Reformat Zeek in Spicy style

This largely copies over Spicy's `.clang-format` configuration file. The
one place where we deviate is header include order since Zeek depends on
headers being included in a certain order.
This commit is contained in:
Benjamin Bannier 2023-10-10 21:13:34 +02:00
parent 7b8e7ed72c
commit f5a76c1aed
786 changed files with 131714 additions and 153609 deletions

View file

@ -20,402 +20,353 @@
#include <openssl/core_names.h>
#endif
namespace zeek::analyzer::ssl
{
namespace zeek::analyzer::ssl {
template <typename T> static inline T MSB(const T a)
{
return ((a >> 8) & 0xff);
}
template<typename T>
static inline T MSB(const T a) {
return ((a >> 8) & 0xff);
}
template <typename T> static inline T LSB(const T a)
{
return (a & 0xff);
}
template<typename T>
static inline T LSB(const T a) {
return (a & 0xff);
}
static std::basic_string<unsigned char> fmt_seq(uint32_t num)
{
std::basic_string<unsigned char> out(4, '\0');
out.reserve(13);
uint32_t netnum = htonl(num);
out.append(reinterpret_cast<u_char*>(&netnum), 4);
out.append(5, '\0');
return out;
}
static std::basic_string<unsigned char> fmt_seq(uint32_t num) {
std::basic_string<unsigned char> out(4, '\0');
out.reserve(13);
uint32_t netnum = htonl(num);
out.append(reinterpret_cast<u_char*>(&netnum), 4);
out.append(5, '\0');
return out;
}
SSL_Analyzer::SSL_Analyzer(Connection* c) : analyzer::tcp::TCP_ApplicationAnalyzer("SSL", c)
{
interp = new binpac::SSL::SSL_Conn(this);
handshake_interp = new binpac::TLSHandshake::Handshake_Conn(this);
had_gap = false;
c_seq = 0;
s_seq = 0;
pia = nullptr;
}
SSL_Analyzer::SSL_Analyzer(Connection* c) : analyzer::tcp::TCP_ApplicationAnalyzer("SSL", c) {
interp = new binpac::SSL::SSL_Conn(this);
handshake_interp = new binpac::TLSHandshake::Handshake_Conn(this);
had_gap = false;
c_seq = 0;
s_seq = 0;
pia = nullptr;
}
SSL_Analyzer::~SSL_Analyzer()
{
delete interp;
delete handshake_interp;
}
SSL_Analyzer::~SSL_Analyzer() {
delete interp;
delete handshake_interp;
}
void SSL_Analyzer::Done()
{
analyzer::tcp::TCP_ApplicationAnalyzer::Done();
void SSL_Analyzer::Done() {
analyzer::tcp::TCP_ApplicationAnalyzer::Done();
interp->FlowEOF(true);
interp->FlowEOF(false);
handshake_interp->FlowEOF(true);
handshake_interp->FlowEOF(false);
}
interp->FlowEOF(true);
interp->FlowEOF(false);
handshake_interp->FlowEOF(true);
handshake_interp->FlowEOF(false);
}
void SSL_Analyzer::EndpointEOF(bool is_orig)
{
analyzer::tcp::TCP_ApplicationAnalyzer::EndpointEOF(is_orig);
interp->FlowEOF(is_orig);
handshake_interp->FlowEOF(is_orig);
}
void SSL_Analyzer::EndpointEOF(bool is_orig) {
analyzer::tcp::TCP_ApplicationAnalyzer::EndpointEOF(is_orig);
interp->FlowEOF(is_orig);
handshake_interp->FlowEOF(is_orig);
}
void SSL_Analyzer::StartEncryption()
{
interp->startEncryption(true);
interp->startEncryption(false);
interp->setEstablished();
}
void SSL_Analyzer::StartEncryption() {
interp->startEncryption(true);
interp->startEncryption(false);
interp->setEstablished();
}
uint16_t SSL_Analyzer::GetNegotiatedVersion() const
{
return handshake_interp->chosen_version();
}
uint16_t SSL_Analyzer::GetNegotiatedVersion() const { return handshake_interp->chosen_version(); }
void SSL_Analyzer::DeliverStream(int len, const u_char* data, bool orig)
{
analyzer::tcp::TCP_ApplicationAnalyzer::DeliverStream(len, data, orig);
void SSL_Analyzer::DeliverStream(int len, const u_char* data, bool orig) {
analyzer::tcp::TCP_ApplicationAnalyzer::DeliverStream(len, data, orig);
// We purposefully accept protocols other than TCP here. SSL/TLS are a bit special;
// they are wrapped in a lot of other protocols. Some of them are UDP based - and provide
// their own reassembly on top of UDP.
