: GenDynamicSizeAnyStr(out_cc, env, data); break;
case CSTR: ASSERT(0); break;
case REGEX:
// TODO: static size for a regular expression?
GenDynamicSizeRegEx(out_cc, env, data);
break;
}
if ( ! incremental_input() && AddSizeVar(out_cc, env) )
{
out_cc->println("%s = %s;", env->LValue(size_var()), env->RValue(string_length_var()));
env->SetEvaluated(size_var());
}
}
if ( ! incremental_input() && AddSizeVar(out_cc, env) ) {
out_cc->println("%s = %s;", env->LValue(size_var()), env->RValue(string_length_var()));
env->SetEvaluated(size_var());
}
}
string StringType::GenStringSize(Output* out_cc, Env* env, const DataPtr& data)
{
int static_size = StaticSize(env);
if ( static_size >= 0 )
return strfmt("%d", static_size);
GenDynamicSize(out_cc, env, data);
return env->RValue(string_length_var());
}
string StringType::GenStringSize(Output* out_cc, Env* env, const DataPtr& data) {
int static_size = StaticSize(env);
if ( static_size >= 0 )
return strfmt("%d", static_size);
GenDynamicSize(out_cc, env, data);
return env->RValue(string_length_var());
}
void StringType::DoGenParseCode(Output* out_cc, Env* env, const DataPtr& data, int flags)
{
string str_size = GenStringSize(out_cc, env, data);
void StringType::DoGenParseCode(Output* out_cc, Env* env, const DataPtr& data, int flags) {
string str_size = GenStringSize(out_cc, env, data);
// Generate additional checking
switch ( type_ )
{
case CSTR:
GenCheckingCStr(out_cc, env, data, str_size);
break;
case REGEX:
case ANYSTR:
break;
}
// Generate additional checking
switch ( type_ ) {
case CSTR: GenCheckingCStr(out_cc, env, data, str_size); break;
case REGEX:
case ANYSTR: break;
}
if ( ! anonymous_value_var() )
{
// Set the value variable
if ( ! anonymous_value_var() ) {
// Set the value variable
int len;
int len;
if ( type_ == ANYSTR && attr_length_expr_ && attr_length_expr_->ConstFold(env, &len) )
{
// can check for a negative length now
if ( len < 0 )
throw Exception(this, "negative &length on string");
}
else
{
out_cc->println("// check for negative sizes");
out_cc->println("if ( %s < 0 )", str_size.c_str());
out_cc->println("throw binpac::ExceptionInvalidStringLength(\"%s\", %s);", Location(),
str_size.c_str());
}
if ( type_ == ANYSTR && attr_length_expr_ && attr_length_expr_->ConstFold(env, &len) ) {
// can check for a negative length now
if ( len < 0 )
throw Exception(this, "negative &length on string");
}
else {
out_cc->println("// check for negative sizes");
out_cc->println("if ( %s < 0 )", str_size.c_str());
out_cc->println("throw binpac::ExceptionInvalidStringLength(\"%s\", %s);", Location(), str_size.c_str());
}
out_cc->println("%s.init(%s, %s);", env->LValue(value_var()), data.ptr_expr(),
str_size.c_str());
}
out_cc->println("%s.init(%s, %s);", env->LValue(value_var()), data.ptr_expr(), str_size.c_str());
}
if ( parsing_complete_var() )
{
out_cc->println("%s = true;", env->LValue(parsing_complete_var()));
}
}
if ( parsing_complete_var() ) {
out_cc->println("%s = true;", env->LValue(parsing_complete_var()));
}
}
void StringType::GenStringMismatch(Output* out_cc, Env* env, const DataPtr& data, string pattern)
{
string tmp = strfmt("string((const char *) (%s), (const char *) %s).c_str()", data.ptr_expr(),
env->RValue(end_of_data));
out_cc->println("throw binpac::ExceptionStringMismatch(\"%s\", %s, %s);", Location(),
pattern.c_str(), tmp.c_str());
}
void StringType::GenStringMismatch(Output* out_cc, Env* env, const DataPtr& data, string pattern) {
string tmp =
strfmt("string((const char *) (%s), (const char *) %s).c_str()", data.ptr_expr(), env->RValue(end_of_data));
out_cc->println("throw binpac::ExceptionStringMismatch(\"%s\", %s, %s);", Location(), pattern.c_str(), tmp.c_str());
}
void StringType::GenCheckingCStr(Output* out_cc, Env* env, const DataPtr& data,
const string& str_size)
{
// TODO: extend it for dynamic strings
ASSERT(type_ == CSTR);
void StringType::GenCheckingCStr(Output* out_cc, Env* env, const DataPtr& data, const string& str_size) {
// TODO: extend it for dynamic strings
ASSERT(type_ == CSTR);
GenBoundaryCheck(out_cc, env, data);
GenBoundaryCheck(out_cc, env, data);
string str_val = str_->str();
string str_val = str_->str();
// Compare the string and report error on mismatch
out_cc->println("if ( memcmp(%s, %s, %s) != 0 )", data.ptr_expr(), str_val.c_str(),
str_size.c_str());
out_cc->inc_indent();
out_cc->println("{");
GenStringMismatch(out_cc, env, data, str_val);
out_cc->println("}");
out_cc->dec_indent();
}
// Compare the string and report error on mismatch
out_cc->println("if ( memcmp(%s, %s, %s) != 0 )", data.ptr_expr(), str_val.c_str(), str_size.c_str());
out_cc->inc_indent();
out_cc->println("{");
GenStringMismatch(out_cc, env, data, str_val);
out_cc->println("}");
out_cc->dec_indent();
}
void StringType::GenDynamicSizeRegEx(Output* out_cc, Env* env, const DataPtr& data)
{
// string_length_var =
// matcher.match_prefix(
// begin,
// end);
void StringType::GenDynamicSizeRegEx(Output* out_cc, Env* env, const DataPtr& data) {
// string_length_var =
// matcher.match_prefix(
// begin,
// end);
out_cc->println("%s = ", env->LValue(string_length_var()));
out_cc->inc_indent();
out_cc->println("%s = ", env->LValue(string_length_var()));
out_cc->inc_indent();
out_cc->println("%s.%s(", env->RValue(regex_->matcher_id()), RegEx::kMatchPrefix);
out_cc->println("%s.%s(", env->RValue(regex_->matcher_id()), RegEx::kMatchPrefix);
out_cc->inc_indent();
out_cc->println("%s,", data.ptr_expr());
out_cc->println("%s - %s);", env->RValue(end_of_data), data.ptr_expr());
out_cc->inc_indent();
out_cc->println("%s,", data.ptr_expr());
out_cc->println("%s - %s);", env->RValue(end_of_data), data.ptr_expr());
out_cc->dec_indent();
out_cc->dec_indent();
out_cc->dec_indent();
out_cc->dec_indent();
env->SetEvaluated(string_length_var());
env->SetEvaluated(string_length_var());
out_cc->println("if ( %s < 0 )", env->RValue(string_length_var()));
out_cc->inc_indent();
out_cc->println("{");
string tmp = strfmt("\"%s\"", regex_->str().c_str());
GenStringMismatch(out_cc, env, data, tmp);
out_cc->println("}");
out_cc->dec_indent();
}
out_cc->println("if ( %s < 0 )", env->RValue(string_length_var()));
out_cc->inc_indent();
out_cc->println("{");
string tmp = strfmt("\"%s\"", regex_->str().c_str());
GenStringMismatch(out_cc, env, data, tmp);
out_cc->println("}");
out_cc->dec_indent();
}
void StringType::GenDynamicSizeAnyStr(Output* out_cc, Env* env, const DataPtr& data)
{
ASSERT(type_ == ANYSTR);
void StringType::GenDynamicSizeAnyStr(Output* out_cc, Env* env, const DataPtr& data) {
ASSERT(type_ == ANYSTR);
if ( attr_restofdata_ || attr_oneline_ )
{
out_cc->println("%s = (%s) - (%s);", env->LValue(string_length_var()),
env->RValue(end_of_data), data.ptr_expr());
}
else if ( attr_restofflow_ )
{
out_cc->println("%s = (%s) - (%s);", env->LValue(string_length_var()),
env->RValue(end_of_data), data.ptr_expr());
}
else if ( attr_length_expr_ )
{
out_cc->println("%s = %s;", env->LValue(string_length_var()),
attr_length_expr_->EvalExpr(out_cc, env));
}
else
{
throw Exception(this, "cannot determine length of bytestring");
}
if ( attr_restofdata_ || attr_oneline_ ) {
out_cc->println("%s = (%s) - (%s);", env->LValue(string_length_var()), env->RValue(end_of_data),
data.ptr_expr());
}
else if ( attr_restofflow_ ) {
out_cc->println("%s = (%s) - (%s);", env->LValue(string_length_var()), env->RValue(end_of_data),
data.ptr_expr());
}
else if ( attr_length_expr_ ) {
out_cc->println("%s = %s;", env->LValue(string_length_var()), attr_length_expr_->EvalExpr(out_cc, env));
}
else {
throw Exception(this, "cannot determine length of bytestring");
}
env->SetEvaluated(string_length_var());
}
env->SetEvaluated(string_length_var());
}
bool StringType::DoTraverse(DataDepVisitor* visitor)
{
if ( ! Type::DoTraverse(visitor) )
return false;
bool StringType::DoTraverse(DataDepVisitor* visitor) {
if ( ! Type::DoTraverse(visitor) )
return false;
switch ( type_ )
{
case ANYSTR:
case CSTR:
case REGEX:
break;
}
switch ( type_ ) {
case ANYSTR:
case CSTR:
case REGEX: break;
}
return true;
}
return true;
}
void StringType::static_init()
{
Type::AddPredefinedType("bytestring", new StringType(ANYSTR));
}
void StringType::static_init() { Type::AddPredefinedType("bytestring", new StringType(ANYSTR)); }

