mirror of
https://github.com/zeek/zeek.git
synced 2025-10-09 10:08:20 +00:00
Refactor HashKey class to support read/write operations
This preserves the optimization of storing values directly in the key_u member union when feasible, and using a variable size buffer otherwise. It also adds bounds-checking for that buffer, moves size arguments to size_t, decouples construction from hash computation, emulates the tagging feature found in SerializationFormat to assist troubleshooting, and switches feasible reinterpret_casts to static_casts.
This commit is contained in:
parent
2585ccd873
commit
82822b1e07
2 changed files with 427 additions and 83 deletions
384
src/Hash.cc
384
src/Hash.cc
|
@ -64,39 +64,39 @@ void KeyedHash::InitOptions()
|
|||
|
||||
hash64_t KeyedHash::Hash64(const void* bytes, uint64_t size)
|
||||
{
|
||||
return highwayhash::SipHash(shared_siphash_key, reinterpret_cast<const char*>(bytes), size);
|
||||
return highwayhash::SipHash(shared_siphash_key, static_cast<const char*>(bytes), size);
|
||||
}
|
||||
|
||||
void KeyedHash::Hash128(const void* bytes, uint64_t size, hash128_t* result)
|
||||
{
|
||||
highwayhash::InstructionSets::Run<highwayhash::HighwayHash>(
|
||||
shared_highwayhash_key, reinterpret_cast<const char*>(bytes), size, result);
|
||||
shared_highwayhash_key, static_cast<const char*>(bytes), size, result);
|
||||
}
|
||||
|
||||
void KeyedHash::Hash256(const void* bytes, uint64_t size, hash256_t* result)
|
||||
{
|
||||
highwayhash::InstructionSets::Run<highwayhash::HighwayHash>(
|
||||
shared_highwayhash_key, reinterpret_cast<const char*>(bytes), size, result);
|
||||
shared_highwayhash_key, static_cast<const char*>(bytes), size, result);
|
||||
}
|
||||
|
||||
hash64_t KeyedHash::StaticHash64(const void* bytes, uint64_t size)
|
||||
{
|
||||
hash64_t result = 0;
|
||||
highwayhash::InstructionSets::Run<highwayhash::HighwayHash>(
|
||||
cluster_highwayhash_key, reinterpret_cast<const char*>(bytes), size, &result);
|
||||
cluster_highwayhash_key, static_cast<const char*>(bytes), size, &result);
|
||||
return result;
|
||||
}
|
||||
|
||||
void KeyedHash::StaticHash128(const void* bytes, uint64_t size, hash128_t* result)
|
||||
{
|
||||
highwayhash::InstructionSets::Run<highwayhash::HighwayHash>(
|
||||
cluster_highwayhash_key, reinterpret_cast<const char*>(bytes), size, result);
|
||||
cluster_highwayhash_key, static_cast<const char*>(bytes), size, result);
|
||||
}
|
||||
|
||||
void KeyedHash::StaticHash256(const void* bytes, uint64_t size, hash256_t* result)
|
||||
{
|
||||
highwayhash::InstructionSets::Run<highwayhash::HighwayHash>(
|
||||
cluster_highwayhash_key, reinterpret_cast<const char*>(bytes), size, result);
|
||||
cluster_highwayhash_key, static_cast<const char*>(bytes), size, result);
|
||||
}
|
||||
|
||||
void init_hash_function()
|
||||
|
@ -106,111 +106,101 @@ void init_hash_function()
|
|||
reporter->InternalError("Zeek's hash functions aren't fully initialized");
