mirror of
https://github.com/zeek/zeek.git
synced 2025-10-02 14:48:21 +00:00
922 lines
20 KiB
C++
922 lines
20 KiB
C++
// See the file "COPYING" in the main distribution directory for copyright.
|
|
|
|
#include "config.h"
|
|
|
|
#include "CompHash.h"
|
|
#include "Val.h"
|
|
#include "Reporter.h"
|
|
#include "Func.h"
|
|
|
|
CompositeHash::CompositeHash(TypeList* composite_type)
|
|
{
|
|
type = composite_type;
|
|
Ref(type);
|
|
|
|
// If the only element is a record, don't treat it as a
|
|
// singleton, since it needs to be evaluated specially.
|
|
|
|
if ( type->Types()->length() == 1 )
|
|
{
|
|
if ( (*type->Types())[0]->Tag() == TYPE_RECORD )
|
|
{
|
|
is_complex_type = 1;
|
|
is_singleton = 0;
|
|
}
|
|
else
|
|
{
|
|
is_complex_type = 0;
|
|
is_singleton = 1;
|
|
}
|
|
}
|
|
|
|
else
|
|
{
|
|
is_singleton = 0;
|
|
is_complex_type = 0;
|
|
}
|
|
|
|
if ( is_singleton )
|
|
{
|
|
// Don't do any further key computations - we'll do them
|
|
// via the singleton later.
|
|
singleton_tag = (*type->Types())[0]->InternalType();
|
|
size = 0;
|
|
key = 0;
|
|
}
|
|
|
|
else
|
|
{
|
|
size = ComputeKeySize(0, 1, true);
|
|
|
|
if ( size > 0 )
|
|
// Fixed size. Make sure what we get is fully aligned.
|
|
key = reinterpret_cast<char*>
|
|
(new double[size/sizeof(double) + 1]);
|
|
else
|
|
key = 0;
|
|
}
|
|
}
|
|
|
|
CompositeHash::~CompositeHash()
|
|
{
|
|
Unref(type);
|
|
delete [] key;
|
|
}
|
|
|
|
// Computes the piece of the hash for Val*, returning the new kp.
|
|
char* CompositeHash::SingleValHash(int type_check, char* kp0,
|
|
BroType* bt, Val* v, bool optional) const
|
|
{
|
|
char* kp1 = 0;
|
|
InternalTypeTag t = bt->InternalType();
|
|
|
|
if ( optional )
|
|
{
|
|
// Add a marker saying whether the optional field is set.
|
|
char* kp = AlignAndPadType<char>(kp0);
|
|
*kp = ( v ? 1 : 0);
|
|
kp0 = reinterpret_cast<char*>(kp+1);
|
|
|
|
if ( ! v )
|
|
return kp0;
|
|
}
|
|
|
|
if ( type_check )
|
|
{
|
|
InternalTypeTag vt = v->Type()->InternalType();
|
|
if ( vt != t )
|
|
return 0;
|
|
}
|
|
|
|
switch ( t ) {
|
|
case TYPE_INTERNAL_INT:
|
|
{
|
|
bro_int_t* kp = AlignAndPadType<bro_int_t>(kp0);
|
|
*kp = v->ForceAsInt();
|
|
kp1 = reinterpret_cast<char*>(kp+1);
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_UNSIGNED:
|
|
{
|
|
bro_uint_t* kp = AlignAndPadType<bro_uint_t>(kp0);
|
|
*kp = v->ForceAsUInt();
|
|
kp1 = reinterpret_cast<char*>(kp+1);
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_ADDR:
|
|
{
|
|
uint32* kp = AlignAndPadType<uint32>(kp0);
|
|
v->AsAddr().CopyIPv6(kp);
|
|
kp1 = reinterpret_cast<char*>(kp+4);
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_SUBNET:
|
|
{
|
|
uint32* kp = AlignAndPadType<uint32>(kp0);
|
|
v->AsSubNet().Prefix().CopyIPv6(kp);
|
|
kp[4] = v->AsSubNet().Length();
|
|
kp1 = reinterpret_cast<char*>(kp+5);
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_DOUBLE:
|
|
{
|
|
double* kp = AlignAndPadType<double>(kp0);
