factored ZAM source's main header into collection of per-source-file headers

This commit is contained in:
Vern Paxson 2024-10-05 16:50:26 -07:00 committed by Christian Kreibich
parent d6c1d0640e
commit 64de2dbf31
9 changed files with 428 additions and 397 deletions

101
src/script_opt/ZAM/AM-Opt.h Normal file
View file

@ -0,0 +1,101 @@
// See the file "COPYING" in the main distribution directory for copyright.
// Methods for low-level optimization of the ZAM abstract machine.
//
// This file is included by Compile.h to insert into the ZAMCompiler class.
// Optimizing the low-level compiled instructions.
void OptimizeInsts();
// Tracks which instructions can be branched to via the given
// set of switches.
template<typename T>
void TallySwitchTargets(const CaseMapsI<T>& switches);
// Remove code that can't be reached. True if some removal happened.
bool RemoveDeadCode();
// Collapse chains of gotos. True if some something changed.
bool CollapseGoTos();
// Prune statements that are unnecessary. True if something got
// pruned.
bool PruneUnused();
// For the current state of insts1, compute lifetimes of frame
// denizens (variable(s) using a given frame slot) in terms of
// first-instruction-to-last-instruction during which they're
// relevant, including consideration for loops.
void ComputeFrameLifetimes();
// Given final frame lifetime information, remaps frame members
// with non-overlapping lifetimes to share slots.
void ReMapFrame();
// Given final frame lifetime information, remaps slots in the
// interpreter frame. (No longer strictly necessary.)
void ReMapInterpreterFrame();
// Computes the remapping for a variable currently in the given slot,
// whose scope begins at the given instruction.
void ReMapVar(const ID* id, int slot, zeek_uint_t inst);
// Look to initialize the beginning of local lifetime based on slot
// assignment at instruction inst.
void CheckSlotAssignment(int slot, const ZInstI* inst);
// Track that a local's lifetime begins at the given statement.
void SetLifetimeStart(int slot, const ZInstI* inst);
// Look for extension of local lifetime based on slot usage
// at instruction inst.
void CheckSlotUse(int slot, const ZInstI* inst);
// Extend (or create) the end of a local's lifetime.
void ExtendLifetime(int slot, const ZInstI* inst);
// Returns the (live) instruction at the beginning/end of the loop(s)
// within which the given instruction lies; or that instruction
// itself if it's not inside a loop. The second argument specifies
// the loop depth. For example, a value of '2' means "extend to
// the beginning/end of any loop(s) of depth >= 2".
const ZInstI* BeginningOfLoop(const ZInstI* inst, int depth) const;
const ZInstI* EndOfLoop(const ZInstI* inst, int depth) const;
// True if any statement other than a frame sync uses the given slot.
bool VarIsUsed(int slot) const;
// Find the first non-dead instruction after i (inclusive).
// If follow_gotos is true, then if that instruction is
// an unconditional branch, continues the process until
// a different instruction is found (and report if there
// are infinite loops).
//
// First form returns nil if there's nothing live after i.
// Second form returns insts1.size() in that case.
ZInstI* FirstLiveInst(ZInstI* i, bool follow_gotos = false);
zeek_uint_t FirstLiveInst(zeek_uint_t i, bool follow_gotos = false);
// Same, but not including i.
ZInstI* NextLiveInst(ZInstI* i, bool follow_gotos = false) {
if ( i->inst_num == static_cast<int>(insts1.size()) - 1 )
return nullptr;
return FirstLiveInst(insts1[i->inst_num + 1], follow_gotos);
}
int NextLiveInst(int i, bool follow_gotos = false) { return FirstLiveInst(i + 1, follow_gotos); }
// Mark an instruction as unnecessary and remove its influence on
// other statements. The instruction is indicated as an offset
// into insts1; any labels associated with it are transferred
// to its next live successor, if any.
void KillInst(ZInstI* i) { KillInst(i->inst_num); }
void KillInst(zeek_uint_t i);
// Helper function for propagating control flow (of a given type)
// backwards, when the instruction at the given offset has been killed.
void BackPropagateCFT(int inst_num, ControlFlowType cf_type);
// The same, but kills any successor instructions until finding
// one that's labeled.
void KillInsts(ZInstI* i) { KillInsts(i->inst_num); }
void KillInsts(zeek_uint_t i);

