Moving the remaining code from Layer2.* into Packet.* and documenting

the Packet API.

Plus, some more cleanup, including removing a legacy option
time_machine_profiling.
This commit is contained in:
Robin Sommer 2015-07-21 07:37:04 -07:00
parent f69edd1437
commit f97b2b180c
11 changed files with 350 additions and 326 deletions

View file

@ -270,7 +270,7 @@ void net_packet_dispatch(double t, const Packet* pkt, iosource::PktSrc* src_ps)
} }
} }
sessions->DispatchPacket(t, pkt, src_ps); sessions->NextPacket(t, pkt);
mgr.Drain(); mgr.Drain();
if ( sp ) if ( sp )

View file

@ -226,8 +226,6 @@ int suppress_local_output;
double timer_mgr_inactivity_timeout; double timer_mgr_inactivity_timeout;
int time_machine_profiling;
StringVal* trace_output_file; StringVal* trace_output_file;
int record_all_packets; int record_all_packets;
@ -522,7 +520,6 @@ void init_net_var()
timer_mgr_inactivity_timeout = timer_mgr_inactivity_timeout =
opt_internal_double("timer_mgr_inactivity_timeout"); opt_internal_double("timer_mgr_inactivity_timeout");
time_machine_profiling = opt_internal_int("time_machine_profiling");
script_id = internal_type("script_id")->AsRecordType(); script_id = internal_type("script_id")->AsRecordType();
id_table = internal_type("id_table")->AsTableType(); id_table = internal_type("id_table")->AsTableType();

View file

@ -230,8 +230,6 @@ extern int suppress_local_output;
extern double timer_mgr_inactivity_timeout; extern double timer_mgr_inactivity_timeout;
extern int time_machine_profiling;
extern StringVal* trace_output_file; extern StringVal* trace_output_file;
extern int record_all_packets; extern int record_all_packets;

View file

@ -1122,87 +1122,3 @@ void EventPlayer::Process()
ne_time = 0; ne_time = 0;
} }
void Packet::Describe(ODesc* d) const
{
const IP_Hdr ip = IP();
d->Add(ip.SrcAddr());
d->Add("->");
d->Add(ip.DstAddr());
}
bool Packet::Serialize(SerialInfo* info) const
{
return SERIALIZE(uint32(ts.tv_sec)) &&
SERIALIZE(uint32(ts.tv_usec)) &&
SERIALIZE(uint32(len)) &&
SERIALIZE(link_type) &&
info->s->Write(tag.c_str(), tag.length(), "tag") &&
info->s->Write((const char*)data, cap_len, "data");
}
static BroFile* profiling_output = 0;
#ifdef DEBUG
static iosource::PktDumper* dump = 0;
#endif
Packet* Packet::Unserialize(UnserialInfo* info)
{
struct timeval ts;
uint32 len, link_type;
if ( ! (UNSERIALIZE((uint32 *)&ts.tv_sec) &&
UNSERIALIZE((uint32 *)&ts.tv_usec) &&
UNSERIALIZE(&len) &&
UNSERIALIZE(&link_type)) )
return 0;
char* tag;
if ( ! info->s->Read((char**) &tag, 0, "tag") )
return 0;
const u_char* pkt;
int caplen;
if ( ! info->s->Read((char**) &pkt, &caplen, "data") )
{
delete [] tag;
return 0;
}
Packet *p = new Packet(link_type, &ts, caplen, len, pkt, true,
std::string(tag));
delete [] tag;
// For the global timer manager, we take the global network_time as the
// packet's timestamp for feeding it into our packet loop.
if ( p->tag == "" )
p->time = timer_mgr->Time();
else
p->time = p->ts.tv_sec + double(p->ts.tv_usec) / 1e6;
if ( time_machine_profiling )
{
if ( ! profiling_output )
profiling_output =
new BroFile("tm-prof.packets.log", "w");
profiling_output->Write(fmt("%.6f %s %d\n", current_time(),
(p->tag != "" ? p->tag.c_str() : "-"), p->len));
}
#ifdef DEBUG
if ( debug_logger.IsEnabled(DBG_TM) )
{
if ( ! dump )
dump = iosource_mgr->OpenPktDumper("tm.pcap", true);
if ( dump )
{
dump->Dump(p);
}
}
#endif
return p;
}

