Merge remote-tracking branch 'origin/topic/neverlord/intrusive-ptr'

* origin/topic/neverlord/intrusive-ptr:
  Add API documentation to IntrusivePtr
  Rename make{ Counted => _intrusive }
  Remove braces around single return statements
  Integrate review feedback
  Add and use new IntrusivePt type in Zeek
This commit is contained in:
Jon Siwek 2019-11-05 09:54:01 -08:00
commit 5cece12333
10 changed files with 350 additions and 77 deletions

301
src/IntrusivePtr.h Normal file
View file

@ -0,0 +1,301 @@
// See the file "COPYING" in the main distribution directory for copyright.
#pragma once
#include <type_traits>
#include <utility>
/**
* An intrusive, reference counting smart pointer implementation. Much like
* @c std::shared_ptr, this smart pointer models shared ownership of an object
* through a pointer. Several @c IntrusivePtr instances may point to the same
* object.
*
* The @c IntrusivePtr requires two free functions associated to @c T that must
* be available via argument-dependent lookup: @c Ref and @c Unref. The former
* increments the reference by one whenever a new owner participates in the
* lifetime of the shared object and the latter decrements the reference count
* by one. Once the reference count reaches zero, @c Unref also is responsible
* for destroying the shared object.
*
* The @c IntrusivePtr works with any type that offers the two free functions,
* but most notably is designed to work with @c BroObj and its subtypes.
*
* The same object may get managed via @c IntrusivePtr in one part of the
* code base while another part of the program manages it manually by passing
* raw pointers and calling @c Ref and @c Unref explicitly. However, new code
* should use a smart pointer whenever possible to reduce boilerplate code and
* increase robustness of the code (in particular w.r.t. exceptions).
*/
template <class T>
class IntrusivePtr {
public:
// -- member types
using pointer = T*;
using const_pointer = const T*;
using element_type = T;
using reference = T&;
using const_reference = const T&;
// -- constructors, destructors, and assignment operators
constexpr IntrusivePtr() noexcept : ptr_(nullptr)
{
// nop
}
constexpr IntrusivePtr(std::nullptr_t) noexcept : IntrusivePtr()
{
// nop
}
/**
* Constructs a new intrusive pointer for managing the lifetime of the object
* pointed to by @c raw_ptr.
* @param raw_ptr Pointer to the shared object.
* @param add_ref Denotes whether the reference count of the object shall be
* increased during construction.
*/
IntrusivePtr(pointer raw_ptr, bool add_ref) noexcept
{
setPtr(raw_ptr, add_ref);
}
IntrusivePtr(IntrusivePtr&& other) noexcept : ptr_(other.detach())
{
// nop
}
IntrusivePtr(const IntrusivePtr& other) noexcept
{
setPtr(other.get(), true);
}
template <class U, class = std::enable_if_t<std::is_convertible_v<U*, T*>>>
IntrusivePtr(IntrusivePtr<U> other) noexcept : ptr_(other.detach())
{
// nop
}
~IntrusivePtr()
{
if ( ptr_ )
Unref(ptr_);
}
void swap(IntrusivePtr& other) noexcept
{
std::swap(ptr_, other.ptr_);
}
/**
* Detaches an object from the automated lifetime management and sets this
* intrusive pointer to @c nullptr.
* @returns the raw pointer without modifying the reference count.
*/
pointer detach() noexcept
{
auto result = ptr_;
if ( result )
ptr_ = nullptr;
return result;
}
/**
* Convenience function for assigning a new raw pointer. Equivalent to calling
* @c operator= with an @c IntrusivePtr constructed from the arguments.
* @param new_value Pointer to the new shared object.