View file

@ -4,83 +4,77 @@
#include "pac_type.h"
// TODO: question: shall we merge it with ArrayType?
class StringType : public Type
{
class StringType : public Type {
public:
enum StringTypeEnum
{
CSTR,
REGEX,
ANYSTR
};
enum StringTypeEnum { CSTR, REGEX, ANYSTR };
explicit StringType(StringTypeEnum anystr);
explicit StringType(ConstString* str);
explicit StringType(RegEx* regex);
~StringType() override;
explicit StringType(StringTypeEnum anystr);
explicit StringType(ConstString* str);
explicit StringType(RegEx* regex);
~StringType() override;
bool DefineValueVar() const override;
string DataTypeStr() const override;
string DefaultValue() const override { return "0"; }
Type* ElementDataType() const override;
bool DefineValueVar() const override;
string DataTypeStr() const override;
string DefaultValue() const override { return "0"; }
Type* ElementDataType() const override;
void Prepare(Env* env, int flags) override;
void Prepare(Env* env, int flags) override;
void GenPubDecls(Output* out, Env* env) override;
void GenPrivDecls(Output* out, Env* env) override;
void GenPubDecls(Output* out, Env* env) override;
void GenPrivDecls(Output* out, Env* env) override;
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
void GenInitCode(Output* out, Env* env) override;
void GenCleanUpCode(Output* out, Env* env) override;
void DoMarkIncrementalInput() override;
void DoMarkIncrementalInput() override;
int StaticSize(Env* env) const override;
int StaticSize(Env* env) const override;
bool IsPointerType() const override { return false; }
bool IsPointerType() const override { return false; }
void ProcessAttr(Attr* a) override;
void ProcessAttr(Attr* a) override;
protected:
void init();
void init();
// Generate computation of size of the string and returns the string
// representing a constant integer or name of the length variable.
string GenStringSize(Output* out_cc, Env* env, const DataPtr& data);
// Generate computation of size of the string and returns the string
// representing a constant integer or name of the length variable.
string GenStringSize(Output* out_cc, Env* env, const DataPtr& data);
// Generate a string mismatch exception
void GenStringMismatch(Output* out_cc, Env* env, const DataPtr& data, string pattern);
// Generate a string mismatch exception
void GenStringMismatch(Output* out_cc, Env* env, const DataPtr& data, string pattern);
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) override;
void GenCheckingCStr(Output* out, Env* env, const DataPtr& data, const string& str_size);
void GenCheckingCStr(Output* out, Env* env, const DataPtr& data, const string& str_size);
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
void GenDynamicSizeAnyStr(Output* out_cc, Env* env, const DataPtr& data);
void GenDynamicSizeRegEx(Output* out_cc, Env* env, const DataPtr& data);
void GenDynamicSize(Output* out, Env* env, const DataPtr& data) override;
void GenDynamicSizeAnyStr(Output* out_cc, Env* env, const DataPtr& data);
void GenDynamicSizeRegEx(Output* out_cc, Env* env, const DataPtr& data);
Type* DoClone() const override;
Type* DoClone() const override;
// TODO: insensitive towards byte order till we support unicode
bool ByteOrderSensitive() const override { return false; }
// TODO: insensitive towards byte order till we support unicode
bool ByteOrderSensitive() const override { return false; }
protected:
bool DoTraverse(DataDepVisitor* visitor) override;
bool DoTraverse(DataDepVisitor* visitor) override;
private:
const ID* string_length_var() const;
const ID* string_length_var() const;
StringTypeEnum type_;
ConstString* str_;
RegEx* regex_;
Field* string_length_var_field_;
Type* elem_datatype_;
StringTypeEnum type_;
ConstString* str_;
RegEx* regex_;
Field* string_length_var_field_;
Type* elem_datatype_;
public:
static void static_init();
static void static_init();
private:
static const char* kStringTypeName;
static const char* kConstStringTypeName;
};
static const char* kStringTypeName;
static const char* kConstStringTypeName;
};
#endif // pac_strtype_h