View file

@ -15,7 +15,6 @@
#include "Sessions.h" #include "Sessions.h"
#include "Reporter.h" #include "Reporter.h"
#include "OSFinger.h" #include "OSFinger.h"
#include "iosource/Layer2.h"
#include "analyzer/protocol/icmp/ICMP.h" #include "analyzer/protocol/icmp/ICMP.h"
#include "analyzer/protocol/udp/UDP.h" #include "analyzer/protocol/udp/UDP.h"
@ -166,22 +165,17 @@ void NetSessions::Done()
{ {
} }
void NetSessions::DispatchPacket(double t, const Packet* pkt, void NetSessions::NextPacket(double t, const Packet* pkt)
iosource::PktSrc* src_ps)
{ {
SegmentProfiler(segment_logger, "dispatching-packet"); SegmentProfiler(segment_logger, "dispatching-packet");
if ( raw_packet ) if ( raw_packet )
{ {
val_list* vl = new val_list(); val_list* vl = new val_list();
L2_Hdr l2_hdr(pkt); vl->append(pkt->BuildPktHdrVal());
vl->append(l2_hdr.BuildPktHdrVal());
mgr.QueueEvent(raw_packet, vl); mgr.QueueEvent(raw_packet, vl);
} }
ProcNextPacket(t, pkt);
}
if ( pkt_profiler ) if ( pkt_profiler )
pkt_profiler->ProfilePkt(t, pkt->cap_len); pkt_profiler->ProfilePkt(t, pkt->cap_len);

View file

@ -66,11 +66,8 @@ public:
NetSessions(); NetSessions();
~NetSessions(); ~NetSessions();
// Main entry point for packet processing. Dispatches the packet // Main entry point for packet processing.
// either through NextPacket(), optionally employing the packet void NextPacket(double t, const Packet* pkt);
// sorter first.
void DispatchPacket(double t, const Packet* pkt,
iosource::PktSrc* src_ps);
void Done(); // call to drain events before destructing void Done(); // call to drain events before destructing

View file

@ -11,7 +11,6 @@ add_subdirectory(pcap)
set(iosource_SRCS set(iosource_SRCS
BPF_Program.cc BPF_Program.cc
Component.cc Component.cc
Layer2.cc
Manager.cc Manager.cc
Packet.cc Packet.cc
PktDumper.cc PktDumper.cc