* @param add_ref Denotes whether the reference count of the new shared object
* shall be increased.
*/
void reset(pointer new_value = nullptr, bool add_ref = true) noexcept
{
auto old = ptr_;
setPtr(new_value, add_ref);
if ( old )
Unref(old);
}
IntrusivePtr& operator=(IntrusivePtr other) noexcept
{
swap(other);
return *this;
}
pointer get() const noexcept
{
return ptr_;
}
pointer operator->() const noexcept
{
return ptr_;
}
reference operator*() const noexcept
{
return *ptr_;
}
bool operator!() const noexcept
{
return !ptr_;
}
explicit operator bool() const noexcept
{
return ptr_ != nullptr;
}
private:
void setPtr(pointer raw_ptr, bool add_ref) noexcept
{
ptr_ = raw_ptr;
if ( raw_ptr && add_ref )
Ref(raw_ptr);
}
pointer ptr_;
};
/**
* Convenience function for creating a reference counted object and wrapping it
* into an intrusive pointers.
* @param args Arguments for constructing the shared object of type @c T.
* @returns an @c IntrusivePtr pointing to the new object.
* @note This function assumes that any @c T starts with a reference count of 1.
* @relates IntrusivePtr
*/
template <class T, class... Ts>
IntrusivePtr<T> make_intrusive(Ts&&... args)
{
// Assumes that objects start with a reference count of 1!
return {new T(std::forward<Ts>(args)...), false};
}
// -- comparison to nullptr ----------------------------------------------------
/**
* @relates IntrusivePtr
*/
template <class T>
bool operator==(const IntrusivePtr<T>& x, std::nullptr_t) {
return !x;
}
/**
* @relates IntrusivePtr
*/
template <class T>
bool operator==(std::nullptr_t, const IntrusivePtr<T>& x) {
return !x;
}
/**
* @relates IntrusivePtr
*/
template <class T>
bool operator!=(const IntrusivePtr<T>& x, std::nullptr_t) {
return static_cast<bool>(x);
}
/**
* @relates IntrusivePtr
*/
template <class T>
bool operator!=(std::nullptr_t, const IntrusivePtr<T>& x) {
return static_cast<bool>(x);
}
// -- comparison to raw pointer ------------------------------------------------
/**
* @relates IntrusivePtr
*/
template <class T>
bool operator==(const IntrusivePtr<T>& x, const T* y) {
return x.get() == y;
}
/**
* @relates IntrusivePtr
*/
template <class T>
bool operator==(const T* x, const IntrusivePtr<T>& y) {
return x == y.get();
}
/**
* @relates IntrusivePtr
*/
template <class T>
bool operator!=(const IntrusivePtr<T>& x, const T* y) {
return x.get() != y;
}
/**
* @relates IntrusivePtr
*/
template <class T>
bool operator!=(const T* x, const IntrusivePtr<T>& y) {
return x != y.get();
}
/**
* @relates IntrusivePtr
*/
template <class T>
bool operator<(const IntrusivePtr<T>& x, const T* y)
{
return x.get() < y;
}
/**
* @relates IntrusivePtr
*/
template <class T>
bool operator<(const T* x, const IntrusivePtr<T>& y)
{
return x < y.get();
}
// -- comparison to intrusive pointer ------------------------------------------
// Using trailing return type and decltype() here removes this function from
// overload resolution if the two pointers types are not comparable (SFINAE).
/**
* @relates IntrusivePtr
*/
template <class T, class U>
auto operator==(const IntrusivePtr<T>& x, const IntrusivePtr<U>& y)
-> decltype(x.get() == y.get())
{
return x.get() == y.get();
}
/**
* @relates IntrusivePtr
*/
template <class T, class U>
auto operator!=(const IntrusivePtr<T>& x, const IntrusivePtr<U>& y)
-> decltype(x.get() != y.get())
{
return x.get() != y.get();
}
/**
* @relates IntrusivePtr
*/
template <class T>
auto operator<(const IntrusivePtr<T>& x, const IntrusivePtr<T>& y)
-> decltype(x.get() < y.get())
{
return x.get() < y.get();
}