methods implementing AST optimization (aliasing, constant propagation, CSE)

This commit is contained in:
Vern Paxson 2021-02-27 11:36:15 -08:00
parent 34ccd3e417
commit 77f04935a8
2 changed files with 720 additions and 74 deletions

View file

@ -20,6 +20,7 @@ public:
StmtPtr Reduce(StmtPtr s)
{
reduction_root = s;
return s->Reduce(this);
}
@ -63,7 +64,7 @@ public:
void PushBifurcation() { ++bifurcation_level; }
void PopBifurcation() { --bifurcation_level; }
int NumTemps() const { return temps.length(); }
int NumTemps() const { return temps.size(); }
// True if this name already reflects the replacement.
bool IsNewLocal(const NameExpr* n) const
@ -118,45 +119,94 @@ public:
replaced_stmts.clear();
}
// NOT YET IMPLEMENTED, SO CURRENTLY A STUB:
// Given the LHS and RHS of an assignment, returns true
// if the RHS is a common subexpression (meaning that the
// current assignment statement should be deleted). In
// that case, has the side effect of associating an alias
// for the LHS with the temporary holding the equivalent RHS.
// for the LHS with the temporary variable that holds the
// equivalent RHS.
//
// Assumes reduction (including alias propagation) has
// already been applied.
bool IsCSE(const AssignExpr* a, const NameExpr* lhs, const Expr* rhs)
{ return false; }
bool IsCSE(const AssignExpr* a, const NameExpr* lhs, const Expr* rhs);
// Given an lhs=rhs statement followed by succ_stmt, returns
// a (new) merge of the two if they're of the form tmp=rhs, var=tmp;
// otherwise, nil.
StmtPtr MergeStmts(const NameExpr* lhs, ExprPtr rhs, Stmt* succ_stmt);
// The following two methods will, in the future, update expressions
// with optimized versions. They are distinct because the first
// one (meant for calls in a Stmt reduction context) will also Reduce
// the expression, whereas the second one (meant for calls in an Expr
// context) does not, to avoid circularity.
//
// For now, they are stubs.
//
// These two are used for use in optimizing expressions that appear in
// a Stmt context.
ExprPtr OptExpr(Expr* e) { return {NewRef{}, e}; }
ExprPtr OptExpr(ExprPtr e) { return e; }
// This one for expressions appearing in an Expr context.
ExprPtr UpdateExpr(ExprPtr e) { return e; }
// Update expressions with optimized versions. They are distinct
// because the first two (meant for calls in a Stmt reduction
// context) will also Reduce the expression, whereas the last
// one (meant for calls in an Expr context) does not, to avoid
// circularity.
ExprPtr OptExpr(Expr* e);
ExprPtr OptExpr(ExprPtr e)
{ return OptExpr(e.get()); }
const Scope* FuncScope() const { return scope; }
// This one for expressions appearing in an Expr context.
ExprPtr UpdateExpr(ExprPtr e);
protected:
// True if two Val's refer to the same underlying value. We gauge
// this conservatively (i.e., for complicated values we just return
// false, even if with a lot of work we could establish that they
// are in fact equivalent.)
bool SameVal(const Val* v1, const Val* v2) const;
// Track that the variable "var", which has the given set of
// definition points, will be a replacement for the "orig"
// expression. Returns the replacement expression (which is
// is just a NameExpr referring to "var").
ExprPtr NewVarUsage(IDPtr var, const DefPoints* dps, const Expr* orig);
// Returns the definition points associated with "var". If none
// exist in our cache, then populates the cache.
const DefPoints* GetDefPoints(const NameExpr* var);
// Retrieve the definition points associated in our cache with the
// given variable, if any.
const DefPoints* FindDefPoints(const NameExpr* var) const;
// Adds a mapping in our cache of the given variable to the given
// set of definition points.
void SetDefPoints(const NameExpr* var, const DefPoints* dps);
// Returns true if op1 and op2 represent the same operand, given
// the reaching definitions available at their usages (e1 and e2).
bool SameOp(const Expr* op1, const Expr* op2);
bool SameOp(const ExprPtr& op1, const ExprPtr& op2)
{ return SameOp(op1.get(), op2.get()); }
// True if e1 and e2 reflect identical expressions in the context
// of using a value computed for one of them in lieu of computing
// the other. (Thus, for example, two record construction expressions
// are never equivalent even if they both specify exactly the same