View file

@ -1,117 +0,0 @@
// See the file "COPYING" in the main distribution directory for copyright.
#include "IP.h"
#include "Type.h"
#include "Val.h"
#include "Var.h"
#include "NetVar.h"
#include "iosource/Layer2.h"
#include "iosource/Packet.h"
extern "C" {
#include <pcap.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <net/if.h>
#include <net/if_arp.h>
#ifdef HAVE_NET_ETHERNET_H
#include <net/ethernet.h>
#elif defined(HAVE_SYS_ETHERNET_H)
#include <sys/ethernet.h>
#elif defined(HAVE_NETINET_IF_ETHER_H)
#include <netinet/if_ether.h>
#elif defined(HAVE_NET_ETHERTYPES_H)
#include <net/ethertypes.h>
#endif
}
Val *L2_Hdr::fmt_eui48(const u_char *mac) const
{
char buf[20];
snprintf(buf, sizeof buf, "%02x:%02x:%02x:%02x:%02x:%02x",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return new StringVal(buf);
}
RecordVal* L2_Hdr::BuildPktHdrVal() const
{
static RecordType* l2_hdr_type = 0;
static RecordType* raw_pkt_hdr_type = 0;
if ( ! raw_pkt_hdr_type )
{
raw_pkt_hdr_type = internal_type("raw_pkt_hdr")->AsRecordType();
l2_hdr_type = internal_type("l2_hdr")->AsRecordType();
}
RecordVal* pkt_hdr = new RecordVal(raw_pkt_hdr_type);
RecordVal* l2_hdr = new RecordVal(l2_hdr_type);
int is_ethernet = (pkt->link_type == DLT_EN10MB) ? 1 : 0;
int l3 = BifEnum::L3_UNKNOWN;
if ( pkt->l3_proto == L3_IPV4 )
l3 = BifEnum::L3_IPV4;
else if ( pkt->l3_proto == L3_IPV6 )
l3 = BifEnum::L3_IPV6;
else if ( pkt->l3_proto == L3_ARP )
l3 = BifEnum::L3_ARP;
// l2_hdr layout:
// encap: link_encap; ##< L2 link encapsulation
// len: count; ##< Total frame length on wire
// cap_len: count; ##< Captured length
// src: string &optional; ##< L2 source (if ethernet)
// dst: string &optional; ##< L2 destination (if ethernet)
// vlan: count &optional; ##< VLAN tag if any (and ethernet)
// ethertype: count &optional; ##< If ethernet
// proto: layer3_proto; ##< L3 proto
if ( is_ethernet )
{
// Ethernet header layout is:
// dst[6bytes] src[6bytes] ethertype[2bytes]...
l2_hdr->Assign(0, new EnumVal(BifEnum::LINK_ETHERNET, BifType::Enum::link_encap));
l2_hdr->Assign(3, fmt_eui48(pkt->data + 6)); // src
l2_hdr->Assign(4, fmt_eui48(pkt->data)); // dst
if ( pkt->vlan )
l2_hdr->Assign(5, new Val(pkt->vlan, TYPE_COUNT));
l2_hdr->Assign(6, new Val(pkt->eth_type, TYPE_COUNT));
if ( pkt->eth_type == ETHERTYPE_ARP || pkt->eth_type == ETHERTYPE_REVARP )
// We also identify ARP for L3 over ethernet
l3 = BifEnum::L3_ARP;
}
else
l2_hdr->Assign(0, new EnumVal(BifEnum::LINK_UNKNOWN, BifType::Enum::link_encap));
l2_hdr->Assign(1, new Val(pkt->len, TYPE_COUNT));
l2_hdr->Assign(2, new Val(pkt->cap_len, TYPE_COUNT));
l2_hdr->Assign(7, new EnumVal(l3, BifType::Enum::layer3_proto));
pkt_hdr->Assign(0, l2_hdr);
if ( pkt->l3_proto == L3_IPV4 )
{
IP_Hdr ip_hdr((const struct ip*)(pkt->data + pkt->hdr_size), false);
return ip_hdr.BuildPktHdrVal(pkt_hdr, 1);
}
else if ( pkt->l3_proto == L3_IPV6 )
{
IP_Hdr ip6_hdr((const struct ip6_hdr*)(pkt->data + pkt->hdr_size), false, pkt->cap_len);
return ip6_hdr.BuildPktHdrVal(pkt_hdr, 1);
}
else
return pkt_hdr;
}

View file

@ -1,33 +0,0 @@
#ifndef l2_h
#define l2_h
#include "config.h"
#include "net_util.h"
#include "IP.h"
#include "Reporter.h"
#include "Val.h"
#include "Type.h"
#include <vector>
class Packet;
/**
* A class that wraps an L2 packet.
*/
class L2_Hdr {
public:
L2_Hdr(const Packet *arg_pkt) : pkt(arg_pkt) { }
~L2_Hdr() { }
/**
* Returns a raw_pkt_hdr RecordVal, which includes L2 and also
* everything in IP_Hdr (i.e. IP4/6 + tcp/udp/icmp)
*/
RecordVal* BuildPktHdrVal() const;
private:
Val *fmt_eui48(const u_char *mac) const;
const Packet *pkt;
};
#endif