View file

@ -0,0 +1,56 @@
// See the file "COPYING" in the main distribution directory for copyright.
// Methods for managing low-level ZAM control flow, which is implemented
// using go-to branches.
//
// This file is included by Compile.h to insert into the ZAMCompiler class.
void PushNexts() { PushGoTos(nexts); }
void PushBreaks() { PushGoTos(breaks); }
void PushFallThroughs() { PushGoTos(fallthroughs); }
void PushCatchReturns() { PushGoTos(catches); }
void ResolveNexts(const InstLabel l) { ResolveGoTos(nexts, l, CFT_NEXT); }
void ResolveBreaks(const InstLabel l) { ResolveGoTos(breaks, l, CFT_BREAK); }
void ResolveFallThroughs(const InstLabel l) { ResolveGoTos(fallthroughs, l); }
void ResolveCatchReturns(const InstLabel l) { ResolveGoTos(catches, l, CFT_INLINED_RETURN); }
using GoToSet = std::vector<ZAMStmt>;
using GoToSets = std::vector<GoToSet>;
void PushGoTos(GoToSets& gotos);
void ResolveGoTos(GoToSets& gotos, const InstLabel l, ControlFlowType cft = CFT_NONE);
ZAMStmt GenGoTo(GoToSet& v);
ZAMStmt GoToStub();
ZAMStmt GoTo(const InstLabel l);
InstLabel GoToTarget(const ZAMStmt s);
InstLabel GoToTargetBeyond(const ZAMStmt s);
void SetTarget(ZInstI* inst, const InstLabel l, int slot);
// Given a GoTo target, find its live equivalent (first instruction
// at that location or beyond that's live).
ZInstI* FindLiveTarget(ZInstI* goto_target);
// Given an instruction that has a slot associated with the
// given target, updates the slot to correspond with the current
// instruction number of the target.
void ConcretizeBranch(ZInstI* inst, ZInstI* target, int target_slot);
void SetV(ZAMStmt s, const InstLabel l, int v) {
if ( v == 1 )
SetV1(s, l);
else if ( v == 2 )
SetV2(s, l);
else if ( v == 3 )
SetV3(s, l);
else
SetV4(s, l);
}
void SetV1(ZAMStmt s, const InstLabel l);
void SetV2(ZAMStmt s, const InstLabel l);
void SetV3(ZAMStmt s, const InstLabel l);
void SetV4(ZAMStmt s, const InstLabel l);
void SetGoTo(ZAMStmt s, const InstLabel targ) { SetV1(s, targ); }