if ( TCP() && TCP()->IsPartial() )
return;
// We purposefully accept protocols other than TCP here. SSL/TLS are a bit special;
// they are wrapped in a lot of other protocols. Some of them are UDP based - and provide
// their own reassembly on top of UDP.
if ( TCP() && TCP()->IsPartial() )
return;
if ( had_gap )
// If only one side had a content gap, we could still try to
// deliver data to the other side if the script layer can handle this.
return;
if ( had_gap )
// If only one side had a content gap, we could still try to
// deliver data to the other side if the script layer can handle this.
return;
try
{
interp->NewData(orig, data, data + len);
}
catch ( const binpac::Exception& e )
{
AnalyzerViolation(util::fmt("Binpac exception: %s", e.c_msg()));
}
}
try {
interp->NewData(orig, data, data + len);
} catch ( const binpac::Exception& e ) {
AnalyzerViolation(util::fmt("Binpac exception: %s", e.c_msg()));
}
}
void SSL_Analyzer::SendHandshake(uint16_t raw_tls_version, const u_char* begin, const u_char* end,
bool orig)
{
handshake_interp->set_record_version(raw_tls_version);
try
{
handshake_interp->NewData(orig, begin, end);
}
catch ( const binpac::Exception& e )
{
AnalyzerViolation(util::fmt("Binpac exception: %s", e.c_msg()));
}
}
void SSL_Analyzer::SendHandshake(uint16_t raw_tls_version, const u_char* begin, const u_char* end, bool orig) {
handshake_interp->set_record_version(raw_tls_version);
try {
handshake_interp->NewData(orig, begin, end);
} catch ( const binpac::Exception& e ) {
AnalyzerViolation(util::fmt("Binpac exception: %s", e.c_msg()));
}
}
void SSL_Analyzer::Undelivered(uint64_t seq, int len, bool orig)
{
analyzer::tcp::TCP_ApplicationAnalyzer::Undelivered(seq, len, orig);
had_gap = true;
interp->NewGap(orig, len);
}
void SSL_Analyzer::Undelivered(uint64_t seq, int len, bool orig) {
analyzer::tcp::TCP_ApplicationAnalyzer::Undelivered(seq, len, orig);
had_gap = true;
interp->NewGap(orig, len);
}
void SSL_Analyzer::SetSecret(const zeek::StringVal& secret)
{
SetSecret(secret.Len(), secret.Bytes());
}
void SSL_Analyzer::SetSecret(const zeek::StringVal& secret) { SetSecret(secret.Len(), secret.Bytes()); }
void SSL_Analyzer::SetSecret(size_t len, const u_char* data)
{
secret.clear();
secret.append((const char*)data, len);
}
void SSL_Analyzer::SetSecret(size_t len, const u_char* data) {
secret.clear();
secret.append((const char*)data, len);
}
void SSL_Analyzer::SetKeys(const zeek::StringVal& nkeys)
{
keys.clear();
keys.reserve(nkeys.Len());
std::copy(nkeys.Bytes(), nkeys.Bytes() + nkeys.Len(), std::back_inserter(keys));