|
||||
}
|
||||
|
||||
HashKey::HashKey(bro_int_t i)
|
||||
HashKey::HashKey(bool b)
|
||||
{
|
||||
key_u.i = i;
|
||||
key = (void*)&key_u;
|
||||
size = sizeof(i);
|
||||
hash = HashBytes(key, size);
|
||||
Set(b);
|
||||
}
|
||||
|
||||
HashKey::HashKey(bro_uint_t u)
|
||||
HashKey::HashKey(int i)
|
||||
{
|
||||
key_u.i = bro_int_t(u);
|
||||
key = (void*)&key_u;
|
||||
size = sizeof(u);
|
||||
hash = HashBytes(key, size);
|
||||
Set(i);
|
||||
}
|
||||
|
||||
HashKey::HashKey(bro_int_t bi)
|
||||
{
|
||||
Set(bi);
|
||||
}
|
||||
|
||||
HashKey::HashKey(bro_uint_t bu)
|
||||
{
|
||||
Set(bu);
|
||||
}
|
||||
|
||||
HashKey::HashKey(uint32_t u)
|
||||
{
|
||||
key_u.u32 = u;
|
||||
key = (void*)&key_u;
|
||||
size = sizeof(u);
|
||||
hash = HashBytes(key, size);
|
||||
Set(u);
|
||||
}
|
||||
|
||||
HashKey::HashKey(const uint32_t u[], int n)
|
||||
HashKey::HashKey(const uint32_t u[], size_t n)
|
||||
{
|
||||
size = n * sizeof(u[0]);
|
||||
key = (void*)u;
|
||||
hash = HashBytes(key, size);
|
||||
size = write_size = n * sizeof(u[0]);
|
||||
key = (char*)u;
|
||||
}
|
||||
|
||||
HashKey::HashKey(double d)
|
||||
{
|
||||
union {
|
||||
double d;
|
||||
int i[2];
|
||||
} u;
|
||||
|
||||
key_u.d = u.d = d;
|
||||
key = (void*)&key_u;
|
||||
size = sizeof(d);
|
||||
hash = HashBytes(key, size);
|
||||
Set(d);
|
||||
}
|
||||
|
||||
HashKey::HashKey(const void* p)
|
||||
{
|
||||
key_u.p = p;
|
||||
key = (void*)&key_u;
|
||||
size = sizeof(p);
|
||||
hash = HashBytes(key, size);
|
||||
Set(p);
|
||||
}
|
||||
|
||||
HashKey::HashKey(const char* s)
|
||||
{
|
||||
size = strlen(s); // note - skip final \0
|
||||
key = (void*)s;
|
||||
hash = HashBytes(key, size);
|
||||
size = write_size = strlen(s); // note - skip final \0
|
||||
key = (char*)s;
|
||||
}
|
||||
|
||||
HashKey::HashKey(const String* s)
|
||||
{
|
||||
size = s->Len();
|
||||
key = (void*)s->Bytes();
|
||||
hash = HashBytes(key, size);
|
||||
size = write_size = s->Len();
|
||||
key = (char*)s->Bytes();
|
||||
}
|
||||
|
||||
HashKey::HashKey(int copy_key, void* arg_key, int arg_size)
|
||||
HashKey::HashKey(int copy_key, void* arg_key, size_t arg_size)
|
||||
{
|
||||
size = arg_size;
|
||||
is_our_dynamic = true;
|
||||
size = write_size = arg_size;
|
||||
|
||||
if ( copy_key )
|
||||
{
|
||||
key = (void*)new char[size];
|
||||
key = new char[size]; // s == 0 is okay, returns non-nil
|
||||
memcpy(key, arg_key, size);
|
||||
}
|
||||
else
|
||||
key = arg_key;
|
||||
|
||||
hash = HashBytes(key, size);
|
||||
key = (char*)arg_key;
|
||||
}
|
||||
|
||||
HashKey::HashKey(const void* arg_key, int arg_size, hash_t arg_hash)
|
||||
HashKey::HashKey(const void* arg_key, size_t arg_size, hash_t arg_hash)
|
||||
{
|
||||
size = arg_size;
|
||||
size = write_size = arg_size;
|
||||
hash = arg_hash;
|
||||
key = CopyKey(arg_key, size);
|
||||
key = CopyKey((char*)arg_key, size);
|
||||
is_our_dynamic = true;