View file

@ -1,6 +1,54 @@
#include "Packet.h" #include "Packet.h"
#include "Sessions.h" #include "Sessions.h"
#include "iosource/Manager.h"
extern "C" {
#ifdef HAVE_NET_ETHERNET_H
#include <net/ethernet.h>
#elif defined(HAVE_SYS_ETHERNET_H)
#include <sys/ethernet.h>
#elif defined(HAVE_NETINET_IF_ETHER_H)
#include <netinet/if_ether.h>
#elif defined(HAVE_NET_ETHERTYPES_H)
#include <net/ethertypes.h>
#endif
}
void Packet::Init(int arg_link_type, struct timeval *arg_ts, uint32 arg_caplen,
uint32 arg_len, const u_char *arg_data, int arg_copy,
std::string arg_tag)
{
if ( data && copy )
delete [] data;
link_type = arg_link_type;
ts = *arg_ts;
cap_len = arg_caplen;
len = arg_len;
tag = arg_tag;
copy = arg_copy;
if ( arg_data && arg_copy )
{
data = new u_char[arg_caplen];
memcpy(const_cast<u_char *>(data), arg_data, arg_caplen);
}
else
data = arg_data;
time = ts.tv_sec + double(ts.tv_usec) / 1e6;
hdr_size = GetLinkHeaderSize(arg_link_type);
l3_proto = L3_UNKNOWN;
eth_type = 0;
vlan = 0;
l2_valid = false;
if ( data )
ProcessLayer2();
}
void Packet::Weird(const char* name) void Packet::Weird(const char* name)
{ {
@ -261,10 +309,169 @@ void Packet::ProcessLayer2()
} }
// We've now determined (a) L3_IPV4 vs (b) L3_IPV6 vs // We've now determined (a) L3_IPV4 vs (b) L3_IPV6 vs
// (c) L3_ARP vs (d) L3_UNKNOWN (0 == anything else) // (c) L3_ARP vs (d) L3_UNKNOWN.
l3_proto = l3_proto; l3_proto = l3_proto;
// Calculate how much header we've used up. // Calculate how much header we've used up.
hdr_size = (pdata - data); hdr_size = (pdata - data);
} }
RecordVal* Packet::BuildPktHdrVal() const
{
static RecordType* l2_hdr_type = 0;
static RecordType* raw_pkt_hdr_type = 0;
if ( ! raw_pkt_hdr_type )
{
raw_pkt_hdr_type = internal_type("raw_pkt_hdr")->AsRecordType();
l2_hdr_type = internal_type("l2_hdr")->AsRecordType();
}
RecordVal* pkt_hdr = new RecordVal(raw_pkt_hdr_type);
RecordVal* l2_hdr = new RecordVal(l2_hdr_type);
int is_ethernet = (link_type == DLT_EN10MB) ? 1 : 0;
int l3 = BifEnum::L3_UNKNOWN;
if ( l3_proto == L3_IPV4 )
l3 = BifEnum::L3_IPV4;
else if ( l3_proto == L3_IPV6 )
l3 = BifEnum::L3_IPV6;
else if ( l3_proto == L3_ARP )
l3 = BifEnum::L3_ARP;
// l2_hdr layout:
// encap: link_encap; ##< L2 link encapsulation
// len: count; ##< Total frame length on wire
// cap_len: count; ##< Captured length
// src: string &optional; ##< L2 source (if ethernet)
// dst: string &optional; ##< L2 destination (if ethernet)
// vlan: count &optional; ##< VLAN tag if any (and ethernet)
// ethertype: count &optional; ##< If ethernet
// proto: layer3_proto; ##< L3 proto
if ( is_ethernet )
{
// Ethernet header layout is:
