zeek/src/probabilistic/Hasher.cc
Robin Sommer 4d84ee82da Merge remote-tracking branch 'origin/topic/johanna/bit-1612'
Addig a new random seed for external tests.

I added a wrapper around the siphash() function to make calling it a
little bit safer at least.

BIT-1612 #merged

* origin/topic/johanna/bit-1612:
  HLL: Fix missing typecast in test case.
  Remove the -K/-J options for setting keys.
  Add test checking the quality of HLL by adding a lot of elements.
  Fix serializing probabilistic hashers.
  Baseline updates after hash function change.
  Also switch BloomFilters from H3 to siphash.
  Change Hashing from H3 to Siphash.
  HLL: Remove unnecessary comparison.
  Hyperloglog: change calculation of Rho
2016-07-14 16:26:17 -07:00

242 lines
4.9 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include <typeinfo>
#include <openssl/md5.h>
#include "Hasher.h"
#include "NetVar.h"
#include "Serializer.h"
#include "digest.h"
#include "siphash24.h"
using namespace probabilistic;
Hasher::seed_t Hasher::MakeSeed(const void* data, size_t size)
{
u_char buf[SHA256_DIGEST_LENGTH];
seed_t tmpseed;
SHA256_CTX ctx;
sha256_init(&ctx);
assert(sizeof(tmpseed) == 16);
if ( data )
sha256_update(&ctx, data, size);
else if ( global_hash_seed && global_hash_seed->Len() > 0 )
sha256_update(&ctx, global_hash_seed->Bytes(), global_hash_seed->Len());
else
{
unsigned int first_seed = initial_seed();
sha256_update(&ctx, &first_seed, sizeof(first_seed));
}
sha256_final(&ctx, buf);
memcpy(&tmpseed, buf, sizeof(tmpseed)); // Use the first bytes as seed.
return tmpseed;
}
Hasher::digest_vector Hasher::Hash(const HashKey* key) const
{
return Hash(key->Key(), key->Size());
}
bool Hasher::Serialize(SerialInfo* info) const
{
return SerialObj::Serialize(info);
}
Hasher* Hasher::Unserialize(UnserialInfo* info)
{
return reinterpret_cast<Hasher*>(SerialObj::Unserialize(info, SER_HASHER));
}
bool Hasher::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_HASHER, SerialObj);
if ( ! SERIALIZE(static_cast<uint16>(k)) )
return false;
if ( ! SERIALIZE(static_cast<uint64>(seed.h1)) )
return false;
return SERIALIZE(static_cast<uint64>(seed.h2));
}
bool Hasher::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(SerialObj);
uint16 serial_k;
if ( ! UNSERIALIZE(&serial_k) )
return false;
k = serial_k;
assert(k > 0);
seed_t serial_seed;
if ( ! UNSERIALIZE(&serial_seed.h1) )
return false;
if ( ! UNSERIALIZE(&serial_seed.h2) )
return false;
seed = serial_seed;
return true;
}
Hasher::Hasher(size_t arg_k, seed_t arg_seed)
{
k = arg_k;
seed = arg_seed;
}
UHF::UHF()
{
memset(&seed, 0, sizeof(seed));
}
UHF::UHF(Hasher::seed_t arg_seed)
{
seed = arg_seed;
}
// This function is almost equivalent to HashKey::HashBytes except that it
// does not depend on global state and that we mix in the seed multiple
// times.
Hasher::digest UHF::hash(const void* x, size_t n) const
{
assert(sizeof(Hasher::seed_t) == SIPHASH_KEYLEN);
if ( n <= UHASH_KEY_SIZE )
{
hash_t outdigest;
siphash(&outdigest, reinterpret_cast<const uint8_t*>(x), n, reinterpret_cast<const uint8_t*>(&seed));
return outdigest;
}
unsigned char d[16];
MD5(reinterpret_cast<const unsigned char*>(x), n, d);
const unsigned char* s = reinterpret_cast<const unsigned char*>(&seed);
for ( size_t i = 0; i < 16; ++i )
d[i] ^= s[i % sizeof(seed)];
MD5(d, 16, d);
return *reinterpret_cast<const Hasher::digest*>(d);
}
DefaultHasher::DefaultHasher(size_t k, Hasher::seed_t seed)
: Hasher(k, seed)
{
for ( size_t i = 1; i <= k; ++i )
{
seed_t s = Seed();
s.h1 += bro_prng(i);
hash_functions.push_back(UHF(s));
}
}
Hasher::digest_vector DefaultHasher::Hash(const void* x, size_t n) const
{
digest_vector h(K(), 0);
for ( size_t i = 0; i < h.size(); ++i )
h[i] = hash_functions[i](x, n);
return h;
}
DefaultHasher* DefaultHasher::Clone() const
{
return new DefaultHasher(*this);
}
bool DefaultHasher::Equals(const Hasher* other) const
{
if ( typeid(*this) != typeid(*other) )
return false;
const DefaultHasher* o = static_cast<const DefaultHasher*>(other);
return hash_functions == o->hash_functions;
}
IMPLEMENT_SERIAL(DefaultHasher, SER_DEFAULTHASHER)
bool DefaultHasher::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_DEFAULTHASHER, Hasher);
// Nothing to do here, the base class has all we need serialized already.
return true;
}
bool DefaultHasher::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(Hasher);
hash_functions.clear();
for ( size_t i = 0; i < K(); ++i )
{
Hasher::seed_t s = Seed();
s.h1 += bro_prng(i);
hash_functions.push_back(UHF(s));
}
return true;
}
DoubleHasher::DoubleHasher(size_t k, seed_t seed)
: Hasher(k, seed), h1(seed + bro_prng(1)), h2(seed + bro_prng(2))
{
}
Hasher::digest_vector DoubleHasher::Hash(const void* x, size_t n) const
{
digest d1 = h1(x, n);
digest d2 = h2(x, n);
digest_vector h(K(), 0);
for ( size_t i = 0; i < h.size(); ++i )
h[i] = d1 + i * d2;
return h;
}
DoubleHasher* DoubleHasher::Clone() const
{
return new DoubleHasher(*this);
}
bool DoubleHasher::Equals(const Hasher* other) const
{
if ( typeid(*this) != typeid(*other) )
return false;
const DoubleHasher* o = static_cast<const DoubleHasher*>(other);
return h1 == o->h1 && h2 == o->h2;
}
IMPLEMENT_SERIAL(DoubleHasher, SER_DOUBLEHASHER)
bool DoubleHasher::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_DOUBLEHASHER, Hasher);
// Nothing to do here, the base class has all we need serialized already.
return true;
}
bool DoubleHasher::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(Hasher);
h1 = UHF(Seed() + bro_prng(1));
h2 = UHF(Seed() + bro_prng(2));
return true;
}