|
|
*kp = v->InternalDouble();
|
|
kp1 = reinterpret_cast<char*>(kp+1);
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_VOID:
|
|
case TYPE_INTERNAL_OTHER:
|
|
{
|
|
switch ( v->Type()->Tag() ) {
|
|
case TYPE_FUNC:
|
|
{
|
|
uint32* kp = AlignAndPadType<uint32>(kp0);
|
|
*kp = v->AsFunc()->GetUniqueFuncID();
|
|
kp1 = reinterpret_cast<char*>(kp+1);
|
|
break;
|
|
}
|
|
|
|
case TYPE_RECORD:
|
|
{
|
|
char* kp = kp0;
|
|
RecordVal* rv = v->AsRecordVal();
|
|
RecordType* rt = bt->AsRecordType();
|
|
int num_fields = rt->NumFields();
|
|
|
|
for ( int i = 0; i < num_fields; ++i )
|
|
{
|
|
Val* rv_i = rv->Lookup(i);
|
|
|
|
Attributes* a = rt->FieldDecl(i)->attrs;
|
|
bool optional = (a && a->FindAttr(ATTR_OPTIONAL));
|
|
|
|
if ( ! (rv_i || optional) )
|
|
return 0;
|
|
|
|
if ( ! (kp = SingleValHash(type_check, kp,
|
|
rt->FieldType(i),
|
|
rv_i, optional)) )
|
|
return 0;
|
|
}
|
|
|
|
kp1 = kp;
|
|
break;
|
|
}
|
|
|
|
case TYPE_TABLE:
|
|
{
|
|
int* kp = AlignAndPadType<int>(kp0);
|
|
TableVal* tv = v->AsTableVal();
|
|
ListVal* lv = tv->ConvertToList();
|
|
*kp = tv->Size();
|
|
kp1 = reinterpret_cast<char*>(kp+1);
|
|
for ( int i = 0; i < tv->Size(); ++i )
|
|
{
|
|
Val* key = lv->Index(i);
|
|
if ( ! (kp1 = SingleValHash(type_check, kp1, key->Type(), key,
|
|
false)) )
|
|
return 0;
|
|
|
|
if ( ! v->Type()->IsSet() )
|
|
{
|
|
Val* val = tv->Lookup(key);
|
|
if ( ! (kp1 = SingleValHash(type_check, kp1, val->Type(),
|
|
val, false)) )
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TYPE_VECTOR:
|
|
{
|
|
unsigned int* kp = AlignAndPadType<unsigned int>(kp0);
|
|
VectorVal* vv = v->AsVectorVal();
|
|
VectorType* vt = v->Type()->AsVectorType();
|
|
vector<Val*>* indices = v->AsVector();
|
|
*kp = vv->Size();
|
|
kp1 = reinterpret_cast<char*>(kp+1);
|
|
for ( unsigned int i = 0; i < vv->Size(); ++i )
|
|
{
|
|
Val* val = vv->Lookup(i);
|
|
unsigned int* kp = AlignAndPadType<unsigned int>(kp1);
|
|
*kp = i;
|
|
kp1 = reinterpret_cast<char*>(kp+1);
|
|
kp = AlignAndPadType<unsigned int>(kp1);
|
|
*kp = val ? 1 : 0;
|
|
kp1 = reinterpret_cast<char*>(kp+1);
|
|
|
|
if ( val )
|
|
{
|
|
if ( ! (kp1 = SingleValHash(type_check, kp1,
|
|
vt->YieldType(), val, false)) )
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TYPE_LIST:
|
|
{
|
|
int* kp = AlignAndPadType<int>(kp0);
|
|
ListVal* lv = v->AsListVal();
|
|
*kp = lv->Length();
|
|
kp1 = reinterpret_cast<char*>(kp+1);
|
|
for ( int i = 0; i < lv->Length(); ++i )
|
|
{
|
|
Val* v = lv->Index(i);
|
|
if ( ! (kp1 = SingleValHash(type_check, kp1, v->Type(), v,
|
|
false)) )
|
|
return 0;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
reporter->InternalError("bad index type in CompositeHash::SingleValHash");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
break; // case TYPE_INTERNAL_VOID/OTHER
|
|
}
|
|
|
|
case TYPE_INTERNAL_STRING:
|
|
{
|
|
// Align to int for the length field.