View file

@ -51,14 +51,22 @@ public:
ZInstAux* aux;
};
// Most of the methods for the compiler are either in separate header source
// files, or in headers generated by auxil/gen-zam. We include these within
// the private part of the compiler class definitions, so a few methods that
// need to be public are specified here directly, rather than via such
// headers.
//
// We declare member variables here, rather than in included headers, since
// many of them are used across different source files, and don't necessarily
// have a natural "home".
class ZAMCompiler {
public:
ZAMCompiler(ScriptFuncPtr f, std::shared_ptr<ProfileFuncs> pfs, std::shared_ptr<ProfileFunc> pf, ScopePtr scope,
StmtPtr body, std::shared_ptr<UseDefs> ud, std::shared_ptr<Reducer> rd);
~ZAMCompiler();
StmtPtr CompileBody();
const FrameReMap& FrameDenizens() const { return shared_frame_denizens_final; }
const std::vector<int>& ManagedSlots() const { return managed_slotsI; }
@ -82,6 +90,8 @@ public:
return str_cases;
}
StmtPtr CompileBody();
void Dump();
private:
@ -92,406 +102,27 @@ private:
friend class CatZBI;
friend class MultiZBI;
void Init();
void InitGlobals();
void InitArgs();
void InitCaptures();
void InitLocals();
void TrackMemoryManagement();
void ResolveHookBreaks();
void ComputeLoopLevels();
void AdjustBranches();
void RetargetBranches();
void RemapFrameDenizens(const std::vector<int>& inst1_to_inst2);
void CreateSharedFrameDenizens();
void ConcretizeSwitches();
// The following are used for switch statements, mapping the
// switch value (which can be any atomic type) to a branch target.
// We have vectors of them because functions can contain multiple
// switches.
// See ZBody.h for their concrete counterparts, which we've
// already #include'd.
// The following are used for switch statements, mapping the switch value
// (which can be any atomic type) to a branch target. We have vectors of
// them because functions can contain multiple switches.
//
// See ZBody.h for their concrete counterparts, which we've already #include'd.
template<typename T>
using CaseMapI = std::map<T, InstLabel>;
template<typename T>
using CaseMapsI = std::vector<CaseMapI<T>>;
template<typename T>
void AdjustSwitchTables(CaseMapsI<T>& abstract_cases);
template<typename T>
void ConcretizeSwitchTables(const CaseMapsI<T>& abstract_cases, CaseMaps<T>& concrete_cases);
template<typename T>
void DumpCases(const CaseMaps<T>& cases, const char* type_name) const;
void DumpInsts1(const FrameReMap* remappings);
#include "zeek/ZAM-MethodDecls.h"
const ZAMStmt CompileStmt(const StmtPtr& body) { return CompileStmt(body.get()); }
const ZAMStmt CompileStmt(const Stmt* body);
const ZAMStmt CompilePrint(const PrintStmt* ps);
const ZAMStmt CompileExpr(const ExprStmt* es);
const ZAMStmt CompileIf(const IfStmt* is);
const ZAMStmt CompileSwitch(const SwitchStmt* sw);
const ZAMStmt CompileWhile(const WhileStmt* ws);
const ZAMStmt CompileFor(const ForStmt* f);
const ZAMStmt CompileReturn(const ReturnStmt* r);
const ZAMStmt CompileCatchReturn(const CatchReturnStmt* cr);
const ZAMStmt CompileStmts(const StmtList* sl);
const ZAMStmt CompileInit(const InitStmt* is);
const ZAMStmt CompileWhen(const WhenStmt* ws);
const ZAMStmt CompileNext() { return GenGoTo(nexts.back()); }
const ZAMStmt CompileBreak() { return GenGoTo(breaks.back()); }
const ZAMStmt CompileFallThrough() { return GenGoTo(fallthroughs.back()); }
const ZAMStmt CompileCatchReturn() { return GenGoTo(catches.back()); }
const ZAMStmt IfElse(const Expr* e, const Stmt* s1, const Stmt* s2);
const ZAMStmt While(const Stmt* cond_stmt, const Expr* cond, const Stmt* body);
const ZAMStmt InitRecord(IDPtr id, RecordType* rt);
const ZAMStmt InitVector(IDPtr id, VectorType* vt);
const ZAMStmt InitTable(IDPtr id, TableType* tt, Attributes* attrs);
const ZAMStmt ValueSwitch(const SwitchStmt* sw, const NameExpr* v, const ConstExpr* c);
const ZAMStmt TypeSwitch(const SwitchStmt* sw, const NameExpr* v, const ConstExpr* c);
const ZAMStmt GenSwitch(const SwitchStmt* sw, int slot, InternalTypeTag it);
void PushNexts() { PushGoTos(nexts); }
void PushBreaks() { PushGoTos(breaks); }
void PushFallThroughs() { PushGoTos(fallthroughs); }
void PushCatchReturns() { PushGoTos(catches); }
void ResolveNexts(const InstLabel l) { ResolveGoTos(nexts, l, CFT_NEXT); }
