This swaps the host event argument for the Broker ID. The latter is more useful,
since the sending agent doesn't necessarily know its IP address as visible to
the controller, and the controller can pull up the full Broker context via the
ID.
It also adds an explicit argument to the event to indicate whether the agent
connected to the controller or vice versa. This simplifies the controller's
internal logic.
Also minor tweaks to logging to show Broker IDs.
This uses the new frameworks/management/supervisor functionality to maintain
stdout/stderr files, and hooks output context into set_configuration error
results.
During Zeekygen's doc generation both the agent's and controller's main.zeek get
loaded. This just happened to not throw errors so far because the redefs either
matched perfectly or used different field names.
We so far reported one result record per agent, which made it hard to report
per-node outcomes for the new configuration. Agents now report one result record
per node they're responsible for.
When the controller relays requests to agents, we want agents to time out more
quickly than the corresponding controller requests. This allows agents to
respond with more meaningful errors, while the controller's timeout acts mostly
as a last resort to ensure a response to the client actually happens.
This dials down the table_expire_interval to 2 seconds in both agent and
controller, for more predictable timeout behavior. It also dials the agent-side
request expiration interval down to 5 seconds, compared to the agent's 10
seconds.
We may have to revisit this to allow custom expiration intervals per
request/response message type.
We so far hoped for the best when an agent asked the Supervisor to launch a
node. Since the Management::Node::API::notify_node_hello events arriving from
new nodes signal when such nodes are up and running, we can use those events to
track once/whether all launched nodes have checked in, and respond accordingly.
This delays the set_configuration_response event until these checkins have
occurred, or a timeout kicks in. In case of error, the agent's response to the
controller is in error state and has the remaining, unresponsive/failed set of
nodes as its data member.
This establishes a directory "nodes" in Management::state_dir and places each
Zeek process into a subdirectory in it, named after the Zeek process. For
example, node "worker-01" runs with cwd <state_dir>/nodes/worker-01/.
Explicitly configured directories can override the naming logic, and also ignore
the state directory if they're absolute paths. One exception remains: the
Supervisor itself -- we'd have to use LogAscii::logdir to automatically place it
too in its own directory, but that feature currently does not interoperate with
log rotation.
This adds management/persistence.zeek to establish common configuration for log
rotation and persistent variable state. Log-writing Zeek processes initially
write locally in their working directory, and rotate into subdirectory
"log-queue" of the spool. Since agent and controller have no logger,
persistence.zeek puts in place compatible configurations for them.
Storage folders for Broker-backed tables and clusterized stores default to
subdirectories of the new Zeek-level state folder.
When setting the ZEEK_MANAGEMENT_TESTING environment variable, persistent state
is kept in the local directory, and log rotation remains disabled.
This also tweaks @loads a bit in favor of simply loading frameworks/management,
which is easier to keep track of.
Load the agent/controller bootstrapping code only from the Supervisor, and the
basic config only from a supervisee. When we're neither (which is likely a
mistake), we do nothing.
The fallback mechanism when no explicit agent/controller names are configured
didn't work properly, because many places in the code relied on accessing the
name via the variables meant for explicit configuration, such as
Management::Agent::name. Agent and controller now offer functions for computing
the correct effective name, and we use that throughout.
This adds an optional set of cluster node names to narrow the querying to. It
similarly expands the dispatch mechanism, since it likely most sense for any
such request to apply only to a subset of nodes.
Requests for invalid nodes trigger Response records in error state.
When agents receive a configuration, we don't currently honor requested run
states (there's no such thing as registering a node but not running it, for
example). To reflect this, we now start off nodes in state PENDING as we
launch them via the Supervisor, and move them to RUNNING when they check
in with us via Management::Node::API::notify_node_hello.
This adds support for retrieving the value of a global identifier from any
subset of cluster nodes. It relies on the lookup_ID() BiF to retrieve the val,
and to_json() to render the value to an easily parsed string. Ideally we'd send
the val directly, but this hits several roadblocks, including the fact that
Broker won't serialize arbitrary values.
This adds request/response event pairs to enable the controller to dispatch
"actions" (pre-implemented Zeek script actions) on subsets of Zeek cluster nodes
and collect the results. Using generic events to carry multiple such "run X on
the nodes" scenarios simplifies adding these in the future.
This provides Broker-level plumbing that allows agents to reach out to their
managed Zeek nodes and collect responses.
As a first event, it establishes Management::Node::API::notify_agent_hello,
to notify the agent when the cluster node is ready to communicate.
Also a bit of comment rewording to replace use of "data cluster" with simply
"cluster", to avoid ambiguity with data nodes in SumStats, and expansion of
test-all-policy.zeek and related/dependent tests, since we're introducing new
scripts.
- This gives the cluster controller and agent the common name "Management
framework" and changes the start directory of the sources from
"policy/frameworks/cluster" to "policy/frameworks/management". This avoids
ambiguity with the existing cluster framework.
- It renames the "ClusterController" and "ClusterAgent" script modules to
"Management::Controller" and "Management::Agent", respectively. This allows us
to anchor tooling common to both controller and agent at the "Management"
module.
- It moves common configuration settings, logging, requests, types, and
utilities to the common "Management" module.
- It removes the explicit "::Types" submodule (so a request/response result is
now a Management::Result, not a Management::Types::Result), which makes
typenames more readable.
- It updates tests that depend on module naming and full set of scripts.