File diff suppressed because it is too large Load diff

View file

@ -8,304 +8,298 @@ using namespace std;
#include "pac_datadep.h"
#include "pac_dbg.h"
class Type : public Object, public DataDepElement
{
class Type : public Object, public DataDepElement {
public:
enum TypeType
{
UNDEF = -1,
EMPTY,
BUILTIN,
PARAMETERIZED,
RECORD,
CASE,
ARRAY,
STRING,
EXTERN,
DUMMY,
};
enum TypeType {
UNDEF = -1,
EMPTY,
BUILTIN,
PARAMETERIZED,
RECORD,
CASE,
ARRAY,
STRING,
EXTERN,
DUMMY,
};
explicit Type(TypeType tot);
~Type() override;
explicit Type(TypeType tot);
~Type() override;
Type* Clone() const;
Type* Clone() const;
// Type of type
TypeType tot() const { return tot_; }
// Type of type
TypeType tot() const { return tot_; }
////////////////////////////////////////
// Code generation
virtual void Prepare(Env* env, int flags);
////////////////////////////////////////
// Code generation
virtual void Prepare(Env* env, int flags);
// Flag(s) for Prepare()
static const int TO_BE_PARSED = 1;
// Flag(s) for Prepare()
static const int TO_BE_PARSED = 1;
virtual void GenPubDecls(Output* out, Env* env);
virtual void GenPrivDecls(Output* out, Env* env);
virtual void GenPubDecls(Output* out, Env* env);
virtual void GenPrivDecls(Output* out, Env* env);
virtual void GenInitCode(Output* out, Env* env);
virtual void GenCleanUpCode(Output* out, Env* env);
virtual void GenInitCode(Output* out, Env* env);
virtual void GenCleanUpCode(Output* out, Env* env);
void GenPreParsing(Output* out, Env* env);
void GenParseCode(Output* out, Env* env, const DataPtr& data, int flags);
void GenPreParsing(Output* out, Env* env);
void GenParseCode(Output* out, Env* env, const DataPtr& data, int flags);
////////////////////////////////////////
// TODO: organize the various methods below
////////////////////////////////////////
// TODO: organize the various methods below
// The LValue string of the variable defined by the type.
// For example, if the type defines a record field, the
// lvalue is the member variable corresponding to the field;
// if the type appears in a type decl, then the lvalue is the
// default value var.
//
const char* lvalue() const { return lvalue_.c_str(); }
// The LValue string of the variable defined by the type.
// For example, if the type defines a record field, the
// lvalue is the member variable corresponding to the field;
// if the type appears in a type decl, then the lvalue is the
// default value var.
//
const char* lvalue() const { return lvalue_.c_str(); }
// The TypeDecl that defined the type.
//
const TypeDecl* type_decl() const { return type_decl_; }
void set_type_decl(const TypeDecl* decl, bool declared_as_type);
// The TypeDecl that defined the type.
//
const TypeDecl* type_decl() const { return type_decl_; }
void set_type_decl(const TypeDecl* decl, bool declared_as_type);
// Returns whether the type appears in a type declaration
// (true) or as type specification of a field (false).
//
bool declared_as_type() const { return declared_as_type_; }
// Returns whether the type appears in a type declaration
// (true) or as type specification of a field (false).
//
bool declared_as_type() const { return declared_as_type_; }
// The ID of the decl in which the type appear.
//
const ID* decl_id() const;
// The ID of the decl in which the type appear.
//
const ID* decl_id() const;
Env* env() const { return env_; }
Env* env() const { return env_; }
string EvalByteOrder(Output* out_cc, Env* env) const;
string EvalByteOrder(Output* out_cc, Env* env) const;
virtual string EvalMember(const ID* member_id) const;
virtual string EvalElement(const string& array, const string& index) const;
virtual string EvalMember(const ID* member_id) const;
virtual string EvalElement(const string& array, const string& index) const;
// The variable defined by the type
const ID* value_var() const { return value_var_; }
void set_value_var(const ID* arg_id, int arg_id_type);
// The variable defined by the type
const ID* value_var() const { return value_var_; }
void set_value_var(const ID* arg_id, int arg_id_type);
bool anonymous_value_var() const { return anonymous_value_var_; }
bool anonymous_value_var() const { return anonymous_value_var_; }
const ID* size_var() const;
const ID* size_var() const;
// Adds a variable to env to represent the size of this type.
// Returns false if we do not need a size variable (because
// the type has a static size) or the size variable is already added.
bool AddSizeVar(Output* out, Env* env);
// Adds a variable to env to represent the size of this type.
// Returns false if we do not need a size variable (because
// the type has a static size) or the size variable is already added.
bool AddSizeVar(Output* out, Env* env);
const ID* parsing_state_var() const;
const ID* parsing_state_var() const;
const ID* has_value_var() const;
const ID* has_value_var() const;
void AddField(Field* f);
void AddField(Field* f);
void AddCheck(Expr* expr)
{ /* TODO */
}
void AddCheck(Expr* expr) { /* TODO */
}
virtual bool DefineValueVar() const = 0;
virtual bool DefineValueVar() const = 0;
// Returns C++ datatype string
virtual string DataTypeStr() const = 0;
// Returns C++ datatype string
virtual string DataTypeStr() const = 0;
// Returns const reference of the C++ data type (unless the type
// is numeric or pointer)
string DataTypeConstRefStr() const
{
string data_type = DataTypeStr();
if ( ! IsPointerType() && ! IsNumericType() )
data_type += " const &";
return data_type;
}
// Returns const reference of the C++ data type (unless the type
// is numeric or pointer)
string DataTypeConstRefStr() const {
string data_type = DataTypeStr();
if ( ! IsPointerType() && ! IsNumericType() )
data_type += " const &";
return data_type;
}
// Returns a default value for the type
virtual string DefaultValue() const
{
ASSERT(0);
return "@@@";
}
// Returns a default value for the type
virtual string DefaultValue() const {
ASSERT(0);
return "@@@";
}
// Returns the data type of the member field/case
virtual Type* MemberDataType(const ID* member_id) const;
// Returns the data type of the member field/case
virtual Type* MemberDataType(const ID* member_id) const;
// Returns the data type of the element type of an array
virtual Type* ElementDataType() const;
// Returns the data type of the element type of an array
virtual Type* ElementDataType() const;
// Whether the type needs clean-up at deallocation.
bool NeedsCleanUp() const;
// Whether the type needs clean-up at deallocation.
bool NeedsCleanUp() const;
// Whether byte order must be determined before parsing the type.
bool RequiresByteOrder() const;
// Whether byte order must be determined before parsing the type.
bool RequiresByteOrder() const;
// Whether class of the type requires a parameter of analyzer context.
virtual bool RequiresAnalyzerContext();
// Whether class of the type requires a parameter of analyzer context.
virtual bool RequiresAnalyzerContext();
virtual bool IsPointerType() const = 0;
virtual bool IsNumericType() const { return false; }
bool IsEmptyType() const;
virtual bool IsPointerType() const = 0;
virtual bool IsNumericType() const { return false; }
bool IsEmptyType() const;
////////////////////////////////////////
// Attributes
virtual void ProcessAttr(Attr* a);
////////////////////////////////////////
// Attributes
virtual void ProcessAttr(Attr* a);
bool attr_chunked() const { return attr_chunked_; }
Expr* attr_byteorder_expr() const { return attr_byteorder_expr_; }
Expr* attr_if_expr() const { return attr_if_expr_; }
// TODO: generate the length expression automatically.
Expr* attr_length_expr() const { return attr_length_expr_; }
bool attr_refcount() const { return attr_refcount_; }
bool attr_transient() const { return attr_transient_; }
bool attr_chunked() const { return attr_chunked_; }
Expr* attr_byteorder_expr() const { return attr_byteorder_expr_; }
Expr* attr_if_expr() const { return attr_if_expr_; }
// TODO: generate the length expression automatically.
Expr* attr_length_expr() const { return attr_length_expr_; }
bool attr_refcount() const { return attr_refcount_; }
bool attr_transient() const { return attr_transient_; }
// Whether the value remains valid outside the parse function