void ResolveBreaks(const InstLabel l) { ResolveGoTos(breaks, l, CFT_BREAK); }
void ResolveFallThroughs(const InstLabel l) { ResolveGoTos(fallthroughs, l); }
void ResolveCatchReturns(const InstLabel l) { ResolveGoTos(catches, l, CFT_INLINED_RETURN); }
const ZAMStmt LoopOverTable(const ForStmt* f, const NameExpr* val);
const ZAMStmt LoopOverVector(const ForStmt* f, const NameExpr* val);
const ZAMStmt LoopOverString(const ForStmt* f, const Expr* e);
const ZAMStmt FinishLoop(const ZAMStmt iter_head, ZInstI& iter_stmt, const Stmt* body, int iter_slot,
bool is_table);
const ZAMStmt Loop(const Stmt* body);
const ZAMStmt CompileExpr(const ExprPtr& e) { return CompileExpr(e.get()); }
const ZAMStmt CompileExpr(const Expr* body);
const ZAMStmt CompileIncrExpr(const IncrExpr* e);
const ZAMStmt CompileAppendToExpr(const AppendToExpr* e);
const ZAMStmt CompileAdd(const AggrAddExpr* e);
const ZAMStmt CompileDel(const AggrDelExpr* e);
const ZAMStmt CompileAddToExpr(const AddToExpr* e);
const ZAMStmt CompileRemoveFromExpr(const RemoveFromExpr* e);
const ZAMStmt CompileAssignExpr(const AssignExpr* e);
const ZAMStmt CompileRecFieldUpdates(const RecordFieldUpdatesExpr* e);
const ZAMStmt CompileZAMBuiltin(const NameExpr* lhs, const ScriptOptBuiltinExpr* zbi);
const ZAMStmt CompileAssignToIndex(const NameExpr* lhs, const IndexExpr* rhs);
const ZAMStmt CompileFieldLHSAssignExpr(const FieldLHSAssignExpr* e);
const ZAMStmt CompileScheduleExpr(const ScheduleExpr* e);
const ZAMStmt CompileSchedule(const NameExpr* n, const ConstExpr* c, int is_interval, EventHandler* h,
const ListExpr* l);
const ZAMStmt CompileEvent(EventHandler* h, const ListExpr* l);
const ZAMStmt CompileInExpr(const NameExpr* n1, const NameExpr* n2, const NameExpr* n3) {
return CompileInExpr(n1, n2, nullptr, n3, nullptr);
}
const ZAMStmt CompileInExpr(const NameExpr* n1, const NameExpr* n2, const ConstExpr* c) {
return CompileInExpr(n1, n2, nullptr, nullptr, c);
}
const ZAMStmt CompileInExpr(const NameExpr* n1, const ConstExpr* c, const NameExpr* n3) {
return CompileInExpr(n1, nullptr, c, n3, nullptr);
}
// In the following, one of n2 or c2 (likewise, n3/c3) will be nil.
const ZAMStmt CompileInExpr(const NameExpr* n1, const NameExpr* n2, const ConstExpr* c2, const NameExpr* n3,
const ConstExpr* c3);
const ZAMStmt CompileInExpr(const NameExpr* n1, const ListExpr* l, const NameExpr* n2) {
return CompileInExpr(n1, l, n2, nullptr);
}
const ZAMStmt CompileInExpr(const NameExpr* n, const ListExpr* l, const ConstExpr* c) {
return CompileInExpr(n, l, nullptr, c);
}
const ZAMStmt CompileInExpr(const NameExpr* n1, const ListExpr* l, const NameExpr* n2, const ConstExpr* c);
const ZAMStmt CompileIndex(const NameExpr* n1, const NameExpr* n2, const ListExpr* l, bool in_when);
const ZAMStmt CompileIndex(const NameExpr* n1, const ConstExpr* c, const ListExpr* l, bool in_when);
const ZAMStmt CompileIndex(const NameExpr* n1, int n2_slot, const TypePtr& n2_type, const ListExpr* l,
bool in_when);
const ZAMStmt BuildLambda(const NameExpr* n, ExprPtr le);
const ZAMStmt BuildLambda(int n_slot, ExprPtr le);
// Second argument is which instruction slot holds the branch target.
const ZAMStmt GenCond(const Expr* e, int& branch_v);
const ZAMStmt Call(const ExprStmt* e);
const ZAMStmt AssignToCall(const ExprStmt* e);
const ZAMStmt DoCall(const CallExpr* c, const NameExpr* n);
bool CheckForBuiltIn(const ExprPtr& e, CallExprPtr c);
const ZAMStmt AssignVecElems(const Expr* e);
const ZAMStmt AssignTableElem(const Expr* e);
const ZAMStmt ConstructTable(const NameExpr* n, const Expr* e);
const ZAMStmt ConstructSet(const NameExpr* n, const Expr* e);
const ZAMStmt ConstructRecord(const NameExpr* n, const Expr* e) { return ConstructRecord(n, e, false); }
const ZAMStmt ConstructRecordFromRecord(const NameExpr* n, const Expr* e) { return ConstructRecord(n, e, true); }
const ZAMStmt ConstructRecord(const NameExpr* n, const Expr* e, bool is_from_rec);
const ZAMStmt ConstructVector(const NameExpr* n, const Expr* e);
const ZAMStmt ArithCoerce(const NameExpr* n, const Expr* e);
const ZAMStmt RecordCoerce(const NameExpr* n, const Expr* e);
const ZAMStmt TableCoerce(const NameExpr* n, const Expr* e);
const ZAMStmt VectorCoerce(const NameExpr* n, const Expr* e);
const ZAMStmt Is(const NameExpr* n, const Expr* e);
#include "zeek/script_opt/ZAM/AM-Opt.h"