// dst[6bytes] src[6bytes] ethertype[2bytes]...
l2_hdr->Assign(0, new EnumVal(BifEnum::LINK_ETHERNET, BifType::Enum::link_encap));
l2_hdr->Assign(3, FmtEUI48(data + 6)); // src
l2_hdr->Assign(4, FmtEUI48(data)); // dst
if ( vlan )
l2_hdr->Assign(5, new Val(vlan, TYPE_COUNT));
l2_hdr->Assign(6, new Val(eth_type, TYPE_COUNT));
if ( eth_type == ETHERTYPE_ARP || eth_type == ETHERTYPE_REVARP )
// We also identify ARP for L3 over ethernet
l3 = BifEnum::L3_ARP;
}
else
l2_hdr->Assign(0, new EnumVal(BifEnum::LINK_UNKNOWN, BifType::Enum::link_encap));
l2_hdr->Assign(1, new Val(len, TYPE_COUNT));
l2_hdr->Assign(2, new Val(cap_len, TYPE_COUNT));
l2_hdr->Assign(7, new EnumVal(l3, BifType::Enum::layer3_proto));
pkt_hdr->Assign(0, l2_hdr);
if ( l3_proto == L3_IPV4 )
{
IP_Hdr ip_hdr((const struct ip*)(data + hdr_size), false);
return ip_hdr.BuildPktHdrVal(pkt_hdr, 1);
}
else if ( l3_proto == L3_IPV6 )
{
IP_Hdr ip6_hdr((const struct ip6_hdr*)(data + hdr_size), false, cap_len);
return ip6_hdr.BuildPktHdrVal(pkt_hdr, 1);
}
else
return pkt_hdr;
}
Val *Packet::FmtEUI48(const u_char *mac) const
{
char buf[20];
snprintf(buf, sizeof buf, "%02x:%02x:%02x:%02x:%02x:%02x",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return new StringVal(buf);
}
void Packet::Describe(ODesc* d) const
{
const IP_Hdr ip = IP();
d->Add(ip.SrcAddr());
d->Add("->");
d->Add(ip.DstAddr());
}
bool Packet::Serialize(SerialInfo* info) const
{
return SERIALIZE(uint32(ts.tv_sec)) &&
SERIALIZE(uint32(ts.tv_usec)) &&
SERIALIZE(uint32(len)) &&
SERIALIZE(link_type) &&
info->s->Write(tag.c_str(), tag.length(), "tag") &&
info->s->Write((const char*)data, cap_len, "data");
}
#ifdef DEBUG
static iosource::PktDumper* dump = 0;
#endif
Packet* Packet::Unserialize(UnserialInfo* info)
{
struct timeval ts;
uint32 len, link_type;
if ( ! (UNSERIALIZE((uint32 *)&ts.tv_sec) &&
UNSERIALIZE((uint32 *)&ts.tv_usec) &&
UNSERIALIZE(&len) &&
UNSERIALIZE(&link_type)) )
return 0;
char* tag;
if ( ! info->s->Read((char**) &tag, 0, "tag") )
return 0;
const u_char* pkt;
int caplen;
if ( ! info->s->Read((char**) &pkt, &caplen, "data") )
{
delete [] tag;
return 0;
}
Packet *p = new Packet(link_type, &ts, caplen, len, pkt, true,
std::string(tag));
delete [] tag;
// For the global timer manager, we take the global network_time as the
// packet's timestamp for feeding it into our packet loop.
if ( p->tag == "" )
p->time = timer_mgr->Time();
else
p->time = p->ts.tv_sec + double(p->ts.tv_usec) / 1e6;
#ifdef DEBUG
if ( debug_logger.IsEnabled(DBG_TM) )
{
if ( ! dump )
dump = iosource_mgr->OpenPktDumper("tm.pcap", true);
if ( dump )
{
dump->Dump(p);
}
}
#endif
return p;
}