|
|
int* kp = AlignAndPadType<int>(kp0);
|
|
const BroString* sval = v->AsString();
|
|
|
|
*kp = sval->Len(); // so we can recover the value
|
|
|
|
kp1 = reinterpret_cast<char*>(kp+1);
|
|
|
|
memcpy(kp1, sval->Bytes(), sval->Len());
|
|
kp1 += sval->Len();
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_ERROR:
|
|
return 0;
|
|
}
|
|
|
|
return kp1;
|
|
}
|
|
|
|
|
|
HashKey* CompositeHash::ComputeHash(const Val* v, int type_check) const
|
|
{
|
|
if ( ! v )
|
|
reporter->InternalError("null value given to CompositeHash::ComputeHash");
|
|
|
|
if ( is_singleton )
|
|
return ComputeSingletonHash(v, type_check);
|
|
|
|
if ( is_complex_type && v->Type()->Tag() != TYPE_LIST )
|
|
{
|
|
ListVal lv(TYPE_ANY);
|
|
|
|
// Cast away const to use ListVal - but since we
|
|
// re-introduce const on the recursive call, it should
|
|
// be okay; the only thing is that the ListVal unref's it.
|
|
Val* ncv = (Val*) v;
|
|
ncv->Ref();
|
|
lv.Append(ncv);
|
|
HashKey* hk = ComputeHash(&lv, type_check);
|
|
return hk;
|
|
}
|
|
|
|
char* k = key;
|
|
|
|
if ( ! k )
|
|
{
|
|
int sz = ComputeKeySize(v, type_check, false);
|
|
if ( sz == 0 )
|
|
return 0;
|
|
|
|
k = reinterpret_cast<char*>(new double[sz/sizeof(double) + 1]);
|
|
type_check = 0; // no need to type-check again.
|
|
}
|
|
|
|
const type_list* tl = type->Types();
|
|
|
|
if ( type_check && v->Type()->Tag() != TYPE_LIST )
|
|
return 0;
|
|
|
|
const val_list* vl = v->AsListVal()->Vals();
|
|
if ( type_check && vl->length() != tl->length() )
|
|
return 0;
|
|
|
|
char* kp = k;
|
|
loop_over_list(*tl, i)
|
|
{
|
|
kp = SingleValHash(type_check, kp, (*tl)[i], (*vl)[i], false);
|
|
if ( ! kp )
|
|
return 0;
|
|
}
|
|
|
|
return new HashKey((k == key), (void*) k, kp - k);
|
|
}
|
|
|
|
HashKey* CompositeHash::ComputeSingletonHash(const Val* v, int type_check) const
|
|
{
|
|
if ( v->Type()->Tag() == TYPE_LIST )
|
|
{
|
|
const val_list* vl = v->AsListVal()->Vals();
|
|
if ( type_check && vl->length() != 1 )
|
|
return 0;
|
|
|
|
v = (*vl)[0];
|
|
}
|
|
|
|
if ( type_check && v->Type()->InternalType() != singleton_tag )
|
|
return 0;
|
|
|
|
switch ( singleton_tag ) {
|
|
case TYPE_INTERNAL_INT:
|
|
case TYPE_INTERNAL_UNSIGNED:
|
|
return new HashKey(v->ForceAsInt());
|
|
|
|
case TYPE_INTERNAL_ADDR:
|
|
return v->AsAddr().GetHashKey();
|
|
|
|
case TYPE_INTERNAL_SUBNET:
|
|
return v->AsSubNet().GetHashKey();
|
|
|
|
case TYPE_INTERNAL_DOUBLE:
|
|
return new HashKey(v->InternalDouble());
|
|
|
|
case TYPE_INTERNAL_VOID:
|
|
case TYPE_INTERNAL_OTHER:
|
|