#include "zeek/script_opt/ZAM/Branches.h"
#include "zeek/script_opt/ZAM/Driver.h"
#include "zeek/script_opt/ZAM/Expr.h"
#include "zeek/script_opt/ZAM/Inst-Gen.h"
#include "zeek/script_opt/ZAM/Low-Level.h"
#include "zeek/script_opt/ZAM/Stmt.h"
#include "zeek/script_opt/ZAM/Vars.h"
int ConvertToInt(const Expr* e) {
if ( e->Tag() == EXPR_NAME )
return FrameSlot(e->AsNameExpr()->Id());
else
return e->AsConstExpr()->Value()->AsInt();
}
int ConvertToCount(const Expr* e) {
if ( e->Tag() == EXPR_NAME )
return FrameSlot(e->AsNameExpr()->Id());
else
return e->AsConstExpr()->Value()->AsCount();
}
using GoToSet = std::vector<ZAMStmt>;
using GoToSets = std::vector<GoToSet>;
void PushGoTos(GoToSets& gotos);
void ResolveGoTos(GoToSets& gotos, const InstLabel l, ControlFlowType cft = CFT_NONE);
ZAMStmt GenGoTo(GoToSet& v);
ZAMStmt GoToStub();
ZAMStmt GoTo(const InstLabel l);
InstLabel GoToTarget(const ZAMStmt s);
InstLabel GoToTargetBeyond(const ZAMStmt s);
void SetTarget(ZInstI* inst, const InstLabel l, int slot);
// Given a GoTo target, find its live equivalent (first instruction
// at that location or beyond that's live).
ZInstI* FindLiveTarget(ZInstI* goto_target);
// Given an instruction that has a slot associated with the
// given target, updates the slot to correspond with the current
// instruction number of the target.
void ConcretizeBranch(ZInstI* inst, ZInstI* target, int target_slot);
void SetV(ZAMStmt s, const InstLabel l, int v) {
if ( v == 1 )
SetV1(s, l);
else if ( v == 2 )
SetV2(s, l);
else if ( v == 3 )
SetV3(s, l);
else
SetV4(s, l);
}
void SetV1(ZAMStmt s, const InstLabel l);
void SetV2(ZAMStmt s, const InstLabel l);
void SetV3(ZAMStmt s, const InstLabel l);
void SetV4(ZAMStmt s, const InstLabel l);
void SetGoTo(ZAMStmt s, const InstLabel targ) { SetV1(s, targ); }
const ZAMStmt StartingBlock();
const ZAMStmt FinishBlock(const ZAMStmt start);
bool NullStmtOK() const;
const ZAMStmt EmptyStmt();
const ZAMStmt ErrorStmt();
const ZAMStmt LastInst();
// Adds control flow information to an instruction.
void AddCFT(ZInstI* inst, ControlFlowType cft);
// Returns a handle to state associated with building
// up a list of values.
std::unique_ptr<OpaqueVals> BuildVals(const ListExprPtr&);
// "stride" is how many slots each element of l will consume.
ZInstAux* InternalBuildVals(const ListExpr* l, int stride = 1);
// Returns how many values were added.
int InternalAddVal(ZInstAux* zi, int i, Expr* e);
// Adds the given instruction to the ZAM program. The second
// argument, if true, suppresses generation of any pending
// global/capture store for this instruction.
const ZAMStmt AddInst(const ZInstI& inst, bool suppress_non_local = false);
// Returns the statement just before the given one.
ZAMStmt PrevStmt(const ZAMStmt s);
// Returns the last (interpreter) statement in the body.
const Stmt* LastStmt(const Stmt* s) const;
// Returns the most recent added instruction *other* than those
// added for bookkeeping.
ZInstI* TopMainInst() { return insts1[top_main_inst]; }
bool IsUnused(const IDPtr& id, const Stmt* where) const;
bool IsCapture(const IDPtr& id) const { return IsCapture(id.get()); }
bool IsCapture(const ID* id) const;
int CaptureOffset(const IDPtr& id) const { return IsCapture(id.get()); }
int CaptureOffset(const ID* id) const;
void LoadParam(const ID* id);
const ZAMStmt LoadGlobal(const ID* id);
const ZAMStmt LoadCapture(const ID* id);
int AddToFrame(const ID*);
int FrameSlot(const IDPtr& id) { return FrameSlot(id.get()); }
int FrameSlot(const ID* id);
int FrameSlotIfName(const Expr* e) {
auto n = e->Tag() == EXPR_NAME ? e->AsNameExpr() : nullptr;
return n ? FrameSlot(n->Id()) : -1;
}
int FrameSlot(const NameExpr* id) { return FrameSlot(id->AsNameExpr()->Id()); }
int Frame1Slot(const NameExpr* id, ZOp op) { return Frame1Slot(id->AsNameExpr()->Id(), op); }
int Frame1Slot(const ID* id, ZOp op) { return Frame1Slot(id, op1_flavor[op]); }
int Frame1Slot(const NameExpr* n, ZAMOp1Flavor fl) { return Frame1Slot(n->Id(), fl); }
int Frame1Slot(const ID* id, ZAMOp1Flavor fl);
// The slot without doing any global-related checking.
int RawSlot(const NameExpr* n) { return RawSlot(n->Id()); }
int RawSlot(const ID* id);
bool HasFrameSlot(const ID* id) const;
int NewSlot(const TypePtr& t) { return NewSlot(ZVal::IsManagedType(t)); }
int NewSlot(bool is_managed);
int TempForConst(const ConstExpr* c);