|
||||
}
|
||||
|
||||
HashKey::HashKey(const void* arg_key, int arg_size, hash_t arg_hash, bool /* dont_copy */)
|
||||
HashKey::HashKey(const void* arg_key, size_t arg_size, hash_t arg_hash, bool /* dont_copy */)
|
||||
{
|
||||
size = arg_size;
|
||||
size = write_size = arg_size;
|
||||
hash = arg_hash;
|
||||
key = const_cast<void*>(arg_key);
|
||||
key = (char*)arg_key;
|
||||
}
|
||||
|
||||
HashKey::HashKey(const void* bytes, int arg_size)
|
||||
HashKey::HashKey(const void* bytes, size_t arg_size)
|
||||
{
|
||||
size = arg_size;
|
||||
key = CopyKey(bytes, size);
|
||||
hash = HashBytes(key, size);
|
||||
size = write_size = arg_size;
|
||||
key = CopyKey((char*)bytes, size);
|
||||
is_our_dynamic = true;
|
||||
}
|
||||
|
||||
hash_t HashKey::Hash() const
|
||||
{
|
||||
if ( hash == 0 )
|
||||
hash = HashBytes(key, size);
|
||||
return hash;
|
||||
}
|
||||
|
||||
void* HashKey::TakeKey()
|
||||
{
|
||||
if ( is_our_dynamic )
|
||||
|
@ -222,16 +212,284 @@ void* HashKey::TakeKey()
|
|||
return CopyKey(key, size);
|
||||
}
|
||||
|
||||
void* HashKey::CopyKey(const void* k, int s) const
|
||||
char* HashKey::CopyKey(const char* k, size_t s) const
|
||||
{
|
||||
void* k_copy = (void*)new char[s];
|
||||
char* k_copy = new char[s]; // s == 0 is okay, returns non-nil
|
||||
memcpy(k_copy, k, s);
|
||||
return k_copy;
|
||||
}
|
||||
|
||||
hash_t HashKey::HashBytes(const void* bytes, int size)
|
||||
hash_t HashKey::HashBytes(const void* bytes, size_t size)
|
||||
{
|
||||
return KeyedHash::Hash64(bytes, size);
|
||||
}
|
||||
|
||||
void HashKey::Set(bool b)
|
||||
{
|
||||
key_u.b = b;
|
||||
key = reinterpret_cast<char*>(&key_u);
|
||||
size = write_size = sizeof(b);
|
||||
}
|
||||
|
||||
void HashKey::Set(int i)
|
||||
{
|
||||
key_u.i = i;
|
||||
key = reinterpret_cast<char*>(&key_u);
|
||||
size = write_size = sizeof(i);
|
||||
}
|
||||
|
||||
void HashKey::Set(bro_int_t bi)
|
||||
{
|
||||
key_u.bi = bi;
|
||||
key = reinterpret_cast<char*>(&key_u);
|
||||
size = write_size = sizeof(bi);
|
||||
}
|
||||
|
||||
void HashKey::Set(bro_uint_t bu)
|
||||
{
|
||||
key_u.bi = bro_int_t(bu);
|
||||
key = reinterpret_cast<char*>(&key_u);
|
||||
size = write_size = sizeof(bu);
|
||||
}
|
||||
|
||||
void HashKey::Set(uint32_t u)
|
||||
{
|
||||
key_u.u32 = u;
|
||||
key = reinterpret_cast<char*>(&key_u);
|
||||
size = write_size = sizeof(u);
|
||||
}
|
||||
|
||||
void HashKey::Set(double d)
|
||||
{
|
||||
key_u.d = d;
|
||||
key = reinterpret_cast<char*>(&key_u);
|
||||
size = write_size = sizeof(d);
|
||||
}
|
||||
|
||||
void HashKey::Set(const void* p)
|
||||
{
|
||||
key_u.p = p;
|
||||
key = reinterpret_cast<char*>(&key_u);
|
||||
size = write_size = sizeof(p);
|
||||
}
|
||||
|
||||
void HashKey::Reserve(const char* tag, size_t addl_size, size_t alignment)
|
||||
{
|
||||
ASSERT(! IsAllocated());
|
||||
size_t s0 = size;
|
||||
size_t s1 = util::memory_size_align(size, alignment);