if ( v->Type()->Tag() == TYPE_FUNC )
|
|
return new HashKey(v->AsFunc()->GetUniqueFuncID());
|
|
|
|
reporter->InternalError("bad index type in CompositeHash::ComputeSingletonHash");
|
|
return 0;
|
|
|
|
case TYPE_INTERNAL_STRING:
|
|
return new HashKey(v->AsString());
|
|
|
|
case TYPE_INTERNAL_ERROR:
|
|
return 0;
|
|
|
|
default:
|
|
reporter->InternalError("bad internal type in CompositeHash::ComputeSingletonHash");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int CompositeHash::SingleTypeKeySize(BroType* bt, const Val* v,
|
|
int type_check, int sz, bool optional,
|
|
bool calc_static_size) const
|
|
{
|
|
InternalTypeTag t = bt->InternalType();
|
|
|
|
if ( optional )
|
|
sz = SizeAlign(sz, sizeof(char));
|
|
|
|
if ( type_check && v )
|
|
{
|
|
InternalTypeTag vt = v->Type()->InternalType();
|
|
if ( vt != t )
|
|
return 0;
|
|
}
|
|
|
|
switch ( t ) {
|
|
case TYPE_INTERNAL_INT:
|
|
case TYPE_INTERNAL_UNSIGNED:
|
|
sz = SizeAlign(sz, sizeof(bro_int_t));
|
|
break;
|
|
|
|
case TYPE_INTERNAL_ADDR:
|
|
sz = SizeAlign(sz, sizeof(uint32));
|
|
sz += sizeof(uint32) * 3; // to make a total of 4 words
|
|
break;
|
|
|
|
case TYPE_INTERNAL_SUBNET:
|
|
sz = SizeAlign(sz, sizeof(uint32));
|
|
sz += sizeof(uint32) * 4; // to make a total of 5 words
|
|
break;
|
|
|
|
case TYPE_INTERNAL_DOUBLE:
|
|
sz = SizeAlign(sz, sizeof(double));
|
|
break;
|
|
|
|
case TYPE_INTERNAL_VOID:
|
|
case TYPE_INTERNAL_OTHER:
|
|
{
|
|
switch ( bt->Tag() ) {
|
|
case TYPE_FUNC:
|
|
{
|
|
sz = SizeAlign(sz, sizeof(uint32));
|
|
break;
|
|
}
|
|
|
|
case TYPE_RECORD:
|
|
{
|
|
const RecordVal* rv = v ? v->AsRecordVal() : 0;
|
|
RecordType* rt = bt->AsRecordType();
|
|
int num_fields = rt->NumFields();
|
|
|
|
for ( int i = 0; i < num_fields; ++i )
|
|
{
|
|
Attributes* a = rt->FieldDecl(i)->attrs;
|
|
bool optional = (a && a->FindAttr(ATTR_OPTIONAL));
|
|
|
|
sz = SingleTypeKeySize(rt->FieldType(i),
|
|
rv ? rv->Lookup(i) : 0,
|
|
type_check, sz, optional,
|
|
calc_static_size);
|
|
if ( ! sz )
|
|
return 0;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case TYPE_TABLE:
|
|
{
|
|
if ( ! v )
|
|
return (optional && ! calc_static_size) ? sz : 0;
|
|
|
|
sz = SizeAlign(sz, sizeof(int));
|
|
TableVal* tv = const_cast<TableVal*>(v->AsTableVal());
|
|
ListVal* lv = tv->ConvertToList();
|
|
for ( int i = 0; i < tv->Size(); ++i )
|
|
{
|
|
Val* key = lv->Index(i);
|
|
sz = SingleTypeKeySize(key->Type(), key, type_check, sz, false,
|
|
calc_static_size);
|
|
if ( ! sz ) return 0;
|
|
if ( ! bt->IsSet() )
|
|
{
|
|
Val* val = tv->Lookup(key);
|