}
void SSL_Analyzer::SetKeys(const zeek::StringVal& nkeys) {
keys.clear();
keys.reserve(nkeys.Len());
std::copy(nkeys.Bytes(), nkeys.Bytes() + nkeys.Len(), std::back_inserter(keys));
}
void SSL_Analyzer::SetKeys(const std::vector<u_char> newkeys)
{
keys = std::move(newkeys);
}
void SSL_Analyzer::SetKeys(const std::vector<u_char> newkeys) { keys = std::move(newkeys); }
std::optional<std::vector<u_char>>
SSL_Analyzer::TLS12_PRF(const std::string& secret, const std::string& label,
const std::string& rnd1, const std::string& rnd2, size_t requested_len)
{
std::optional<std::vector<u_char>> SSL_Analyzer::TLS12_PRF(const std::string& secret, const std::string& label,
const std::string& rnd1, const std::string& rnd2,
size_t requested_len) {
#ifdef OPENSSL_HAVE_KDF_H
#if defined(OPENSSL_VERSION_MAJOR) && (OPENSSL_VERSION_MAJOR >= 3)
// alloc context + params
EVP_KDF* kdf = EVP_KDF_fetch(NULL, "TLS1-PRF", NULL);
EVP_KDF_CTX* kctx = EVP_KDF_CTX_new(kdf);
OSSL_PARAM params[4], *p = params;
EVP_KDF_free(kdf);
#else /* OSSL 3 */
// alloc buffers
EVP_PKEY_CTX* pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_TLS1_PRF, NULL);
// alloc context + params
EVP_KDF* kdf = EVP_KDF_fetch(NULL, "TLS1-PRF", NULL);
EVP_KDF_CTX* kctx = EVP_KDF_CTX_new(kdf);
OSSL_PARAM params[4], *p = params;
EVP_KDF_free(kdf);
#else /* OSSL 3 */
// alloc buffers
EVP_PKEY_CTX* pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_TLS1_PRF, NULL);
#endif /* OSSL 3 */
// prepare seed: seed = label + rnd1 + rnd2
std::string seed{};
seed.reserve(label.size() + rnd1.size() + rnd2.size());
// prepare seed: seed = label + rnd1 + rnd2
std::string seed{};
seed.reserve(label.size() + rnd1.size() + rnd2.size());
seed.append(label);
seed.append(rnd1);
seed.append(rnd2);
seed.append(label);
seed.append(rnd1);
seed.append(rnd2);
#if defined(OPENSSL_VERSION_MAJOR) && (OPENSSL_VERSION_MAJOR >= 3)
// setup OSSL_PARAM array: digest, secret, seed
// FIXME: sha384 should not be hardcoded
// The const-cast is a bit ugly - but otherwise we have to copy the static string.
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, const_cast<char*>(SN_sha384), 0);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SECRET, (void*)secret.data(),
secret.size());
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, (void*)seed.data(), seed.size());
*p = OSSL_PARAM_construct_end();
// setup OSSL_PARAM array: digest, secret, seed
// FIXME: sha384 should not be hardcoded
// The const-cast is a bit ugly - but otherwise we have to copy the static string.