View file

@ -5,94 +5,125 @@
#include "IP.h" #include "IP.h"
#include "NetVar.h" #include "NetVar.h"
/**
* The Layer 3 type of a packet, as determined by the parsing code in Packet.
*/
enum Layer3Proto { enum Layer3Proto {
L3_UNKNOWN = -1, L3_UNKNOWN = -1, /// Layer 3 type could not be determined.
L3_IPV4 = 1, L3_IPV4 = 1, /// Layer 3 is IPv4.
L3_IPV6 = 2, L3_IPV6 = 2, /// Layer 3 is IPv6.
L3_ARP = 3, L3_ARP = 3, /// Layer 3 is ARP.
}; };
// A link-layer packet. /**
// * A link-layer packet.
// Note that for serialization we don't use much of the support provided by *
// the serialization framework. Serialize/Unserialize do all the work by * Note that for serialization we don't use much of the support provided by
// themselves. In particular, Packets aren't derived from SerialObj. They are * the serialization framework. Serialize/Unserialize do all the work by
// completely seperate and self-contained entities, and we don't need any of * themselves. In particular, Packets aren't derived from SerialObj. They are
// the sophisticated features like object caching. * completely seperate and self-contained entities, and we don't need any of
* the sophisticated features like object caching.
*/
class Packet { class Packet {
public: public:
Packet() /**
* Construct and initialize from packet data.
*
* @param link_type The link type in the form of a \c DLT_* constant.
*
* @param ts The timestamp associated with the packet.
*
* @param caplen The number of bytes valid in *data*.
*
* @param len The wire length of the packet, which must be more or
* equal *caplen* (but can't be less).
*
* @param data A pointer to the raw packet data, starting with the
* layer 2 header. The pointer must remain valid for the lifetime of
* the Packet instance, unless *copy* is true.
*
* @param copy If true, the constructor will make an internal copy of
* *data*, so that the caller can release its version.
*
* @param tag A textual tag to associate with the packet for
* differentiating the input streams.
*/
Packet(int link_type, struct timeval *ts, uint32 caplen,
uint32 len, const u_char *data, int copy = false,
std::string tag = std::string("")) : data(0)
{
Init(link_type, ts, caplen, len, data, copy, tag);
}
/**
* Default constructor. For internal use only.
*/
Packet() : data(0)
{ {
struct timeval ts = {0, 0}; struct timeval ts = {0, 0};
Init(0, &ts, 0, 0, 0); Init(0, &ts, 0, 0, 0);
} }
// Construct and initialize from packet data.
//
// arg_free: If true makes an internal copy of the *data*. If false,
// stores just a pointer to *data*, which must remain valid.
Packet(int arg_link_type, struct timeval *arg_ts, uint32 arg_caplen,
uint32 arg_len, const u_char *arg_data, int arg_free = false,
std::string arg_tag = std::string(""))
{
Init(arg_link_type, arg_ts, arg_caplen, arg_len, arg_data, arg_free, arg_tag);
}
/**
* Destructor.
*/
~Packet() ~Packet()
{ {
if ( free ) if ( copy )
delete [] data; delete [] data;
} }
// Initialize with data from pointer. /**
// * (Re-)initialize from packet data.
// arg_free: If true makes an internal copy of the *data*. If false, *
// stores just a pointer to *data*, which must remain valid. * @param link_type The link type in the form of a \c DLT_* constant.
void Init(int arg_link_type, struct timeval *arg_ts, uint32 arg_caplen, *
uint32 arg_len, const u_char *arg_data, int arg_free = false, * @param ts The timestamp associated with the packet.
std::string arg_tag = std::string(""), uint32 arg_hdrsize = 0) *
{ * @param caplen The number of bytes valid in *data*.
link_type = arg_link_type; *
ts = *arg_ts; * @param len The wire length of the packet, which must be more or
cap_len = arg_caplen; * equal *caplen* (but can't be less).
len = arg_len; *
free = arg_free; * @param data A pointer to the raw packet data, starting with the
* layer 2 header. The pointer must remain valid for the lifetime of