////////////////////////////////////////////////////////////
// The following methods relate to optimizing the low-level
// ZAM function body after it is initially generated. They're
// factored out into ZOpt.cc since they're structurally quite
// different from the methods above that relate to the initial
// compilation.
// Optimizing the low-level compiled instructions.
void OptimizeInsts();
// Tracks which instructions can be branched to via the given
// set of switches.
template<typename T>
void TallySwitchTargets(const CaseMapsI<T>& switches);
// Remove code that can't be reached. True if some removal happened.
bool RemoveDeadCode();
// Collapse chains of gotos. True if some something changed.
bool CollapseGoTos();
// Prune statements that are unnecessary. True if something got
// pruned.
bool PruneUnused();
// For the current state of insts1, compute lifetimes of frame
// denizens (variable(s) using a given frame slot) in terms of
// first-instruction-to-last-instruction during which they're
// relevant, including consideration for loops.
void ComputeFrameLifetimes();
// Given final frame lifetime information, remaps frame members
// with non-overlapping lifetimes to share slots.
void ReMapFrame();
// Given final frame lifetime information, remaps slots in the
// interpreter frame. (No longer strictly necessary.)
void ReMapInterpreterFrame();
// Computes the remapping for a variable currently in the given slot,
// whose scope begins at the given instruction.
void ReMapVar(const ID* id, int slot, zeek_uint_t inst);
// Look to initialize the beginning of local lifetime based on slot
// assignment at instruction inst.
void CheckSlotAssignment(int slot, const ZInstI* inst);
// Track that a local's lifetime begins at the given statement.
void SetLifetimeStart(int slot, const ZInstI* inst);
// Look for extension of local lifetime based on slot usage
// at instruction inst.
void CheckSlotUse(int slot, const ZInstI* inst);
// Extend (or create) the end of a local's lifetime.
void ExtendLifetime(int slot, const ZInstI* inst);
// Returns the (live) instruction at the beginning/end of the loop(s)
// within which the given instruction lies; or that instruction
// itself if it's not inside a loop. The second argument specifies
// the loop depth. For example, a value of '2' means "extend to
// the beginning/end of any loop(s) of depth >= 2".
const ZInstI* BeginningOfLoop(const ZInstI* inst, int depth) const;
const ZInstI* EndOfLoop(const ZInstI* inst, int depth) const;
// True if any statement other than a frame sync uses the given slot.
bool VarIsUsed(int slot) const;
// Find the first non-dead instruction after i (inclusive).
// If follow_gotos is true, then if that instruction is
// an unconditional branch, continues the process until
// a different instruction is found (and report if there
// are infinite loops).
//
// First form returns nil if there's nothing live after i.
// Second form returns insts1.size() in that case.
ZInstI* FirstLiveInst(ZInstI* i, bool follow_gotos = false);
zeek_uint_t FirstLiveInst(zeek_uint_t i, bool follow_gotos = false);
// Same, but not including i.
ZInstI* NextLiveInst(ZInstI* i, bool follow_gotos = false) {
if ( i->inst_num == static_cast<int>(insts1.size()) - 1 )
return nullptr;
return FirstLiveInst(insts1[i->inst_num + 1], follow_gotos);
}
int NextLiveInst(int i, bool follow_gotos = false) { return FirstLiveInst(i + 1, follow_gotos); }
// Mark an instruction as unnecessary and remove its influence on
// other statements. The instruction is indicated as an offset
// into insts1; any labels associated with it are transferred
// to its next live successor, if any.
void KillInst(ZInstI* i) { KillInst(i->inst_num); }
void KillInst(zeek_uint_t i);
// Helper function for propagating control flow (of a given type)
// backwards, when the instruction at the given offset has been killed.
void BackPropagateCFT(int inst_num, ControlFlowType cf_type);
// The same, but kills any successor instructions until finding
// one that's labeled.
void KillInsts(ZInstI* i) { KillInsts(i->inst_num); }
void KillInsts(zeek_uint_t i);
// Headers auto-generated by gen-zam.
#include "zeek/ZAM-MethodDecls.h"
// The first of these is used as we compile down to ZInstI's.
// The second is the final intermediary code. They're separate