bool persistent() const { return ! attr_transient() && ! attr_chunked(); }
// Whether the value remains valid outside the parse function
bool persistent() const { return ! attr_transient() && ! attr_chunked(); }
void SetUntilCheck(ArrayType* t) { array_until_input_ = t; }
void SetUntilCheck(ArrayType* t) { array_until_input_ = t; }
////////////////////////////////////////
// Size and boundary checking
virtual int StaticSize(Env* env) const = 0;
string DataSize(Output* out, Env* env, const DataPtr& data);
////////////////////////////////////////
// Size and boundary checking
virtual int StaticSize(Env* env) const = 0;
string DataSize(Output* out, Env* env, const DataPtr& data);
bool boundary_checked() const { return boundary_checked_; }
virtual void SetBoundaryChecked() { boundary_checked_ = true; }
void GenBoundaryCheck(Output* out, Env* env, const DataPtr& data);
bool boundary_checked() const { return boundary_checked_; }
virtual void SetBoundaryChecked() { boundary_checked_ = true; }
void GenBoundaryCheck(Output* out, Env* env, const DataPtr& data);
////////////////////////////////////////
// Handling incremental input
//
// There are two ways to handle incremental input: (1) to
// buffer the input before parsing; (2) to parse incrementally.
//
// The type must be "bufferable" for (1). While for (2),
// each member of the type must be able to handle incremental
// input.
////////////////////////////////////////
// Handling incremental input
//
// There are two ways to handle incremental input: (1) to
// buffer the input before parsing; (2) to parse incrementally.
//
// The type must be "bufferable" for (1). While for (2),
// each member of the type must be able to handle incremental
// input.
void MarkIncrementalInput();
virtual void DoMarkIncrementalInput();
void MarkIncrementalInput();
virtual void DoMarkIncrementalInput();
// Whether the type may receive incremental input
bool incremental_input() const { return incremental_input_; }
// Whether the type may receive incremental input
bool incremental_input() const { return incremental_input_; }
// Whether parsing should also be incremental
bool incremental_parsing() const { return incremental_parsing_; }
// Whether parsing should also be incremental
bool incremental_parsing() const { return incremental_parsing_; }
// Whether we should buffer the input
bool buffer_input() const { return buffer_input_; }
// Whether we should buffer the input
bool buffer_input() const { return buffer_input_; }
// Whether parsing of the type is completed
const ID* parsing_complete_var() const;
string parsing_complete(Env* env) const;
// Whether parsing of the type is completed
const ID* parsing_complete_var() const;
string parsing_complete(Env* env) const;
// Whether the input is bufferable
bool Bufferable() const;
bool BufferableByLength() const;
bool BufferableByLine() const;
bool BufferableWithLineBreaker() const;
Expr* LineBreaker() const;
// Whether the input is bufferable
bool Bufferable() const;
bool BufferableByLength() const;
bool BufferableByLine() const;
bool BufferableWithLineBreaker() const;
Expr* LineBreaker() const;
enum BufferMode
{
NOT_BUFFERABLE,
BUFFER_NOTHING, // for type "empty"
BUFFER_BY_LENGTH,
BUFFER_BY_LINE,
};
virtual BufferMode buffer_mode() const;
enum BufferMode {
NOT_BUFFERABLE,
BUFFER_NOTHING, // for type "empty"
BUFFER_BY_LENGTH,
BUFFER_BY_LINE,
};
virtual BufferMode buffer_mode() const;
void GenBufferConfiguration(Output* out, Env* env);
void GenBufferConfiguration(Output* out, Env* env);
int InitialBufferLength() const;
int InitialBufferLength() const;
protected:
virtual void GenNewInstance(Output* out, Env* env) { }
virtual void GenNewInstance(Output* out, Env* env) {}
virtual bool ByteOrderSensitive() const = 0;
virtual bool ByteOrderSensitive() const = 0;
bool NeedsBufferingStateVar() const;
bool NeedsBufferingStateVar() const;
void GenBufferingLoop(Output* out_cc, Env* env, int flags);
void GenParseBuffer(Output* out_cc, Env* env, int flags);
void GenParseCode2(Output* out_cc, Env* env, const DataPtr& data, int flags);
void GenParseCode3(Output* out_cc, Env* env, const DataPtr& data, int flags);
void GenBufferingLoop(Output* out_cc, Env* env, int flags);
void GenParseBuffer(Output* out_cc, Env* env, int flags);
void GenParseCode2(Output* out_cc, Env* env, const DataPtr& data, int flags);
void GenParseCode3(Output* out_cc, Env* env, const DataPtr& data, int flags);
virtual void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) = 0;
virtual void DoGenParseCode(Output* out, Env* env, const DataPtr& data, int flags) = 0;
string EvalLengthExpr(Output* out_cc, Env* env);
string EvalLengthExpr(Output* out_cc, Env* env);
// Generate code for computing the dynamic size of the type
virtual void GenDynamicSize(Output* out, Env* env, const DataPtr& data) = 0;
// Generate code for computing the dynamic size of the type
virtual void GenDynamicSize(Output* out, Env* env, const DataPtr& data) = 0;
bool DoTraverse(DataDepVisitor* visitor) override;
bool DoTraverse(DataDepVisitor* visitor) override;
virtual Type* DoClone() const = 0;
virtual Type* DoClone() const = 0;
protected:
TypeType tot_;
const TypeDecl* type_decl_;
bool declared_as_type_;
const ID* type_decl_id_;
Env* env_;
TypeType tot_;
const TypeDecl* type_decl_;
bool declared_as_type_;
const ID* type_decl_id_;
Env* env_;
const ID* value_var_;
bool anonymous_value_var_; // whether the ID is anonymous
const ID* value_var_;
bool anonymous_value_var_; // whether the ID is anonymous
string data_id_str_;
int value_var_type_;
Field* size_var_field_;
char* size_expr_;
bool boundary_checked_;
string lvalue_;
FieldList* fields_;
string data_id_str_;
int value_var_type_;
Field* size_var_field_;
char* size_expr_;
bool boundary_checked_;
string lvalue_;
FieldList* fields_;
bool incremental_input_;
bool incremental_parsing_;
bool buffer_input_;
bool incremental_input_;
bool incremental_parsing_;
bool buffer_input_;
// A boolean variable on whether parsing of the type is completed
Field* parsing_complete_var_field_;
// A boolean variable on whether parsing of the type is completed
Field* parsing_complete_var_field_;
// An integer variable holding the parsing state
Field* parsing_state_var_field_;
// An integer variable holding the parsing state
Field* parsing_state_var_field_;
Field* buffering_state_var_field_;
Field* buffering_state_var_field_;
// The array type with &until($input...) condition, if
// "this" is the element type
ArrayType* array_until_input_;
// The array type with &until($input...) condition, if
// "this" is the element type
ArrayType* array_until_input_;
// A "has_*" member var for fields with &if
LetField* has_value_field_;
// A "has_*" member var for fields with &if
LetField* has_value_field_;
// Attributes
AttrList* attrs_;
// Attributes
AttrList* attrs_;
Expr* attr_byteorder_expr_;
ExprList* attr_checks_;
ExprList* attr_enforces_;
bool attr_chunked_;
bool attr_exportsourcedata_;
Expr* attr_if_expr_;
Expr* attr_length_expr_;
FieldList* attr_letfields_;
Expr* attr_multiline_end_;
Expr* attr_linebreaker_;
bool attr_oneline_;
bool attr_refcount_;
ExprList* attr_requires_;
bool attr_restofdata_;
bool attr_restofflow_;
bool attr_transient_;
Expr* attr_byteorder_expr_;
ExprList* attr_checks_;
ExprList* attr_enforces_;
bool attr_chunked_;
bool attr_exportsourcedata_;
Expr* attr_if_expr_;
Expr* attr_length_expr_;
FieldList* attr_letfields_;
Expr* attr_multiline_end_;
Expr* attr_linebreaker_;
bool attr_oneline_;
bool attr_refcount_;
ExprList* attr_requires_;
bool attr_restofdata_;
bool attr_restofflow_;
bool attr_transient_;
public:
static void init();
static bool CompatibleTypes(Type* type1, Type* type2);
static void AddPredefinedType(const string& type_name, Type* type);
static Type* LookUpByID(ID* id);
static void init();
static bool CompatibleTypes(Type* type1, Type* type2);
static void AddPredefinedType(const string& type_name, Type* type);
static Type* LookUpByID(ID* id);
protected:
typedef map<string, Type*> type_map_t;
static type_map_t type_map_;
};
typedef map<string, Type*> type_map_t;
static type_map_t type_map_;
};
#endif // pac_type_h