|
||||
size = s1 + addl_size;
|
||||
}
|
||||
|
||||
void HashKey::Allocate()
|
||||
{
|
||||
if ( key != nullptr and key != reinterpret_cast<char*>(&key_u) )
|
||||
{
|
||||
reporter->InternalWarning("usage error in HashKey::Allocate(): already allocated");
|
||||
return;
|
||||
}
|
||||
|
||||
is_our_dynamic = true;
|
||||
key = reinterpret_cast<char*>(new double[size / sizeof(double) + 1]);
|
||||
|
||||
read_size = 0;
|
||||
write_size = 0;
|
||||
}
|
||||
|
||||
void HashKey::Write(const char* tag, bool b)
|
||||
{
|
||||
Write(tag, &b, sizeof(b), 0);
|
||||
}
|
||||
|
||||
void HashKey::Write(const char* tag, int i, bool align)
|
||||
{
|
||||
if ( ! IsAllocated() )
|
||||
{
|
||||
Set(i);
|
||||
return;
|
||||
}
|
||||
|
||||
Write(tag, &i, sizeof(i), align ? sizeof(i) : 0);
|
||||
}
|
||||
|
||||
void HashKey::Write(const char* tag, bro_int_t bi, bool align)
|
||||
{
|
||||
if ( ! IsAllocated() )
|
||||
{
|
||||
Set(bi);
|
||||
return;
|
||||
}
|
||||
|
||||
Write(tag, &bi, sizeof(bi), align ? sizeof(bi) : 0);
|
||||
}
|
||||
|
||||
void HashKey::Write(const char* tag, bro_uint_t bu, bool align)
|
||||
{
|
||||
if ( ! IsAllocated() )
|
||||
{
|
||||
Set(bu);
|
||||
return;
|
||||
}
|
||||
|
||||
Write(tag, &bu, sizeof(bu), align ? sizeof(bu) : 0);
|
||||
}
|
||||
|
||||
void HashKey::Write(const char* tag, uint32_t u, bool align)
|
||||
{
|
||||
if ( ! IsAllocated() )
|
||||
{
|
||||
Set(u);
|
||||
return;
|
||||
}
|
||||
|
||||
Write(tag, &u, sizeof(u), align ? sizeof(u) : 0);
|
||||
}
|
||||
|
||||
void HashKey::Write(const char* tag, double d, bool align)
|
||||
{
|
||||
if ( ! IsAllocated() )
|
||||
{
|
||||
Set(d);
|
||||
return;
|
||||
}
|
||||
|
||||
Write(tag, &d, sizeof(d), align ? sizeof(d) : 0);
|
||||
}
|
||||
|
||||
void HashKey::Write(const char* tag, const void* bytes, size_t n, size_t alignment)
|
||||
{
|
||||
AlignWrite(alignment);
|
||||
EnsureWriteSpace(n);
|
||||
|
||||
memcpy(key + write_size, bytes, n);
|
||||
write_size += n;
|
||||
|
||||
DBG_LOG(DBG_HASHKEY, "HashKey %p writing %lu/%lu: %lu -> %lu -> %lu [%s]", this, n, alignment,
|
||||
s0, s1, write_size, tag);
|
||||
}
|
||||
|
||||
void HashKey::SkipWrite(const char* tag, size_t n)
|
||||
{
|
||||
EnsureWriteSpace(n);
|
||||
write_size += n;
|
||||
}
|
||||
|
||||
void HashKey::AlignWrite(size_t alignment)
|
||||
{
|
||||
ASSERT(IsAllocated());
|
||||
|
||||
if ( alignment == 0 )
|
||||
return;
|
||||
|
||||
size_t old_size = write_size;
|
||||
|
||||
write_size = util::memory_size_align(write_size, alignment);
|
||||
|
||||
if ( write_size > size )
|
||||
reporter->InternalError("buffer overflow in HashKey::AlignWrite(): "
|
||||
"after alignment, %lu bytes used of %lu allocated",
|
||||
write_size, size);
|
||||
|
||||
while ( old_size < write_size )
|
||||
key[old_size++] = '\0';
|
||||
}
|
||||
|
||||
void HashKey::AlignRead(size_t alignment) const
|
||||
{
|
||||
ASSERT(IsAllocated());
|
||||
|
||||