|
sz = SingleTypeKeySize(val->Type(), val, type_check, sz,
|
|
false, calc_static_size);
|
|
if ( ! sz ) return 0;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case TYPE_VECTOR:
|
|
{
|
|
if ( ! v )
|
|
return (optional && ! calc_static_size) ? sz : 0;
|
|
|
|
sz = SizeAlign(sz, sizeof(unsigned int));
|
|
VectorVal* vv = const_cast<VectorVal*>(v->AsVectorVal());
|
|
for ( unsigned int i = 0; i < vv->Size(); ++i )
|
|
{
|
|
Val* val = vv->Lookup(i);
|
|
sz = SizeAlign(sz, sizeof(unsigned int));
|
|
sz = SizeAlign(sz, sizeof(unsigned int));
|
|
if ( val )
|
|
sz = SingleTypeKeySize(bt->AsVectorType()->YieldType(),
|
|
val, type_check, sz, false,
|
|
calc_static_size);
|
|
if ( ! sz ) return 0;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case TYPE_LIST:
|
|
{
|
|
sz = SizeAlign(sz, sizeof(int));
|
|
ListVal* lv = const_cast<ListVal*>(v->AsListVal());
|
|
for ( int i = 0; i < lv->Length(); ++i )
|
|
{
|
|
sz = SingleTypeKeySize(lv->Index(i)->Type(), lv->Index(i),
|
|
type_check, sz, false, calc_static_size);
|
|
if ( ! sz) return 0;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
reporter->InternalError("bad index type in CompositeHash::CompositeHash");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
break; // case TYPE_INTERNAL_VOID/OTHER
|
|
}
|
|
|
|
case TYPE_INTERNAL_STRING:
|
|
if ( ! v )
|
|
return (optional && ! calc_static_size) ? sz : 0;
|
|
|
|
// Factor in length field.
|
|
sz = SizeAlign(sz, sizeof(int));
|
|
sz += v->AsString()->Len();
|
|
break;
|
|
|
|
case TYPE_INTERNAL_ERROR:
|
|
return 0;
|
|
}
|
|
|
|
return sz;
|
|
}
|
|
|
|
int CompositeHash::ComputeKeySize(const Val* v, int type_check, bool calc_static_size) const
|
|
{
|
|
const type_list* tl = type->Types();
|
|
const val_list* vl = 0;
|
|
if ( v )
|
|
{
|
|
if ( type_check && v->Type()->Tag() != TYPE_LIST )
|
|
return 0;
|
|
|
|
vl = v->AsListVal()->Vals();
|
|
if ( type_check && vl->length() != tl->length() )
|
|
return 0;
|
|
}
|
|
|
|
int sz = 0;
|
|
loop_over_list(*tl, i)
|
|
{
|
|
sz = SingleTypeKeySize((*tl)[i], v ? v->AsListVal()->Index(i) : 0,
|
|
type_check, sz, false, calc_static_size);
|
|
if ( ! sz )
|
|
return 0;
|
|
}
|
|
|
|
return sz;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
inline bool is_power_of_2(bro_uint_t x)
|
|
{
|
|
return ((x - 1) & x) == 0;
|
|
}
|
|
}
|
|
|
|
const void* CompositeHash::Align(const char* ptr, unsigned int size) const
|
|
{
|
|
if ( ! size )
|
|
return ptr;
|
|
|
|
ASSERT(is_power_of_2(size));
|
|
|
|
unsigned int mask = size - 1; // Assume size is a power of 2.
|
|
unsigned long l_ptr = reinterpret_cast<unsigned long>(ptr);
|
|
unsigned long offset = l_ptr & mask;
|
|
|
|
if ( offset > 0 )
|
|
return reinterpret_cast<const void*>(ptr - offset + size);
|
|
else
|
|
return reinterpret_cast<const void*>(ptr);
|
|
}
|
|
|
|
void* CompositeHash::AlignAndPad(char* ptr, unsigned int size) const
|
|
{
|
|
if ( ! size )
|
|
return ptr;
|
|
|
|
ASSERT(is_power_of_2(size));
|
|
|
|
unsigned int mask = size - 1; // Assume size is a power of 2.
|
|
while ( (reinterpret_cast<unsigned long>(ptr) & mask) != 0 )
|
|
// Not aligned - zero pad.
|
|
*ptr++ = '\0';
|
|
|
|
return reinterpret_cast<void *>(ptr);
|
|
}
|
|
|
|
int CompositeHash::SizeAlign(int offset, unsigned int size) const
|
|
{
|
|
if ( ! size )
|
|
return offset;
|
|
|
|
ASSERT(is_power_of_2(size));
|
|
|
|
unsigned int mask = size - 1; // Assume size is a power of 2.
|
|
if ( offset & mask )
|
|
{
|
|
offset &= ~mask; // Round down.
|
|
offset += size; // Round up.
|
|
}
|
|
|
|
offset += size; // Add in size.
|
|
|
|
return offset;
|
|
}
|
|
|
|
ListVal* CompositeHash::RecoverVals(const HashKey* k) const
|
|
{
|
|
ListVal* l = new ListVal(TYPE_ANY);
|
|
const type_list* tl = type->Types();
|
|
const char* kp = (const char*) k->Key();
|
|
const char* const k_end = kp + k->Size();
|
|
|
|
loop_over_list(*tl, i)
|
|
{
|
|
Val* v;
|
|
kp = RecoverOneVal(k, kp, k_end, (*tl)[i], v, false);
|
|
ASSERT(v);
|
|
l->Append(v);
|
|
}
|
|
|
|
if ( kp != k_end )
|
|
reporter->InternalError("under-ran key in CompositeHash::DescribeKey %zd", k_end - kp);
|
|
|
|
return l;
|
|
}
|
|
|
|
const char* CompositeHash::RecoverOneVal(const HashKey* k, const char* kp0,
|
|
const char* const k_end, BroType* t,
|
|
Val*& pval, bool optional) const
|
|
{
|
|
// k->Size() == 0 for a single empty string.
|
|
if ( kp0 >= k_end && k->Size() > 0 )
|
|
reporter->InternalError("over-ran key in CompositeHash::RecoverVals");
|
|
|
|
TypeTag tag = t->Tag();
|
|
InternalTypeTag it = t->InternalType();
|
|
const char* kp1 = 0;
|
|
|
|
if ( optional )
|
|
{
|
|
const char* kp = AlignType<char>(kp0);
|
|
kp0 = kp1 = reinterpret_cast<const char*>(kp+1);
|
|
|
|
if ( ! *kp )
|
|
{
|
|
pval = 0;
|
|
return kp0;
|
|
}
|
|
}
|
|
|
|
switch ( it ) {
|
|
case TYPE_INTERNAL_INT:
|
|
{
|
|
const bro_int_t* const kp = AlignType<bro_int_t>(kp0);
|
|
kp1 = reinterpret_cast<const char*>(kp+1);
|
|
|
|
if ( tag == TYPE_ENUM )
|
|
pval = new EnumVal(*kp, t->AsEnumType());
|
|
else
|
|
pval = new Val(*kp, tag);
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_UNSIGNED:
|
|
{
|
|
const bro_uint_t* const kp = AlignType<bro_uint_t>(kp0);
|
|
kp1 = reinterpret_cast<const char*>(kp+1);
|
|
|
|
switch ( tag ) {
|
|
case TYPE_COUNT:
|
|
case TYPE_COUNTER:
|
|
pval = new Val(*kp, tag);
|
|
break;
|
|
|
|
case TYPE_PORT:
|
|
pval = new PortVal(*kp);
|
|
break;
|
|
|
|
default:
|
|
reporter->InternalError("bad internal unsigned int in CompositeHash::RecoverOneVal()");
|
|
pval = 0;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_DOUBLE:
|
|
{
|
|
const double* const kp = AlignType<double>(kp0);
|
|
kp1 = reinterpret_cast<const char*>(kp+1);
|
|
|
|
if ( tag == TYPE_INTERVAL )
|
|
pval = new IntervalVal(*kp, 1.0);
|
|
else
|
|
pval = new Val(*kp, tag);
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_ADDR:
|
|
{
|
|
const uint32* const kp = AlignType<uint32>(kp0);
|
|
kp1 = reinterpret_cast<const char*>(kp+4);
|
|
|
|
IPAddr addr(IPv6, kp, IPAddr::Network);
|
|
|
|
switch ( tag ) {
|
|
case TYPE_ADDR:
|
|
pval = new AddrVal(addr);
|
|
break;
|
|
|
|
default:
|
|
reporter->InternalError("bad internal address in CompositeHash::RecoverOneVal()");
|
|
pval = 0;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_SUBNET:
|
|
{
|
|
const uint32* const kp = AlignType<uint32>(kp0);
|
|
kp1 = reinterpret_cast<const char*>(kp+5);
|
|
pval = new SubNetVal(kp, kp[4]);
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_VOID:
|
|
case TYPE_INTERNAL_OTHER:
|
|
{
|
|
switch ( t->Tag() ) {
|
|
case TYPE_FUNC:
|
|
{
|
|
const uint32* const kp = AlignType<uint32>(kp0);
|
|
kp1 = reinterpret_cast<const char*>(kp+1);
|
|
|
|
Func* f = Func::GetFuncPtrByID(*kp);
|
|
|
|
if ( ! f )
|
|
reporter->InternalError("failed to look up unique function id %" PRIu32 " in CompositeHash::RecoverOneVal()", *kp);
|
|
|
|
pval = new Val(f);
|
|
|
|
if ( ! pval->Type() )
|
|
reporter->InternalError("bad aggregate Val in CompositeHash::RecoverOneVal()");
|
|
|
|
else if ( t->Tag() != TYPE_FUNC &&
|
|
! same_type(pval->Type(), t) )
|
|
// ### Maybe fix later, but may be fundamentally
|
|
// un-checkable --US
|
|
reporter->InternalError("inconsistent aggregate Val in CompositeHash::RecoverOneVal()");
|
|
|
|
// ### A crude approximation for now.
|
|
else if ( t->Tag() == TYPE_FUNC &&
|
|
pval->Type()->Tag() != TYPE_FUNC )
|
|
reporter->InternalError("inconsistent aggregate Val in CompositeHash::RecoverOneVal()");
|
|
}
|
|
break;
|
|
|
|
case TYPE_RECORD:
|
|
{
|
|
const char* kp = kp0;
|
|
RecordType* rt = t->AsRecordType();
|
|
int num_fields = rt->NumFields();
|
|
|
|
vector<Val*> values;
|
|
int i;
|
|
for ( i = 0; i < num_fields; ++i )
|
|
{
|
|
Val* v;
|
|
|
|
Attributes* a = rt->FieldDecl(i)->attrs;
|
|
bool optional = (a && a->FindAttr(ATTR_OPTIONAL));
|
|
|
|
kp = RecoverOneVal(k, kp, k_end,
|
|
rt->FieldType(i), v, optional);
|
|
if ( ! (v || optional) )
|
|
{
|
|
reporter->InternalError("didn't recover expected number of fields from HashKey");
|
|
pval = 0;
|
|
break;
|
|
}
|
|
|
|
values.push_back(v);