* the Packet instance, unless *copy* is true.
*
* @param copy If true, the constructor will make an internal copy of
* *data*, so that the caller can release its version.
*
* @param tag A textual tag to associate with the packet for
* differentiating the input streams.
*/
void Init(int link_type, struct timeval *ts, uint32 caplen,
uint32 len, const u_char *data, int copy = false,
std::string tag = std::string(""));
if ( free ) /**
{ * Returns true if parsing the layer 2 fields failed, including when
data = new u_char[cap_len]; * no data was passed into the constructor in the first place.
memcpy(const_cast<u_char *>(data), arg_data, cap_len); */
}
else
data = arg_data;
hdr_size = arg_hdrsize;
l3_proto = L3_UNKNOWN;
tag = arg_tag;
time = ts.tv_sec + double(ts.tv_usec) / 1e6;
eth_type = 0;
vlan = 0;
l2_valid = false;
if ( data )
ProcessLayer2();
}
const IP_Hdr IP() const
{ return IP_Hdr((struct ip *) (data + hdr_size), false); }
// Returns true if parsing the Layer 2 fields failed, including when
// no data was passed into the constructor in the first place.
bool Layer2Valid() bool Layer2Valid()
{ {
return l2_valid; return l2_valid;
} }
void Describe(ODesc* d) const; /**
* Interprets the Layer 3 of the packet as IP and returns a
* correspondign object.
*/
const IP_Hdr IP() const
{ return IP_Hdr((struct ip *) (data + hdr_size), false); }
/** /**
* Helper method to return the header size for a given link tyoe. * Returns a \c raw_pkt_hdr RecordVal, which includes layer 2 and
* also everything in IP_Hdr (i.e., IP4/6 + TCP/UDP/ICMP).
*/
RecordVal* BuildPktHdrVal() const;
/**
* Static method returning the link-layer header size for a given
* link type.
* *
* @param link_type The link tyoe. * @param link_type The link tyoe.
* *
@ -100,7 +131,19 @@ public:
*/ */
static int GetLinkHeaderSize(int link_type); static int GetLinkHeaderSize(int link_type);
/**
* Describes the packet, with standard signature.
*/
void Describe(ODesc* d) const;
/**
* Serializes the packet, with standard signature.
*/
bool Serialize(SerialInfo* info) const; bool Serialize(SerialInfo* info) const;
/**
* Unserializes the packet, with standard signature.
*/
static Packet* Unserialize(UnserialInfo* info); static Packet* Unserialize(UnserialInfo* info);
// These are passed in through the constructor. // These are passed in through the constructor.
@ -114,10 +157,29 @@ public:
// These are computed from Layer 2 data. These fields are only valid if // These are computed from Layer 2 data. These fields are only valid if
// Layer2Valid() returns true. // Layer2Valid() returns true.
uint32 hdr_size; /// Layer 2 header size
Layer3Proto l3_proto; /// Layer 3 protocol identified (if any) /**
uint32 eth_type; /// If L2==ethernet, innermost ethertype field * Layer 2 header size. Valid iff Layer2Valid() returns true.
uint32 vlan; /// (Outermost) VLan tag if any, else 0 */
uint32 hdr_size;
/**
* Layer 3 protocol identified (if any). Valid iff Layer2Valid()
* returns true.
*/
Layer3Proto l3_proto; ///
/**
* If layer 2 is Ethernet, innermost ethertype field. Valid iff
* Layer2Valid() returns true.
*/
uint32 eth_type; ///
/**
* (Outermost) VLAN tag if any, else 0. Valid iff Layer2Valid()
* returns true.
*/
uint32 vlan; ///
private: private:
// Calculate layer 2 attributes. Sets // Calculate layer 2 attributes. Sets
@ -126,8 +188,12 @@ private:
// Wrapper to generate a packet-level weird. // Wrapper to generate a packet-level weird.
void Weird(const char* name); void Weird(const char* name);
// should we delete associated packet memory upon destruction. // Renders an MAC address into its ASCII representation.
bool free; Val *FmtEUI48(const u_char *mac) const;
// True if we need to delete associated packet memory upon
// destruction.
bool copy;
// True if L2 processing succeeded. // True if L2 processing succeeded.
bool l2_valid; bool l2_valid;