*p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, const_cast<char*>(SN_sha384), 0);
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SECRET, (void*)secret.data(), secret.size());
*p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, (void*)seed.data(), seed.size());
*p = OSSL_PARAM_construct_end();
auto keybuf = std::vector<u_char>(requested_len);
auto keybuf = std::vector<u_char>(requested_len);
// set OSSL params
if ( EVP_KDF_CTX_set_params(kctx, params) <= 0 )
goto abort;
// derive key material
if ( EVP_KDF_derive(kctx, keybuf.data(), requested_len, nullptr) <= 0 )
goto abort;
// set OSSL params
if ( EVP_KDF_CTX_set_params(kctx, params) <= 0 )
goto abort;
// derive key material
if ( EVP_KDF_derive(kctx, keybuf.data(), requested_len, nullptr) <= 0 )
goto abort;
EVP_KDF_CTX_free(kctx);
return keybuf;
EVP_KDF_CTX_free(kctx);
return keybuf;
abort:
EVP_KDF_CTX_free(kctx);
return {};
#else /* OSSL 3 */
auto keybuf = std::vector<u_char>(requested_len);
if ( EVP_PKEY_derive_init(pctx) <= 0 )
goto abort; /* Error */
// setup PKEY params: digest, secret, seed
// FIXME: sha384 should not be hardcoded
if ( EVP_PKEY_CTX_set_tls1_prf_md(pctx, EVP_sha384()) <= 0 )
goto abort; /* Error */
if ( EVP_PKEY_CTX_set1_tls1_prf_secret(pctx, secret.data(), secret.size()) <= 0 )
goto abort; /* Error */
if ( EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed.data(), seed.size()) <= 0 )
goto abort; /* Error */
if ( EVP_PKEY_derive(pctx, keybuf.data(), &requested_len) <= 0 )
goto abort; /* Error */
EVP_KDF_CTX_free(kctx);
return {};
#else /* OSSL 3 */
auto keybuf = std::vector<u_char>(requested_len);
if ( EVP_PKEY_derive_init(pctx) <= 0 )
goto abort; /* Error */
// setup PKEY params: digest, secret, seed
// FIXME: sha384 should not be hardcoded
if ( EVP_PKEY_CTX_set_tls1_prf_md(pctx, EVP_sha384()) <= 0 )
goto abort; /* Error */
if ( EVP_PKEY_CTX_set1_tls1_prf_secret(pctx, secret.data(), secret.size()) <= 0 )
goto abort; /* Error */
if ( EVP_PKEY_CTX_add1_tls1_prf_seed(pctx, seed.data(), seed.size()) <= 0 )
goto abort; /* Error */
if ( EVP_PKEY_derive(pctx, keybuf.data(), &requested_len) <= 0 )
goto abort; /* Error */
EVP_PKEY_CTX_free(pctx);
return keybuf;
EVP_PKEY_CTX_free(pctx);
return keybuf;
abort:
EVP_PKEY_CTX_free(pctx);
EVP_PKEY_CTX_free(pctx);
#endif /* OSSL 3 */
#endif /* HAVE_KDF */
return {};
}
return {};
}
bool SSL_Analyzer::TryDecryptApplicationData(int len, const u_char* data, bool is_orig,
uint8_t content_type, uint16_t raw_tls_version)
{
// Unsupported cipher suite. Currently supported:
// - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 == 0xC030
auto cipher = handshake_interp->chosen_cipher();
if ( cipher != 0xC030 )
{
DBG_LOG(DBG_ANALYZER, "Unsupported cipher suite for decryption: %d\n", cipher);
return false;
}
bool SSL_Analyzer::TryDecryptApplicationData(int len, const u_char* data, bool is_orig, uint8_t content_type,
uint16_t raw_tls_version) {
// Unsupported cipher suite. Currently supported:
// - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 == 0xC030
auto cipher = handshake_interp->chosen_cipher();
if ( cipher != 0xC030 ) {
DBG_LOG(DBG_ANALYZER, "Unsupported cipher suite for decryption: %d\n", cipher);
return false;
}
// Neither secret or key present: abort
if ( secret.size() == 0 && keys.size() == 0 )
{
DBG_LOG(
DBG_ANALYZER,
"Could not decrypt packet due to missing keys/secret. Client_random: %s\n",
util::fmt_bytes(reinterpret_cast<const char*>(handshake_interp->client_random().data()),
handshake_interp->client_random().length()));
// FIXME: change util function to return a printably std::string for DBG_LOG
// print_hex("->client_random:", handshake_interp->client_random().data(),