View file

@ -16,315 +16,275 @@
#include "pac_type.h"
#include "pac_utils.h"
TypeDecl::TypeDecl(ID* id, ParamList* params, Type* type)
: Decl(id, TYPE), params_(params), type_(type)
{
env_ = nullptr;
type_->set_type_decl(this, true);
}
TypeDecl::TypeDecl(ID* id, ParamList* params, Type* type) : Decl(id, TYPE), params_(params), type_(type) {
env_ = nullptr;
type_->set_type_decl(this, true);
}
TypeDecl::~TypeDecl()
{
delete env_;
delete type_;
TypeDecl::~TypeDecl() {
delete env_;
delete type_;
delete_list(ParamList, params_);
}
delete_list(ParamList, params_);
}
void TypeDecl::ProcessAttr(Attr* a)
{
type_->ProcessAttr(a);
}
void TypeDecl::ProcessAttr(Attr* a) { type_->ProcessAttr(a); }
void TypeDecl::AddParam(Param* param)
{
// Cannot work after Prepare()
ASSERT(! env_);
params_->push_back(param);
}
void TypeDecl::AddParam(Param* param) {
// Cannot work after Prepare()
ASSERT(! env_);
params_->push_back(param);
}
void TypeDecl::Prepare()
{
DEBUG_MSG("Preparing type %s\n", id()->Name());
void TypeDecl::Prepare() {
DEBUG_MSG("Preparing type %s\n", id()->Name());
if ( type_->tot() != Type::EXTERN && type_->tot() != Type::DUMMY )
SetAnalyzerContext();
if ( type_->tot() != Type::EXTERN && type_->tot() != Type::DUMMY )
SetAnalyzerContext();
// As a type ID can be used in the same way function is, add the
// id as a FUNC_ID and set it as evaluated.
global_env()->AddID(id(), FUNC_ID, type_);
global_env()->SetEvaluated(id());
// As a type ID can be used in the same way function is, add the
// id as a FUNC_ID and set it as evaluated.
global_env()->AddID(id(), FUNC_ID, type_);
global_env()->SetEvaluated(id());
env_ = new Env(global_env(), this);
env_ = new Env(global_env(), this);
foreach (i, ParamList, params_)
{
Param* p = *i;
// p->Prepare(env_);
type_->AddField(p->param_field());
}
foreach (i, ParamList, params_) {
Param* p = *i;
// p->Prepare(env_);
type_->AddField(p->param_field());
}
if ( type_->attr_byteorder_expr() )
{
DEBUG_MSG("Adding byteorder field to %s\n", id()->Name());
type_->AddField(
new LetField(byteorder_id->clone(), extern_type_int, type_->attr_byteorder_expr()));
}
if ( type_->attr_byteorder_expr() ) {
DEBUG_MSG("Adding byteorder field to %s\n", id()->Name());
type_->AddField(new LetField(byteorder_id->clone(), extern_type_int, type_->attr_byteorder_expr()));
}
type_->Prepare(env_, Type::TO_BE_PARSED);
}
type_->Prepare(env_, Type::TO_BE_PARSED);
}
string TypeDecl::class_name() const
{
return id_->Name();
}
string TypeDecl::class_name() const { return id_->Name(); }
void TypeDecl::GenForwardDeclaration(Output* out_h)
{
// Do not generate declaration for external types
if ( type_->tot() == Type::EXTERN )
return;
out_h->println("class %s;", class_name().c_str());
}
void TypeDecl::GenForwardDeclaration(Output* out_h) {
// Do not generate declaration for external types
if ( type_->tot() == Type::EXTERN )
return;
out_h->println("class %s;", class_name().c_str());
}
void TypeDecl::GenCode(Output* out_h, Output* out_cc)
{
// Do not generate code for external types
if ( type_->tot() == Type::EXTERN || type_->tot() == Type::STRING )
return;
void TypeDecl::GenCode(Output* out_h, Output* out_cc) {
// Do not generate code for external types
if ( type_->tot() == Type::EXTERN || type_->tot() == Type::STRING )
return;
if ( !FLAGS_quiet )
fprintf(stderr, "Generating code for %s\n", class_name().c_str());
if ( ! FLAGS_quiet )
fprintf(stderr, "Generating code for %s\n", class_name().c_str());
if ( RequiresAnalyzerContext::compute(type_) )
{
DEBUG_MSG("%s requires analyzer context\n", id()->Name());
Type* param_type = analyzer_context()->param_type();
env_->AddID(analyzer_context_id, TEMP_VAR, param_type);
env_->SetEvaluated(analyzer_context_id);
env_->AddMacro(context_macro_id, new Expr(analyzer_context_id->clone()));
}
if ( RequiresAnalyzerContext::compute(type_) ) {
DEBUG_MSG("%s requires analyzer context\n", id()->Name());
Type* param_type = analyzer_context()->param_type();
env_->AddID(analyzer_context_id, TEMP_VAR, param_type);
env_->SetEvaluated(analyzer_context_id);
env_->AddMacro(context_macro_id, new Expr(analyzer_context_id->clone()));
}
// Add parameter "byteorder"
if ( type_->RequiresByteOrder() && ! type_->attr_byteorder_expr() )
{
env_->AddID(byteorder_id, TEMP_VAR, extern_type_int);
env_->SetEvaluated(byteorder_id);
}
// Add parameter "byteorder"
if ( type_->RequiresByteOrder() && ! type_->attr_byteorder_expr() ) {
env_->AddID(byteorder_id, TEMP_VAR, extern_type_int);
env_->SetEvaluated(byteorder_id);
}
vector<string> base_classes;
vector<string> base_classes;
AddBaseClass(&base_classes);
AddBaseClass(&base_classes);
if ( type_->attr_refcount() )
base_classes.push_back(kRefCountClass);
if ( type_->attr_refcount() )
base_classes.push_back(kRefCountClass);
// The first line of class definition
out_h->println("");
out_h->print("class %s final", class_name().c_str());
bool first = true;
vector<string>::iterator i;
for ( i = (&base_classes)->begin(); i != (&base_classes)->end(); ++i )
{
if ( first )
{
out_h->print(" : public %s", i->c_str());
first = false;
}
else
out_h->print(", public %s", i->c_str());
}
out_h->print("\n");
// The first line of class definition
out_h->println("");
out_h->print("class %s final", class_name().c_str());
bool first = true;
vector<string>::iterator i;
for ( i = base_classes.begin(); i != base_classes.end(); ++i ) {
if ( first ) {
out_h->print(" : public %s", i->c_str());
first = false;
}
else
out_h->print(", public %s", i->c_str());
}
out_h->print("\n");
// Public members
out_h->println("{");
out_h->println("public:");
out_h->inc_indent();
// Public members
out_h->println("{");
out_h->println("public:");
out_h->inc_indent();
GenConstructorFunc(out_h, out_cc);
GenDestructorFunc(out_h, out_cc);
GenConstructorFunc(out_h, out_cc);
GenDestructorFunc(out_h, out_cc);
if ( type_->attr_length_expr() )
GenInitialBufferLengthFunc(out_h, out_cc);
if ( type_->attr_length_expr() )
GenInitialBufferLengthFunc(out_h, out_cc);
GenParseFunc(out_h, out_cc);
GenParseFunc(out_h, out_cc);
out_h->println("");
out_h->println("// Member access functions");
type_->GenPubDecls(out_h, env_);
out_h->println("");
out_h->println("");
out_h->println("// Member access functions");
type_->GenPubDecls(out_h, env_);
out_h->println("");
GenPubDecls(out_h, out_cc);
GenPubDecls(out_h, out_cc);
out_h->dec_indent();
out_h->println("protected:");
out_h->inc_indent();
out_h->dec_indent();
out_h->println("protected:");
out_h->inc_indent();
GenPrivDecls(out_h, out_cc);
type_->GenPrivDecls(out_h, env_);
GenPrivDecls(out_h, out_cc);
type_->GenPrivDecls(out_h, env_);
out_h->dec_indent();
out_h->println("};\n");
}
out_h->dec_indent();
out_h->println("};\n");
}
void TypeDecl::GenPubDecls(Output* out_h, Output* out_cc)
{
// GenParamPubDecls(params_, out_h, env_);
}
void TypeDecl::GenPubDecls(Output* out_h, Output* out_cc) {
// GenParamPubDecls(params_, out_h, env_);
}
void TypeDecl::GenPrivDecls(Output* out_h, Output* out_cc)
{
// GenParamPrivDecls(params_, out_h, env_);
}
void TypeDecl::GenPrivDecls(Output* out_h, Output* out_cc) {
// GenParamPrivDecls(params_, out_h, env_);
}
void TypeDecl::GenInitCode(Output* out_cc) { }
void TypeDecl::GenInitCode(Output* out_cc) {}
void TypeDecl::GenCleanUpCode(Output* out_cc) { }
void TypeDecl::GenCleanUpCode(Output* out_cc) {}
void TypeDecl::GenConstructorFunc(Output* out_h, Output* out_cc)
{
string params_str = ParamDecls(params_);
void TypeDecl::GenConstructorFunc(Output* out_h, Output* out_cc) {
string params_str = ParamDecls(params_);
string proto = strfmt("%s(%s)", class_name().c_str(), params_str.c_str());
string proto = strfmt("%s(%s)", class_name().c_str(), params_str.c_str());
out_h->println("%s;", proto.c_str());
out_h->println("%s;", proto.c_str());
out_cc->println("%s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("%s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("{");
// GenParamAssignments(params_, out_cc, env_);
// GenParamAssignments(params_, out_cc, env_);
type_->GenInitCode(out_cc, env_);
GenInitCode(out_cc);
type_->GenInitCode(out_cc, env_);
GenInitCode(out_cc);
out_cc->println("}\n");
out_cc->dec_indent();
}
out_cc->println("}\n");
out_cc->dec_indent();
}
void TypeDecl::GenDestructorFunc(Output* out_h, Output* out_cc)
{
string proto = strfmt("~%s()", class_name().c_str());
void TypeDecl::GenDestructorFunc(Output* out_h, Output* out_cc) {