// record elements, because each invocation of the expression produces
// a distinct value.)
bool SameExpr(const Expr* e1, const Expr* e2);
// Finds a temporary, if any, whose RHS matches the given "rhs", using
// the reaching defs associated with the assignment "a". The context
// is that "rhs" is currently being assigned to temporary "lhs_tmp"
// (nil if the assignment isn't to a temporary), and we're wondering
// whether we can skip that assignment because we already have the
// exact same value available in a previously assigned temporary.
IDPtr FindExprTmp(const Expr* rhs, const Expr* a,
const std::shared_ptr<const TempVar>& lhs_tmp);
// Tests whether an expression computed at e1 (and assigned to "id")
// remains valid for substitution at e2.
bool ExprValid(const ID* id, const Expr* e1, const Expr* e2) const;
// Inspects the given expression for identifiers, adding any
// observed to the given vector. Assumes reduced form, so only
// NameExpr's and ListExpr's are of interest - does not traverse
// into compound expressions.
void CheckIDs(const Expr* e, std::vector<const ID*>& ids) const;
IDPtr GenTemporary(const TypePtr& t, ExprPtr rhs);
TempVar* FindTemporary(const ID* id) const;
std::shared_ptr<TempVar> FindTemporary(const ID* id) const;
// Retrieve the identifier corresponding to the new local for
// the given expression. Creates the local if necessary.
@ -170,27 +220,48 @@ protected:
// for the current function.
IDPtr GenLocal(const IDPtr& orig);
// This is the heart of constant propagation. Given an identifier
// and a set of definition points for it, if its value is constant
// then returns the corresponding ConstExpr with the value.
const ConstExpr* CheckForConst(const IDPtr& id,
const DefPoints* dps) const;
// Track that we're replacing instances of "orig" with a new
// expression. This allows us to locate the RDs associated
// with "orig" in the context of the new expression, without
// requiring an additional RD propagation pass.
void TrackExprReplacement(const Expr* orig, const Expr* e);
Scope* scope;
PList<TempVar> temps;
// Returns the object we should use to look up RD's associated
// with 'e'. (This isn't necessarily 'e' itself because we
// may have decided to replace it with a different expression,
// per TrackExprReplacement().)
const Obj* GetRDLookupObj(const Expr* e) const;
// Tracks the temporary variables created during the reduction/
// optimization process.
std::vector<std::shared_ptr<TempVar>> temps;
// Temps for which we've processed their associated expression
// (and they didn't wind up being aliases).
PList<TempVar> expr_temps;
std::vector<std::shared_ptr<const TempVar>> expr_temps;
// Let's us go from an identifier to an associated temporary
// Lets us go from an identifier to an associated temporary
// variable, if it corresponds to one.
std::unordered_map<const ID*, TempVar*> ids_to_temps;
std::unordered_map<const ID*, std::shared_ptr<TempVar>> ids_to_temps;
// Local variables created during reduction/optimization.
std::unordered_set<ID*> new_locals;
// Mapping of original identifiers to new locals. Used to
// rename local variables when inlining.
std::unordered_map<const ID*, IDPtr> orig_to_new_locals;
// Which statements to elide from the AST (because optimization
// has determined they're no longer needed).
std::unordered_set<const Stmt*> omitted_stmts;
// Maps statements to replacements constructed during optimization.
std::unordered_map<const Stmt*, StmtPtr> replaced_stmts;
// Tracks whether we're inside an inline block, and if so then
@ -203,6 +274,12 @@ protected:
// exponentially.
int bifurcation_level = 0;
// For a given usage of a variable's value, return the definition
// points associated with its use at that point. We use this
// both as a cache (populating it every time we do a more laborious
// lookup), and proactively when creating new references to variables.
std::unordered_map<const NameExpr*, const DefPoints*> var_usage_to_DPs;
// Tracks which (non-temporary) variables had constant
// values used for constant propagation.
std::unordered_set<const ID*> constant_vars;
@ -212,6 +289,9 @@ protected:
// with the usage.
std::unordered_map<const Expr*, const Expr*> new_expr_to_orig;
// Statement at which the current reduction started.
StmtPtr reduction_root = nullptr;
const DefSetsMgr* mgr = nullptr;
};