// handshake_interp->client_random().size());
return false;
}
// Neither secret or key present: abort
if ( secret.size() == 0 && keys.size() == 0 ) {
DBG_LOG(DBG_ANALYZER, "Could not decrypt packet due to missing keys/secret. Client_random: %s\n",
util::fmt_bytes(reinterpret_cast<const char*>(handshake_interp->client_random().data()),
handshake_interp->client_random().length()));
// FIXME: change util function to return a printably std::string for DBG_LOG
// print_hex("->client_random:", handshake_interp->client_random().data(),
// handshake_interp->client_random().size());
return false;
}
// Secret present, but no keys derived yet: derive keys
if ( secret.size() != 0 && keys.size() == 0 )
{
// Secret present, but no keys derived yet: derive keys
if ( secret.size() != 0 && keys.size() == 0 ) {
#ifdef OPENSSL_HAVE_KDF_H
DBG_LOG(DBG_ANALYZER, "Deriving TLS keys for connection");
uint32_t ts = htonl((uint32_t)handshake_interp->gmt_unix_time());
DBG_LOG(DBG_ANALYZER, "Deriving TLS keys for connection");
uint32_t ts = htonl((uint32_t)handshake_interp->gmt_unix_time());
auto c_rnd = handshake_interp->client_random();
auto s_rnd = handshake_interp->server_random();
auto c_rnd = handshake_interp->client_random();
auto s_rnd = handshake_interp->server_random();
std::string crand;
crand.append(reinterpret_cast<char*>(&(ts)), 4);
crand.append(reinterpret_cast<char*>(c_rnd.data()), c_rnd.length());
std::string srand(reinterpret_cast<char*>(s_rnd.data()), s_rnd.length());
std::string crand;
crand.append(reinterpret_cast<char*>(&(ts)), 4);
crand.append(reinterpret_cast<char*>(c_rnd.data()), c_rnd.length());
std::string srand(reinterpret_cast<char*>(s_rnd.data()), s_rnd.length());
// fixme - 72 should not be hardcoded
auto res = TLS12_PRF(secret, "key expansion", srand, crand, 72);
if ( ! res )
{
DBG_LOG(DBG_ANALYZER, "TLS PRF failed. Aborting.\n");
return false;
}
// fixme - 72 should not be hardcoded
auto res = TLS12_PRF(secret, "key expansion", srand, crand, 72);
if ( ! res ) {
DBG_LOG(DBG_ANALYZER, "TLS PRF failed. Aborting.\n");
return false;
}
// save derived keys
SetKeys(res.value());
// save derived keys
SetKeys(res.value());
#else
DBG_LOG(DBG_ANALYZER,
"Cannot derive TLS keys as Zeek was compiled without <openssl/kdf.h>");
return false;
DBG_LOG(DBG_ANALYZER, "Cannot derive TLS keys as Zeek was compiled without <openssl/kdf.h>");
return false;
#endif
}
}
// Keys present: decrypt TLS application data
if ( keys.size() == 72 )
{
// FIXME: could also print keys or conn id here
DBG_LOG(DBG_ANALYZER, "Decrypting application data");
// Keys present: decrypt TLS application data
if ( keys.size() == 72 ) {
// FIXME: could also print keys or conn id here
DBG_LOG(DBG_ANALYZER, "Decrypting application data");
// NOTE: you must not call functions that invalidate keys.data() on keys during the
// remainder of this function. (Given that we do not manipulate the key material in this
// function that should not be hard)
// NOTE: you must not call functions that invalidate keys.data() on keys during the
// remainder of this function. (Given that we do not manipulate the key material in this
// function that should not be hard)
// client write_key
const u_char* c_wk = keys.data();
// server write_key
const u_char* s_wk = keys.data() + 32;
// client IV
const u_char* c_iv = keys.data() + 64;
// server IV
const u_char* s_iv = keys.data() + 68;
// client write_key
const u_char* c_wk = keys.data();
// server write_key
const u_char* s_wk = keys.data() + 32;
// client IV
const u_char* c_iv = keys.data() + 64;
// server IV
const u_char* s_iv = keys.data() + 68;
// FIXME: should we change types here?
u_char* encrypted = (u_char*)data;
size_t encrypted_len = len;
// FIXME: should we change types here?
u_char* encrypted = (u_char*)data;
size_t encrypted_len = len;
if ( is_orig )
c_seq++;
else
s_seq++;
if ( is_orig )
c_seq++;
else
s_seq++;
// AEAD nonce, length 12
std::basic_string<unsigned char> s_aead_nonce;
if ( is_orig )
s_aead_nonce.assign(c_iv, 4);
else
s_aead_nonce.assign(s_iv, 4);
// AEAD nonce, length 12
std::basic_string<unsigned char> s_aead_nonce;
if ( is_orig )
s_aead_nonce.assign(c_iv, 4);
else
s_aead_nonce.assign(s_iv, 4);
// this should be the explicit counter
s_aead_nonce.append(encrypted, 8);
assert(s_aead_nonce.size() == 12);
// this should be the explicit counter
s_aead_nonce.append(encrypted, 8);
assert(s_aead_nonce.size() == 12);
EVP_CIPHER_CTX* ctx = EVP_CIPHER_CTX_new();
EVP_CIPHER_CTX_init(ctx);
EVP_CipherInit(ctx, EVP_aes_256_gcm(), NULL, NULL, 0);
EVP_CIPHER_CTX* ctx = EVP_CIPHER_CTX_new();
EVP_CIPHER_CTX_init(ctx);
EVP_CipherInit(ctx, EVP_aes_256_gcm(), NULL, NULL, 0);
encrypted += 8;
// FIXME: is this because of nonce and aead tag?
if ( encrypted_len <= (16 + 8) )
{
DBG_LOG(DBG_ANALYZER, "Invalid encrypted length encountered during TLS decryption");
EVP_CIPHER_CTX_free(ctx);
return false;
}
encrypted_len -= 8;
encrypted_len -= 16;
encrypted += 8;
// FIXME: is this because of nonce and aead tag?
if ( encrypted_len <= (16 + 8) ) {
DBG_LOG(DBG_ANALYZER, "Invalid encrypted length encountered during TLS decryption");
EVP_CIPHER_CTX_free(ctx);
return false;
}
encrypted_len -= 8;
encrypted_len -= 16;
// FIXME: aes_256_gcm should not be hardcoded here ;)
if ( is_orig )
EVP_DecryptInit(ctx, EVP_aes_256_gcm(), c_wk, s_aead_nonce.data());
else
EVP_DecryptInit(ctx, EVP_aes_256_gcm(), s_wk, s_aead_nonce.data());
// FIXME: aes_256_gcm should not be hardcoded here ;)
if ( is_orig )
EVP_DecryptInit(ctx, EVP_aes_256_gcm(), c_wk, s_aead_nonce.data());
else
EVP_DecryptInit(ctx, EVP_aes_256_gcm(), s_wk, s_aead_nonce.data());
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, encrypted + encrypted_len);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, encrypted + encrypted_len);
// AEAD tag
std::basic_string<unsigned char> s_aead_tag;
if ( is_orig )
s_aead_tag = fmt_seq(c_seq);
else
s_aead_tag = fmt_seq(s_seq);
// AEAD tag
std::basic_string<unsigned char> s_aead_tag;
if ( is_orig )
s_aead_tag = fmt_seq(c_seq);
else
s_aead_tag = fmt_seq(s_seq);
s_aead_tag[8] = content_type;
s_aead_tag[9] = MSB(raw_tls_version);
s_aead_tag[10] = LSB(raw_tls_version);
s_aead_tag[11] = MSB(encrypted_len);
s_aead_tag[12] = LSB(encrypted_len);
assert(s_aead_tag.size() == 13);
s_aead_tag[8] = content_type;
s_aead_tag[9] = MSB(raw_tls_version);
s_aead_tag[10] = LSB(raw_tls_version);
s_aead_tag[11] = MSB(encrypted_len);