View file

@ -0,0 +1,31 @@
// See the file "COPYING" in the main distribution directory for copyright.
// Methods for driving the overall ZAM compilation process.
//
// This file is included by Compile.h to insert into the ZAMCompiler class.
void Init();
void InitGlobals();
void InitArgs();
void InitCaptures();
void InitLocals();
void TrackMemoryManagement();
template<typename T>
void AdjustSwitchTables(CaseMapsI<T>& abstract_cases);
template<typename T>
void ConcretizeSwitchTables(const CaseMapsI<T>& abstract_cases, CaseMaps<T>& concrete_cases);
void ConcretizeSwitches();
void RetargetBranches();
void RemapFrameDenizens(const std::vector<int>& inst1_to_inst2);
void CreateSharedFrameDenizens();
void ResolveHookBreaks();
void ComputeLoopLevels();
void AdjustBranches();
template<typename T>
void DumpCases(const CaseMaps<T>& cases, const char* type_name) const;
void DumpInsts1(const FrameReMap* remappings);

79
src/script_opt/ZAM/Expr.h Normal file
View file

@ -0,0 +1,79 @@
// See the file "COPYING" in the main distribution directory for copyright.
// Methods for ZAM compilation of expression AST nodes (Expr's).
//
// This file is included by Compile.h to insert into the ZAMCompiler class.
const ZAMStmt CompileExpr(const ExprPtr& e) { return CompileExpr(e.get()); }
const ZAMStmt CompileExpr(const Expr* body);
const ZAMStmt CompileIncrExpr(const IncrExpr* e);
const ZAMStmt CompileAppendToExpr(const AppendToExpr* e);
const ZAMStmt CompileAdd(const AggrAddExpr* e);
const ZAMStmt CompileDel(const AggrDelExpr* e);
const ZAMStmt CompileAddToExpr(const AddToExpr* e);
const ZAMStmt CompileRemoveFromExpr(const RemoveFromExpr* e);
const ZAMStmt CompileAssignExpr(const AssignExpr* e);
const ZAMStmt CompileRecFieldUpdates(const RecordFieldUpdatesExpr* e);
const ZAMStmt CompileZAMBuiltin(const NameExpr* lhs, const ScriptOptBuiltinExpr* zbi);
const ZAMStmt CompileAssignToIndex(const NameExpr* lhs, const IndexExpr* rhs);
const ZAMStmt CompileFieldLHSAssignExpr(const FieldLHSAssignExpr* e);
const ZAMStmt CompileScheduleExpr(const ScheduleExpr* e);
const ZAMStmt CompileSchedule(const NameExpr* n, const ConstExpr* c, int is_interval, EventHandler* h,
const ListExpr* l);
const ZAMStmt CompileEvent(EventHandler* h, const ListExpr* l);
const ZAMStmt CompileInExpr(const NameExpr* n1, const NameExpr* n2, const NameExpr* n3) {
return CompileInExpr(n1, n2, nullptr, n3, nullptr);
}
const ZAMStmt CompileInExpr(const NameExpr* n1, const NameExpr* n2, const ConstExpr* c) {
return CompileInExpr(n1, n2, nullptr, nullptr, c);
}
const ZAMStmt CompileInExpr(const NameExpr* n1, const ConstExpr* c, const NameExpr* n3) {
return CompileInExpr(n1, nullptr, c, n3, nullptr);
}
// In the following, one of n2 or c2 (likewise, n3/c3) will be nil.
const ZAMStmt CompileInExpr(const NameExpr* n1, const NameExpr* n2, const ConstExpr* c2, const NameExpr* n3,
const ConstExpr* c3);
const ZAMStmt CompileInExpr(const NameExpr* n1, const ListExpr* l, const NameExpr* n2) {
return CompileInExpr(n1, l, n2, nullptr);
}
const ZAMStmt CompileInExpr(const NameExpr* n, const ListExpr* l, const ConstExpr* c) {
return CompileInExpr(n, l, nullptr, c);
}
const ZAMStmt CompileInExpr(const NameExpr* n1, const ListExpr* l, const NameExpr* n2, const ConstExpr* c);
const ZAMStmt CompileIndex(const NameExpr* n1, const NameExpr* n2, const ListExpr* l, bool in_when);
const ZAMStmt CompileIndex(const NameExpr* n1, const ConstExpr* c, const ListExpr* l, bool in_when);
const ZAMStmt CompileIndex(const NameExpr* n1, int n2_slot, const TypePtr& n2_type, const ListExpr* l, bool in_when);
const ZAMStmt BuildLambda(const NameExpr* n, ExprPtr le);
const ZAMStmt BuildLambda(int n_slot, ExprPtr le);
const ZAMStmt AssignVecElems(const Expr* e);
const ZAMStmt AssignTableElem(const Expr* e);
const ZAMStmt Call(const ExprStmt* e);
const ZAMStmt AssignToCall(const ExprStmt* e);
bool CheckForBuiltIn(const ExprPtr& e, CallExprPtr c);
const ZAMStmt DoCall(const CallExpr* c, const NameExpr* n);
const ZAMStmt ConstructTable(const NameExpr* n, const Expr* e);
const ZAMStmt ConstructSet(const NameExpr* n, const Expr* e);
const ZAMStmt ConstructRecord(const NameExpr* n, const Expr* e) { return ConstructRecord(n, e, false); }
const ZAMStmt ConstructRecordFromRecord(const NameExpr* n, const Expr* e) { return ConstructRecord(n, e, true); }
const ZAMStmt ConstructRecord(const NameExpr* n, const Expr* e, bool is_from_rec);
const ZAMStmt ConstructVector(const NameExpr* n, const Expr* e);
const ZAMStmt ArithCoerce(const NameExpr* n, const Expr* e);
const ZAMStmt RecordCoerce(const NameExpr* n, const Expr* e);
const ZAMStmt TableCoerce(const NameExpr* n, const Expr* e);
const ZAMStmt VectorCoerce(const NameExpr* n, const Expr* e);
const ZAMStmt Is(const NameExpr* n, const Expr* e);

View file

@ -4,8 +4,7 @@
// NameExpr*'s to slots. Some aren't needed, but we provide a complete
// set mirroring the ZInstI constructors for consistency.
//
// Maintained separately from Compile.h to make it conceptually simple to
// add new helpers.
// This file is included by Compile.h to insert into the ZAMCompiler class.
ZInstI GenInst(ZOp op);
ZInstI GenInst(ZOp op, const NameExpr* v1);

View file

@ -0,0 +1,42 @@
// See the file "COPYING" in the main distribution directory for copyright.
// Methods for low-level manipulation of ZAM instructions/statements.
//
// This file is included by Compile.h to insert into the ZAMCompiler class.
const ZAMStmt StartingBlock();
const ZAMStmt FinishBlock(const ZAMStmt start);
bool NullStmtOK() const;
const ZAMStmt EmptyStmt();
const ZAMStmt ErrorStmt();
const ZAMStmt LastInst();
// Adds control flow information to an instruction.
void AddCFT(ZInstI* inst, ControlFlowType cft);
// Returns a handle to state associated with building
// up a list of values.
std::unique_ptr<OpaqueVals> BuildVals(const ListExprPtr&);
// "stride" is how many slots each element of l will consume.
ZInstAux* InternalBuildVals(const ListExpr* l, int stride = 1);
// Returns how many values were added.
int InternalAddVal(ZInstAux* zi, int i, Expr* e);
// Adds the given instruction to the ZAM program. The second
// argument, if true, suppresses generation of any pending
// global/capture store for this instruction.
const ZAMStmt AddInst(const ZInstI& inst, bool suppress_non_local = false);
// Returns the statement just before the given one.
ZAMStmt PrevStmt(const ZAMStmt s);
// Returns the last (interpreter) statement in the body.
const Stmt* LastStmt(const Stmt* s) const;
// Returns the most recent added instruction *other* than those
// added for bookkeeping.
ZInstI* TopMainInst() { return insts1[top_main_inst]; }