if ( alignment == 0 )
|
||||
return;
|
||||
|
||||
int old_size = read_size;
|
||||
|
||||
read_size = util::memory_size_align(read_size, alignment);
|
||||
|
||||
if ( read_size > size )
|
||||
reporter->InternalError("buffer overflow in HashKey::AlignRead(): "
|
||||
"after alignment, %lu bytes used of %lu allocated",
|
||||
read_size, size);
|
||||
}
|
||||
|
||||
void HashKey::Read(const char* tag, bool& b) const
|
||||
{
|
||||
Read(tag, &b, sizeof(b), 0);
|
||||
}
|
||||
|
||||
void HashKey::Read(const char* tag, int& i, bool align) const
|
||||
{
|
||||
Read(tag, &i, sizeof(i), align ? sizeof(i) : 0);
|
||||
}
|
||||
|
||||
void HashKey::Read(const char* tag, bro_int_t& i, bool align) const
|
||||
{
|
||||
Read(tag, &i, sizeof(i), align ? sizeof(i) : 0);
|
||||
}
|
||||
|
||||
void HashKey::Read(const char* tag, bro_uint_t& u, bool align) const
|
||||
{
|
||||
Read(tag, &u, sizeof(u), align ? sizeof(u) : 0);
|
||||
}
|
||||
|
||||
void HashKey::Read(const char* tag, uint32_t& u, bool align) const
|
||||
{
|
||||
Read(tag, &u, sizeof(u), align ? sizeof(u) : 0);
|
||||
}
|
||||
|
||||
void HashKey::Read(const char* tag, double& d, bool align) const
|
||||
{
|
||||
Read(tag, &d, sizeof(d), align ? sizeof(d) : 0);
|
||||
}
|
||||
|
||||
void HashKey::Read(const char* tag, void* out, size_t n, size_t alignment) const
|
||||
{
|
||||
AlignRead(alignment);
|
||||
EnsureReadSpace(n);
|
||||
|
||||
// In case out is nil, make sure nothing is to be read, and only memcpy
|
||||
// when there is a non-zero amount. Memory checkers don't nullpointers
|
||||
// in memcpy even if the size is 0.
|
||||
ASSERT(out != nullptr || (out == nullptr && n == 0));
|
||||
|
||||
if ( n > 0 )
|
||||
{
|
||||
memcpy(out, key + read_size, n);
|
||||
read_size += n;
|
||||
}
|
||||
}
|
||||
|
||||
void HashKey::SkipRead(const char* tag, size_t n) const
|
||||
{
|
||||
EnsureReadSpace(n);
|
||||
read_size += n;
|
||||
}
|
||||
|
||||
void HashKey::EnsureWriteSpace(size_t n) const
|
||||
{
|
||||
if ( n == 0 )
|
||||
return;
|
||||
|
||||
if ( ! IsAllocated() )
|
||||
reporter->InternalError("usage error in HashKey::EnsureWriteSpace(): "
|
||||
"size-checking unreserved buffer");
|
||||
if ( write_size + n > size )
|
||||
reporter->InternalError("buffer overflow in HashKey::Write(): writing %lu "
|
||||
"bytes with %lu remaining",
|
||||
n, size - write_size);
|
||||
}
|
||||
|
||||
void HashKey::EnsureReadSpace(size_t n) const
|
||||
{
|
||||
if ( n == 0 )
|
||||
return;
|
||||
|
||||
if ( ! IsAllocated() )
|
||||
reporter->InternalError("usage error in HashKey::EnsureReadSpace(): "
|
||||
"size-checking unreserved buffer");
|
||||
if ( read_size + n > size )
|
||||
reporter->InternalError("buffer overflow in HashKey::EnsureReadSpace(): reading %lu "
|
||||
"bytes with %lu remaining",
|
||||
n, size - read_size);
|
||||
}
|
||||
|
||||
} // namespace zeek::detail
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue