* Deprecated ComputeHash() methods and replaced with MakeHashKey()
which returns std::unique_ptr<HashKey>
* Deprecated RecoverIndex() and replaced with RecreateIndex()
which takes HashKey& and returns IntrusivePtr.
* Updated the new TableVal Assign()/Remove() methods to take either
std::unique_ptr<HashKey> or HashKey& as appropriate for clarity of
ownership expectations.
* 'intrusive_ptr' of https://github.com/MaxKellermann/zeek: (32 commits)
Scope: store IntrusivePtr in `local`
Scope: pass IntrusivePtr to AddInit()
DNS_Mgr: use class IntrusivePtr
Scope: use class IntrusivePtr
Attr: use class IntrusivePtr
Expr: check_and_promote_expr() returns IntrusivePtr
Frame: use class IntrusivePtr
Val: RecordVal::LookupWithDefault() returns IntrusivePtr
Type: RecordType::FieldDefault() returns IntrusivePtr
Val: TableVal::Delete() returns IntrusivePtr
Type: base_type() returns IntrusivePtr
Type: init_type() returns IntrusivePtr
Type: merge_types() returns IntrusivePtr
Type: use class IntrusivePtr in VectorType
Type: use class IntrusivePtr in EnumType
Type: use class IntrusivePtr in FileType
Type: use class IntrusivePtr in TypeDecl
Type: make TypeDecl `final` and the dtor non-`virtual`
Type: use class IntrusivePtr in TypeType
Type: use class IntrusivePtr in FuncType
...
The Zeek code base has very inconsistent #includes. Many sources
included a few headers, and those headers included other headers, and
in the end, nearly everything is included everywhere, so missing
#includes were never noticed. Another side effect was a lot of header
bloat which slows down the build.
First step to fix it: in each source file, its own header should be
included first to verify that each header's includes are correct, and
none is missing.
After adding the missing #includes, I replaced lots of #includes
inside headers with class forward declarations. In most headers,
object pointers are never referenced, so declaring the function
prototypes with forward-declared classes is just fine.
This patch speeds up the build by 19%, because each compilation unit
gets smaller. Here are the "time" numbers for a fresh build (with a
warm page cache but without ccache):
Before this patch:
3144.94user 161.63system 3:02.87elapsed 1808%CPU (0avgtext+0avgdata 2168608maxresident)k
760inputs+12008400outputs (1511major+57747204minor)pagefaults 0swaps
After this patch:
2565.17user 141.83system 2:25.46elapsed 1860%CPU (0avgtext+0avgdata 1489076maxresident)k
72576inputs+9130920outputs (1667major+49400430minor)pagefaults 0swaps
This commit marks (hopefully) ever one-parameter constructor as explicit.
It also uses override in (hopefully) all circumstances where a virtual
method is overridden.
There are a very few other minor changes - most of them were necessary
to get everything to compile (like one additional constructor). In one
case I changed an implicit operation to an explicit string conversion -
I think the automatically chosen conversion was much more convoluted.
This took longer than I want to admit but not as long as I feared :)
The Logger class is now in charge of reporting all errors, warnings,
informational messages, weirds, and syslogs. All other components
route their messages through the global bro_logger singleton.
The Logger class comes with these reporting methods:
void Message(const char* fmt, ...);
void Warning(const char* fmt, ...);
void Error(const char* fmt, ...);
void FatalError(const char* fmt, ...); // Terminate Bro.
void Weird(const char* name);
[ .. some more Weird() variants ... ]
void Syslog(const char* fmt, ...);
void InternalWarning(const char* fmt, ...);
void InternalError(const char* fmt, ...); // Terminates Bro.
See Logger.h for more information on these.
Generally, the reporting now works as follows:
- All non-fatal message are reported in one of two ways:
(1) At startup (i.e., before we start processing packets),
they are logged to stderr.
(2) During processing, they turn into events:
event log_message%(msg: string, location: string%);
event log_warning%(msg: string, location: string%);
event log_error%(msg: string, location: string%);
The script level can then handle them as desired.
If we don't have an event handler, we fall back to
reporting on stderr.
- All fatal errors are logged to stderr and Bro terminates
immediately.
- Syslog(msg) directly syslogs, but doesn't do anything else.
The three main types of messages can also be generated on the
scripting layer via new Log::* bifs:
Log::error(msg: string);
Log::warning(msg: string);
Log::message(msg: string);
These pass through the bro_logger as well and thus are handled in the
same way. Their output includes location information.
More changes:
- Removed the alarm statement and the alarm_hook event.
- Adapted lots of locations to use the bro_logger, including some
of the messages that were previously either just written to
stdout, or even funneled through the alarm mechanism.
- No distinction anymore between Error() and RunTime(). There's
now only one class of errors; the line was quite blurred already
anyway.
- util.h: all the error()/warn()/message()/run_time()/pinpoint()
functions are gone. Use the bro_logger instead now.
- Script errors are formatted a bit differently due to the
changes. What I've seen so far looks ok to me, but let me know
if there's something odd.
Notes:
- The default handlers for the new log_* events are just dummy
implementations for now since we need to integrate all this into
the new scripts anyway.
- I'm not too happy with the names of the Logger class and its
instance bro_logger. We now have a LogMgr as well, which makes
this all a bit confusing. But I didn't have a good idea for
better names so I stuck with them for now.
Perhaps we should merge Logger and LogMgr?
table/set indices.
This addresses #367. In principle, the fix is quite straightford.
However, it turns out that sometimes record fields lost their
attributes on assignment, and then the hashing can't decide anymore
whether a field is optional or not. So that needed to be fixed as
well.