48
src/script_opt/ZAM/Stmt.h Normal file
View file

@ -0,0 +1,48 @@
// See the file "COPYING" in the main distribution directory for copyright.
// Methods for ZAM compilation of statement AST nodes (Stmt's).
//
// This file is included by Compile.h to insert into the ZAMCompiler class.
// Note, we first list the AST nodes and then the helper functions, though
// in the definitions source these are intermingled.
const ZAMStmt CompileStmt(const StmtPtr& body) { return CompileStmt(body.get()); }
const ZAMStmt CompileStmt(const Stmt* body);
const ZAMStmt CompilePrint(const PrintStmt* ps);
const ZAMStmt CompileExpr(const ExprStmt* es);
const ZAMStmt CompileIf(const IfStmt* is);
const ZAMStmt CompileSwitch(const SwitchStmt* sw);
const ZAMStmt CompileWhile(const WhileStmt* ws);
const ZAMStmt CompileFor(const ForStmt* f);
const ZAMStmt CompileReturn(const ReturnStmt* r);
const ZAMStmt CompileCatchReturn(const CatchReturnStmt* cr);
const ZAMStmt CompileStmts(const StmtList* sl);
const ZAMStmt CompileInit(const InitStmt* is);
const ZAMStmt CompileWhen(const WhenStmt* ws);
const ZAMStmt CompileNext() { return GenGoTo(nexts.back()); }
const ZAMStmt CompileBreak() { return GenGoTo(breaks.back()); }
const ZAMStmt CompileFallThrough() { return GenGoTo(fallthroughs.back()); }
const ZAMStmt CompileCatchReturn() { return GenGoTo(catches.back()); }
const ZAMStmt IfElse(const Expr* e, const Stmt* s1, const Stmt* s2);
// Second argument is which instruction slot holds the branch target.
const ZAMStmt GenCond(const Expr* e, int& branch_v);
const ZAMStmt While(const Stmt* cond_stmt, const Expr* cond, const Stmt* body);
const ZAMStmt ValueSwitch(const SwitchStmt* sw, const NameExpr* v, const ConstExpr* c);
const ZAMStmt TypeSwitch(const SwitchStmt* sw, const NameExpr* v, const ConstExpr* c);
const ZAMStmt GenSwitch(const SwitchStmt* sw, int slot, InternalTypeTag it);
const ZAMStmt LoopOverTable(const ForStmt* f, const NameExpr* val);
const ZAMStmt LoopOverVector(const ForStmt* f, const NameExpr* val);
const ZAMStmt LoopOverString(const ForStmt* f, const Expr* e);
const ZAMStmt Loop(const Stmt* body);
const ZAMStmt FinishLoop(const ZAMStmt iter_head, ZInstI& iter_stmt, const Stmt* body, int iter_slot, bool is_table);
const ZAMStmt InitRecord(IDPtr id, RecordType* rt);
const ZAMStmt InitVector(IDPtr id, VectorType* vt);
const ZAMStmt InitTable(IDPtr id, TableType* tt, Attributes* attrs);

44
src/script_opt/ZAM/Vars.h Normal file
View file

@ -0,0 +1,44 @@
// See the file "COPYING" in the main distribution directory for copyright.
// Methods for managing Zeek function variables.
//
// This file is included by Compile.h to insert into the ZAMCompiler class.
bool IsUnused(const IDPtr& id, const Stmt* where) const;
bool IsCapture(const IDPtr& id) const { return IsCapture(id.get()); }
bool IsCapture(const ID* id) const;
int CaptureOffset(const IDPtr& id) const { return IsCapture(id.get()); }
int CaptureOffset(const ID* id) const;
void LoadParam(const ID* id);
const ZAMStmt LoadGlobal(const ID* id);
const ZAMStmt LoadCapture(const ID* id);
int AddToFrame(const ID*);
int FrameSlot(const IDPtr& id) { return FrameSlot(id.get()); }
int FrameSlot(const ID* id);
int FrameSlotIfName(const Expr* e) {
auto n = e->Tag() == EXPR_NAME ? e->AsNameExpr() : nullptr;
return n ? FrameSlot(n->Id()) : -1;
}
int FrameSlot(const NameExpr* id) { return FrameSlot(id->AsNameExpr()->Id()); }
int Frame1Slot(const NameExpr* id, ZOp op) { return Frame1Slot(id->AsNameExpr()->Id(), op); }
int Frame1Slot(const ID* id, ZOp op) { return Frame1Slot(id, op1_flavor[op]); }
int Frame1Slot(const NameExpr* n, ZAMOp1Flavor fl) { return Frame1Slot(n->Id(), fl); }
int Frame1Slot(const ID* id, ZAMOp1Flavor fl);
// The slot without doing any global-related checking.
int RawSlot(const NameExpr* n) { return RawSlot(n->Id()); }
int RawSlot(const ID* id);
bool HasFrameSlot(const ID* id) const;
int NewSlot(const TypePtr& t) { return NewSlot(ZVal::IsManagedType(t)); }
int NewSlot(bool is_managed);
int TempForConst(const ConstExpr* c);