s_aead_tag[12] = LSB(encrypted_len);
assert(s_aead_tag.size() == 13);
auto decrypted = std::vector<u_char>(
encrypted_len +
16); // see OpenSSL manpage - 16 is the block size for the supported cipher
int decrypted_len = 0;
auto decrypted = std::vector<u_char>(encrypted_len +
16); // see OpenSSL manpage - 16 is the block size for the supported cipher
int decrypted_len = 0;
EVP_DecryptUpdate(ctx, NULL, &decrypted_len, s_aead_tag.data(), s_aead_tag.size());
EVP_DecryptUpdate(ctx, decrypted.data(), &decrypted_len, (const u_char*)encrypted,
encrypted_len);
assert(static_cast<decltype(decrypted.size())>(decrypted_len) <= decrypted.size());
decrypted.resize(decrypted_len);
EVP_DecryptUpdate(ctx, NULL, &decrypted_len, s_aead_tag.data(), s_aead_tag.size());
EVP_DecryptUpdate(ctx, decrypted.data(), &decrypted_len, (const u_char*)encrypted, encrypted_len);
assert(static_cast<decltype(decrypted.size())>(decrypted_len) <= decrypted.size());
decrypted.resize(decrypted_len);
int res = 0;
if ( ! (res = EVP_DecryptFinal(ctx, NULL, &res)) )
{
DBG_LOG(DBG_ANALYZER, "Decryption failed with return code: %d. Invalid key?\n", res);
EVP_CIPHER_CTX_free(ctx);
return false;
}
int res = 0;
if ( ! (res = EVP_DecryptFinal(ctx, NULL, &res)) ) {
DBG_LOG(DBG_ANALYZER, "Decryption failed with return code: %d. Invalid key?\n", res);
EVP_CIPHER_CTX_free(ctx);
return false;
}
DBG_LOG(DBG_ANALYZER, "Successfully decrypted %d bytes.", decrypted_len);
EVP_CIPHER_CTX_free(ctx);
ForwardDecryptedData(decrypted, is_orig);
DBG_LOG(DBG_ANALYZER, "Successfully decrypted %d bytes.", decrypted_len);
EVP_CIPHER_CTX_free(ctx);
ForwardDecryptedData(decrypted, is_orig);
return true;
}
return true;
}
// This is only reached if key derivation fails or is unsupported
return false;
}
// This is only reached if key derivation fails or is unsupported
return false;
}
void SSL_Analyzer::ForwardDecryptedData(const std::vector<u_char>& data, bool is_orig)
{
if ( ! pia )
{
pia = new analyzer::pia::PIA_TCP(Conn());
if ( AddChildAnalyzer(pia) )
{
pia->FirstPacket(true, nullptr);
pia->FirstPacket(false, nullptr);
}
else
reporter->Error("Could not initialize PIA");
}
void SSL_Analyzer::ForwardDecryptedData(const std::vector<u_char>& data, bool is_orig) {
if ( ! pia ) {
pia = new analyzer::pia::PIA_TCP(Conn());
if ( AddChildAnalyzer(pia) ) {
pia->FirstPacket(true, nullptr);
pia->FirstPacket(false, nullptr);
}
else
reporter->Error("Could not initialize PIA");
}
ForwardStream(data.size(), data.data(), is_orig);
}
ForwardStream(data.size(), data.data(), is_orig);
}
bool SSL_Analyzer::GetFlipped()
{
return handshake_interp->flipped();
}
bool SSL_Analyzer::GetFlipped() { return handshake_interp->flipped(); }
} // namespace zeek::analyzer::ssl
} // namespace zeek::analyzer::ssl