string proto = strfmt("~%s()", class_name().c_str());
out_h->println("%s;", proto.c_str());
out_h->println("%s;", proto.c_str());
out_cc->println("%s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
out_cc->println("%s::%s", class_name().c_str(), proto.c_str());
out_cc->inc_indent();
out_cc->println("{");
GenCleanUpCode(out_cc);
type_->GenCleanUpCode(out_cc, env_);
GenCleanUpCode(out_cc);
type_->GenCleanUpCode(out_cc, env_);
out_cc->println("}\n");
out_cc->dec_indent();
}
out_cc->println("}\n");
out_cc->dec_indent();
}
string TypeDecl::ParseFuncPrototype(Env* env)
{
const char* func_name = nullptr;
const char* return_type = nullptr;
string params;
string TypeDecl::ParseFuncPrototype(Env* env) {
const char* func_name = nullptr;
const char* return_type = nullptr;
string params;
if ( type_->incremental_input() )
{
func_name = kParseFuncWithBuffer;
return_type = "bool";
params = strfmt("flow_buffer_t %s", env->LValue(flow_buffer_id));
}
else
{
func_name = kParseFuncWithoutBuffer;
return_type = "int";
params = strfmt("const_byteptr const %s, const_byteptr const %s",
env->LValue(begin_of_data), env->LValue(end_of_data));
}
if ( type_->incremental_input() ) {
func_name = kParseFuncWithBuffer;
return_type = "bool";
params = strfmt("flow_buffer_t %s", env->LValue(flow_buffer_id));
}
else {
func_name = kParseFuncWithoutBuffer;
return_type = "int";
params = strfmt("const_byteptr const %s, const_byteptr const %s", env->LValue(begin_of_data),
env->LValue(end_of_data));
}
if ( RequiresAnalyzerContext::compute(type_) )
{
Type* param_type = analyzer_context()->param_type();
params += strfmt(", %s %s", param_type->DataTypeConstRefStr().c_str(),
env->LValue(analyzer_context_id));
}
if ( RequiresAnalyzerContext::compute(type_) ) {
Type* param_type = analyzer_context()->param_type();
params += strfmt(", %s %s", param_type->DataTypeConstRefStr().c_str(), env->LValue(analyzer_context_id));
}
// Add parameter "byteorder"
if ( type_->RequiresByteOrder() && ! type_->attr_byteorder_expr() )
{
params += strfmt(", int %s", env->LValue(byteorder_id));
}
// Add parameter "byteorder"
if ( type_->RequiresByteOrder() && ! type_->attr_byteorder_expr() ) {
params += strfmt(", int %s", env->LValue(byteorder_id));
}
// Returns "<return type> %s<func name>(<params>)%s".
return strfmt("%s %%s%s(%s)%%s", return_type, func_name, params.c_str());
}
// Returns "<return type> %s<func name>(<params>)%s".
return strfmt("%s %%s%s(%s)%%s", return_type, func_name, params.c_str());
}
void TypeDecl::GenParsingEnd(Output* out_cc, Env* env, const DataPtr& data)
{
string ret_val_0, ret_val_1;
void TypeDecl::GenParsingEnd(Output* out_cc, Env* env, const DataPtr& data) {
string ret_val_0, ret_val_1;
if ( type_->incremental_input() )
{
ret_val_0 = type_->parsing_complete(env).c_str();
ret_val_1 = "false";
}
else
{
ret_val_0 = type_->DataSize(nullptr, env, data).c_str();
ret_val_1 = "@@@";
if ( type_->incremental_input() ) {
ret_val_0 = type_->parsing_complete(env).c_str();
ret_val_1 = "false";
}
else {
ret_val_0 = type_->DataSize(nullptr, env, data).c_str();
ret_val_1 = "@@@";
out_cc->println("BINPAC_ASSERT(%s + (%s) <= %s);", env->RValue(begin_of_data),
ret_val_0.c_str(), env->RValue(end_of_data));
}
out_cc->println("BINPAC_ASSERT(%s + (%s) <= %s);", env->RValue(begin_of_data), ret_val_0.c_str(),
env->RValue(end_of_data));
}
if ( type_->incremental_parsing() &&
(type_->tot() == Type::RECORD || type_->tot() == Type::ARRAY) )
{
// In which case parsing may jump to label
// "need_more_data" ...
out_cc->println("BINPAC_ASSERT(%s);", type_->parsing_complete(env).c_str());
out_cc->println("return %s;", ret_val_0.c_str());
if ( type_->incremental_parsing() && (type_->tot() == Type::RECORD || type_->tot() == Type::ARRAY) ) {
// In which case parsing may jump to label
// "need_more_data" ...
out_cc->println("BINPAC_ASSERT(%s);", type_->parsing_complete(env).c_str());
out_cc->println("return %s;", ret_val_0.c_str());
out_cc->println("");
out_cc->dec_indent();
out_cc->println("%s:", kNeedMoreData);
out_cc->inc_indent();
out_cc->println("BINPAC_ASSERT(!(%s));", type_->parsing_complete(env).c_str());
out_cc->println("return %s;", ret_val_1.c_str());
}
else if ( type_->incremental_input() )
{
out_cc->println("return %s;", ret_val_0.c_str());
}
else
{
out_cc->println("return %s;", ret_val_0.c_str());
}
}
out_cc->println("");
out_cc->dec_indent();
out_cc->println("%s:", kNeedMoreData);
out_cc->inc_indent();
out_cc->println("BINPAC_ASSERT(!(%s));", type_->parsing_complete(env).c_str());
out_cc->println("return %s;", ret_val_1.c_str());
}
else if ( type_->incremental_input() ) {
out_cc->println("return %s;", ret_val_0.c_str());
}
else {
out_cc->println("return %s;", ret_val_0.c_str());
}
}
void TypeDecl::GenParseFunc(Output* out_h, Output* out_cc)
{
if ( type_->tot() == Type::DUMMY )
return;
void TypeDecl::GenParseFunc(Output* out_h, Output* out_cc) {
if ( type_->tot() == Type::DUMMY )
return;
// Env within the parse function
Env p_func_env(env_, this);
Env* env = &p_func_env;
// Env within the parse function
Env p_func_env(env_, this);
Env* env = &p_func_env;
if ( type_->incremental_input() )
{
env->AddID(flow_buffer_id, TEMP_VAR, extern_type_flowbuffer);
env->SetEvaluated(flow_buffer_id);
}
else
{
env->AddID(begin_of_data, TEMP_VAR, extern_type_const_byteptr);
env->AddID(end_of_data, TEMP_VAR, extern_type_const_byteptr);
if ( type_->incremental_input() ) {
env->AddID(flow_buffer_id, TEMP_VAR, extern_type_flowbuffer);
env->SetEvaluated(flow_buffer_id);
}
else {
env->AddID(begin_of_data, TEMP_VAR, extern_type_const_byteptr);
env->AddID(end_of_data, TEMP_VAR, extern_type_const_byteptr);
env->SetEvaluated(begin_of_data);
env->SetEvaluated(end_of_data);
}
env->SetEvaluated(begin_of_data);
env->SetEvaluated(end_of_data);
}
string proto;
proto = ParseFuncPrototype(env);
string proto;
proto = ParseFuncPrototype(env);
#if 0
if ( func_type == PARSE )
@ -340,54 +300,48 @@ void TypeDecl::GenParseFunc(Output* out_h, Output* out_cc)
}
#endif
out_h->println(proto.c_str(), "", ";");
out_h->println(proto.c_str(), "", ";");
string tmp = strfmt("%s::", class_name().c_str());
out_cc->println(proto.c_str(), tmp.c_str(), "");
out_cc->inc_indent();
out_cc->println("{");
string tmp = strfmt("%s::", class_name().c_str());
out_cc->println(proto.c_str(), tmp.c_str(), "");
out_cc->inc_indent();
out_cc->println("{");
DataPtr data(env, nullptr, 0);
DataPtr data(env, nullptr, 0);
if ( ! type_->incremental_input() )
data = DataPtr(env, begin_of_data, 0);
type_->GenParseCode(out_cc, env, data, 0);
GenParsingEnd(out_cc, env, data);
if ( ! type_->incremental_input() )
data = DataPtr(env, begin_of_data, 0);
type_->GenParseCode(out_cc, env, data, 0);
GenParsingEnd(out_cc, env, data);
out_cc->println("}\n");
out_cc->dec_indent();
}
out_cc->println("}\n");
out_cc->dec_indent();
}
void TypeDecl::GenInitialBufferLengthFunc(Output* out_h, Output* out_cc)
{
string func(kInitialBufferLengthFunc);
void TypeDecl::GenInitialBufferLengthFunc(Output* out_h, Output* out_cc) {
string func(kInitialBufferLengthFunc);
int init_buffer_length = type_->InitialBufferLength();
int init_buffer_length = type_->InitialBufferLength();
if ( init_buffer_length < 0 ) // cannot be statically determined
{
throw Exception(type()->attr_length_expr(), strfmt("cannot determine initial buffer length"
" for type %s",
id_->Name()));
}
if ( init_buffer_length < 0 ) // cannot be statically determined
{
throw Exception(type()->attr_length_expr(), strfmt("cannot determine initial buffer length"
" for type %s",
id_->Name()));
}
out_h->println("int %s() const { return %d; }", func.c_str(), init_buffer_length);
}
out_h->println("int %s() const { return %d; }", func.c_str(), init_buffer_length);
}
Type* TypeDecl::LookUpType(const ID* id)
{
Decl* decl = LookUpDecl(id);
if ( ! decl )
return nullptr;
switch ( decl->decl_type() )
{
case TYPE:
case CONN:
case FLOW:
return static_cast<TypeDecl*>(decl)->type();
case ENUM:
return static_cast<EnumDecl*>(decl)->DataType();
default:
return nullptr;
}
}
Type* TypeDecl::LookUpType(const ID* id) {
Decl* decl = LookUpDecl(id);
if ( ! decl )
return nullptr;
switch ( decl->decl_type() ) {
case TYPE:
case CONN:
case FLOW: return static_cast<TypeDecl*>(decl)->type();
case ENUM: return static_cast<EnumDecl*>(decl)->DataType();
default: return nullptr;
}
}

View file

@ -3,45 +3,44 @@
#include "pac_decl.h"
class TypeDecl : public Decl
{
class TypeDecl : public Decl {
public:
TypeDecl(ID* arg_id, ParamList* arg_params, Type* arg_type);
~TypeDecl() override;
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
TypeDecl(ID* arg_id, ParamList* arg_params, Type* arg_type);
~TypeDecl() override;
void Prepare() override;
void GenForwardDeclaration(Output* out_h) override;
void GenCode(Output* out_h, Output* out_cc) override;
Env* env() const override { return env_; }
Type* type() const { return type_; }
string class_name() const;
static Type* LookUpType(const ID* id);
Env* env() const override { return env_; }
Type* type() const { return type_; }
string class_name() const;
static Type* LookUpType(const ID* id);
protected:
void AddParam(Param* param);
virtual void AddBaseClass(vector<string>* base_classes) const { }
void ProcessAttr(Attr* a) override;
void AddParam(Param* param);
virtual void AddBaseClass(vector<string>* base_classes) const {}
void ProcessAttr(Attr* a) override;
virtual void GenPubDecls(Output* out_h, Output* out_cc);
virtual void GenPrivDecls(Output* out_h, Output* out_cc);
virtual void GenInitCode(Output* out_cc);
virtual void GenCleanUpCode(Output* out_cc);
virtual void GenPubDecls(Output* out_h, Output* out_cc);
virtual void GenPrivDecls(Output* out_h, Output* out_cc);
virtual void GenInitCode(Output* out_cc);
virtual void GenCleanUpCode(Output* out_cc);
void GenConstructorFunc(Output* out_h, Output* out_cc);
void GenDestructorFunc(Output* out_h, Output* out_cc);
void GenConstructorFunc(Output* out_h, Output* out_cc);
void GenDestructorFunc(Output* out_h, Output* out_cc);
string ParseFuncPrototype(Env* env);
void GenParseFunc(Output* out_h, Output* out_cc);
string ParseFuncPrototype(Env* env);
void GenParseFunc(Output* out_h, Output* out_cc);
void GenParsingEnd(Output* out_cc, Env* env, const DataPtr& data);
void GenParsingEnd(Output* out_cc, Env* env, const DataPtr& data);
void GenInitialBufferLengthFunc(Output* out_h, Output* out_cc);
void GenInitialBufferLengthFunc(Output* out_h, Output* out_cc);
protected:
Env* env_;
Env* env_;
ParamList* params_;
Type* type_;
};
ParamList* params_;
Type* type_;
};
#endif // pac_typedecl_h

View file

@ -4,39 +4,34 @@
#include <stdio.h>
#include <string.h>
char* copy_string(const char* s)
{
char* c = new char[strlen(s) + 1];
strcpy(c, s);
return c;
}
char* copy_string(const char* s) {
char* c = new char[strlen(s) + 1];
strcpy(c, s);
return c;
}
namespace
{
namespace {
const char* do_fmt(const char* format, va_list ap)
{
static char buf[1024];
vsnprintf(buf, sizeof(buf), format, ap);
return buf;
}
const char* do_fmt(const char* format, va_list ap) {
static char buf[1024];
vsnprintf(buf, sizeof(buf), format, ap);
return buf;
}
}
} // namespace
string strfmt(const char* format, ...)
{
va_list ap;
va_start(ap, format);
const char* r = do_fmt(format, ap);
va_end(ap);
return string(r);
}
string strfmt(const char* format, ...) {
va_list ap;
va_start(ap, format);
const char* r = do_fmt(format, ap);
va_end(ap);
return string(r);
}
char* nfmt(const char* format, ...)
{
va_list ap;
va_start(ap, format);
const char* r = do_fmt(format, ap);
va_end(ap);
return copy_string(r);
}
char* nfmt(const char* format, ...) {
va_list ap;
va_start(ap, format);
const char* r = do_fmt(format, ap);
va_end(ap);
return copy_string(r);
}

View file

@ -1,6 +1,3 @@
#include "pac_varfield.h"
void PrivVarField::Prepare(Env* env)
{
Field::Prepare(env);
}
void PrivVarField::Prepare(Env* env) { Field::Prepare(env); }

View file

@ -4,54 +4,37 @@
#include "pac_field.h"
// A private variable evaluated with parsing
class ParseVarField : public Field
{
class ParseVarField : public Field {
public:
ParseVarField(int is_class_member, ID* id, Type* type)
: Field(PARSE_VAR_FIELD, TYPE_TO_BE_PARSED | is_class_member | NOT_PUBLIC_READABLE, id,
type)
{
}
void GenPubDecls(Output* out, Env* env) override
{ /* do nothing */
}
};
ParseVarField(int is_class_member, ID* id, Type* type)
: Field(PARSE_VAR_FIELD, TYPE_TO_BE_PARSED | is_class_member | NOT_PUBLIC_READABLE, id, type) {}
void GenPubDecls(Output* out, Env* env) override { /* do nothing */
}
};
// A public variable
class PubVarField : public Field
{
class PubVarField : public Field {
public:
PubVarField(ID* id, Type* type)
: Field(PUB_VAR_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, id, type)
{
}
~PubVarField() override { }
};
PubVarField(ID* id, Type* type)
: Field(PUB_VAR_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, id, type) {}
~PubVarField() override {}
};
// A private variable
class PrivVarField : public Field
{
class PrivVarField : public Field {
public:
PrivVarField(ID* id, Type* type)
: Field(PRIV_VAR_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | NOT_PUBLIC_READABLE, id,
type)
{
}
~PrivVarField() override { }
PrivVarField(ID* id, Type* type)
: Field(PRIV_VAR_FIELD, TYPE_NOT_TO_BE_PARSED | CLASS_MEMBER | NOT_PUBLIC_READABLE, id, type) {}
~PrivVarField() override {}
void GenPubDecls(Output* out, Env* env) override
{ /* do nothing */
}
};
void GenPubDecls(Output* out, Env* env) override { /* do nothing */
}
};
class TempVarField : public Field
{
class TempVarField : public Field {
public:
TempVarField(ID* id, Type* type)
: Field(TEMP_VAR_FIELD, TYPE_NOT_TO_BE_PARSED | NOT_CLASS_MEMBER, id, type)
{
}
~TempVarField() override { }
};
TempVarField(ID* id, Type* type) : Field(TEMP_VAR_FIELD, TYPE_NOT_TO_BE_PARSED | NOT_CLASS_MEMBER, id, type) {}
~TempVarField() override {}
};
#endif // pac_varfield_h

View file

@ -7,67 +7,54 @@
#include "pac_type.h"
WithInputField::WithInputField(ID* id, Type* type, InputBuffer* input)
: Field(WITHINPUT_FIELD, TYPE_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, id, type),
input_(input)
{
ASSERT(type_);
ASSERT(input_);
}
: Field(WITHINPUT_FIELD, TYPE_TO_BE_PARSED | CLASS_MEMBER | PUBLIC_READABLE, id, type), input_(input) {
ASSERT(type_);
ASSERT(input_);
}
WithInputField::~WithInputField()
{
delete input_;
}
WithInputField::~WithInputField() { delete input_; }
bool WithInputField::DoTraverse(DataDepVisitor* visitor)
{
return Field::DoTraverse(visitor) && input()->Traverse(visitor);
}
bool WithInputField::DoTraverse(DataDepVisitor* visitor) {
return Field::DoTraverse(visitor) && input()->Traverse(visitor);
}
bool WithInputField::RequiresAnalyzerContext() const
{
return Field::RequiresAnalyzerContext() || (input() && input()->RequiresAnalyzerContext());
}
bool WithInputField::RequiresAnalyzerContext() const {
return Field::RequiresAnalyzerContext() || (input() && input()->RequiresAnalyzerContext());
}
void WithInputField::Prepare(Env* env)
{
Field::Prepare(env);
env->SetEvalMethod(id_, this);
}
void WithInputField::Prepare(Env* env) {
Field::Prepare(env);
env->SetEvalMethod(id_, this);
}
void WithInputField::GenEval(Output* out_cc, Env* env)
{
GenParseCode(out_cc, env);
if ( type_->attr_if_expr() )
{
out_cc->println("BINPAC_ASSERT(%s);", env->RValue(type_->has_value_var()));
}
}
void WithInputField::GenEval(Output* out_cc, Env* env) {
GenParseCode(out_cc, env);
if ( type_->attr_if_expr() ) {
out_cc->println("BINPAC_ASSERT(%s);", env->RValue(type_->has_value_var()));
}
}
void WithInputField::GenParseCode(Output* out_cc, Env* env)
{
out_cc->println("// Parse \"%s\"", id_->Name());
if ( type_->attr_if_expr() )
{
// A conditional field
env->Evaluate(out_cc, type_->has_value_var());
out_cc->println("if ( %s )", env->RValue(type_->has_value_var()));
out_cc->inc_indent();
out_cc->println("{");
}
else
out_cc->println("{");
void WithInputField::GenParseCode(Output* out_cc, Env* env) {
out_cc->println("// Parse \"%s\"", id_->Name());
if ( type_->attr_if_expr() ) {
// A conditional field
env->Evaluate(out_cc, type_->has_value_var());
out_cc->println("if ( %s )", env->RValue(type_->has_value_var()));
out_cc->inc_indent();
out_cc->println("{");
}
else
out_cc->println("{");
Env field_env(env, this);
ASSERT(! type_->incremental_input());
type_->GenPreParsing(out_cc, &field_env);
type_->GenParseCode(out_cc, &field_env, input()->GenDataBeginEnd(out_cc, &field_env), 0);
Env field_env(env, this);
ASSERT(! type_->incremental_input());
type_->GenPreParsing(out_cc, &field_env);
type_->GenParseCode(out_cc, &field_env, input()->GenDataBeginEnd(out_cc, &field_env), 0);
if ( type_->attr_if_expr() )
{
out_cc->println("}");
out_cc->dec_indent();
}
else
out_cc->println("}");
}
if ( type_->attr_if_expr() ) {
out_cc->println("}");
out_cc->dec_indent();
}
else
out_cc->println("}");
}

View file

@ -5,34 +5,33 @@
#include "pac_decl.h"
#include "pac_field.h"
class WithInputField : public Field, public Evaluatable
{
class WithInputField : public Field, public Evaluatable {
public:
WithInputField(ID* id, Type* type, InputBuffer* input);
~WithInputField() override;
WithInputField(ID* id, Type* type, InputBuffer* input);
~WithInputField() override;
InputBuffer* input() const { return input_; }
InputBuffer* input() const { return input_; }
void Prepare(Env* env) override;
void Prepare(Env* env) override;
// void GenPubDecls(Output* out, Env* env);
// void GenPrivDecls(Output* out, Env* env);
// void GenPubDecls(Output* out, Env* env);
// void GenPrivDecls(Output* out, Env* env);
// void GenInitCode(Output* out, Env* env);
// void GenCleanUpCode(Output* out, Env* env);
// void GenInitCode(Output* out, Env* env);
// void GenCleanUpCode(Output* out, Env* env);
void GenParseCode(Output* out, Env* env);
void GenParseCode(Output* out, Env* env);
// Instantiate the Evaluatable interface
void GenEval(Output* out, Env* env) override;
// Instantiate the Evaluatable interface
void GenEval(Output* out, Env* env) override;
bool RequiresAnalyzerContext() const override;
bool RequiresAnalyzerContext() const override;
protected:
bool DoTraverse(DataDepVisitor* visitor) override;
bool DoTraverse(DataDepVisitor* visitor) override;
protected:
InputBuffer* input_;
};
InputBuffer* input_;
};
#endif // pac_withinput_h