|
|
}
|
|
|
|
ASSERT(int(values.size()) == num_fields);
|
|
|
|
RecordVal* rv = new RecordVal(rt);
|
|
|
|
for ( int i = 0; i < num_fields; ++i )
|
|
rv->Assign(i, values[i]);
|
|
|
|
pval = rv;
|
|
kp1 = kp;
|
|
}
|
|
break;
|
|
|
|
case TYPE_TABLE:
|
|
{
|
|
int n;
|
|
const int* const kp = AlignType<int>(kp0);
|
|
n = *kp;
|
|
kp1 = reinterpret_cast<const char*>(kp+1);
|
|
TableType* tt = t->AsTableType();
|
|
TableVal* tv = new TableVal(tt);
|
|
vector<Val*> keys, values;
|
|
for ( int i = 0; i < n; ++i )
|
|
{
|
|
Val* key;
|
|
kp1 = RecoverOneVal(k, kp1, k_end, tt->Indices(), key, false);
|
|
keys.push_back(key);
|
|
if ( ! t->IsSet() )
|
|
{
|
|
Val* value;
|
|
kp1 = RecoverOneVal(k, kp1, k_end, tt->YieldType(), value,
|
|
false);
|
|
values.push_back(value);
|
|
}
|
|
}
|
|
|
|
for ( int i = 0; i < n; ++i )
|
|
tv->Assign(keys[i], t->IsSet() ? 0 : values[i]);
|
|
|
|
pval = tv;
|
|
}
|
|
break;
|
|
|
|
case TYPE_VECTOR:
|
|
{
|
|
unsigned int n;
|
|
const unsigned int* kp = AlignType<unsigned int>(kp0);
|
|
n = *kp;
|
|
kp1 = reinterpret_cast<const char*>(kp+1);
|
|
VectorType* vt = t->AsVectorType();
|
|
VectorVal* vv = new VectorVal(vt);
|
|
for ( unsigned int i = 0; i < n; ++i )
|
|
{
|
|
kp = AlignType<unsigned int>(kp1);
|
|
unsigned int index = *kp;
|
|
kp1 = reinterpret_cast<const char*>(kp+1);
|
|
kp = AlignType<unsigned int>(kp1);
|
|
unsigned int have_val = *kp;
|
|
kp1 = reinterpret_cast<const char*>(kp+1);
|
|
Val* value = 0;
|
|
if ( have_val )
|
|
kp1 = RecoverOneVal(k, kp1, k_end, vt->YieldType(), value,
|
|
false);
|
|
vv->Assign(index, value);
|
|
}
|
|
|
|
pval = vv;
|
|
}
|
|
break;
|
|
|
|
case TYPE_LIST:
|
|
{
|
|
int n;
|
|
const int* const kp = AlignType<int>(kp0);
|
|
n = *kp;
|
|
kp1 = reinterpret_cast<const char*>(kp+1);
|
|
TypeList* tl = t->AsTypeList();
|
|
ListVal* lv = new ListVal(TYPE_ANY);
|
|
for ( int i = 0; i < n; ++i )
|
|
{
|
|
Val* v;
|
|
BroType* it = (*tl->Types())[i];
|
|
kp1 = RecoverOneVal(k, kp1, k_end, it, v, false);
|
|
lv->Append(v);
|
|
}
|
|
|
|
pval = lv;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
reporter->InternalError("bad index type in CompositeHash::DescribeKey");
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_STRING:
|
|
{
|
|
// There is a minor issue here -- the pointer does not have to
|
|
// be aligned by int in the singleton case.
|
|
|
|
int n;
|
|
if ( is_singleton )
|
|
{
|
|
kp1 = kp0;
|
|
n = k->Size();
|
|
}
|
|
else
|
|
{
|
|
const int* const kp = AlignType<int>(kp0);
|
|
n = *kp;
|
|
kp1 = reinterpret_cast<const char*>(kp+1);
|
|
}
|
|
|
|
pval = new StringVal(new BroString((const byte_vec) kp1, n, 1));
|
|
kp1 += n;
|
|
}
|
|
break;
|
|
|
|
case TYPE_INTERNAL_ERROR:
|
|
break;
|
|
}
|
|
|
|
return kp1;
|
|
}
|