zeek/src/Type.cc
2025-09-21 17:13:14 +00:00

2701 lines
78 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include "zeek/Type.h"
#include <algorithm>
#include <cinttypes>
#include <map>
#include <string>
#include <unordered_set>
#include "zeek/Attr.h"
#include "zeek/CompHash.h"
#include "zeek/Desc.h"
#include "zeek/Expr.h"
#include "zeek/Reporter.h"
#include "zeek/RunState.h"
#include "zeek/Scope.h"
#include "zeek/Traverse.h"
#include "zeek/Val.h"
#include "zeek/Var.h"
#include "zeek/module_util.h"
#include "zeek/zeekygen/IdentifierInfo.h"
#include "zeek/zeekygen/Manager.h"
#include "zeek/zeekygen/ScriptInfo.h"
#include "zeek/zeekygen/utils.h"
using namespace std;
namespace zeek {
Type::TypeAliasMap Type::type_aliases;
// Note: This function must be thread-safe.
const char* type_name(TypeTag t) {
static constexpr const char* type_names[int(NUM_TYPES)] = {
"void", // 0
"bool", // 1
"int", // 2
"count", // 3
"double", // 4
"time", // 5
"interval", // 6
"string", // 7
"pattern", // 8
"enum", // 9
"port", // 10
"addr", // 11
"subnet", // 12
"any", // 13
"table", // 14
"record", // 15
"types", // 16
"func", // 17
"file", // 18
"vector", // 19
"opaque", // 20
"type", // 21
"error", // 22
};
if ( int(t) >= NUM_TYPES )
return "type_name(): not a type tag";
return type_names[int(t)];
}
Type::Type(TypeTag t, bool arg_base_type)
: tag(t),
internal_tag(to_internal_type_tag(tag)),
is_network_order(zeek::is_network_order(t)),
base_type(arg_base_type) {}
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define CHECK_TYPE_TAG(tag_type, func_name) CHECK_TAG(tag, tag_type, func_name, type_name)
const TypeList* Type::AsTypeList() const {
CHECK_TYPE_TAG(TYPE_LIST, "Type::AsTypeList");
return (const TypeList*)this;
}
TypeList* Type::AsTypeList() {
CHECK_TYPE_TAG(TYPE_LIST, "Type::AsTypeList");
return (TypeList*)this;
}
const TableType* Type::AsTableType() const {
CHECK_TYPE_TAG(TYPE_TABLE, "Type::AsTableType");
return (const TableType*)this;
}
TableType* Type::AsTableType() {
CHECK_TYPE_TAG(TYPE_TABLE, "Type::AsTableType");
return (TableType*)this;
}
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
const SetType* Type::AsSetType() const {
if ( ! IsSet() )
BadTag("Type::AsSetType", type_name(tag));
return (const SetType*)this;
}
SetType* Type::AsSetType() {
if ( ! IsSet() )
BadTag("Type::AsSetType", type_name(tag));
return (SetType*)this;
}
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
const RecordType* Type::AsRecordType() const {
CHECK_TYPE_TAG(TYPE_RECORD, "Type::AsRecordType");
return (const RecordType*)this;
}
RecordType* Type::AsRecordType() {
CHECK_TYPE_TAG(TYPE_RECORD, "Type::AsRecordType");
return (RecordType*)this;
}
const FuncType* Type::AsFuncType() const {
CHECK_TYPE_TAG(TYPE_FUNC, "Type::AsFuncType");
return (const FuncType*)this;
}
FuncType* Type::AsFuncType() {
CHECK_TYPE_TAG(TYPE_FUNC, "Type::AsFuncType");
return (FuncType*)this;
}
const FileType* Type::AsFileType() const {
CHECK_TYPE_TAG(TYPE_FILE, "Type::AsFileType");
return (const FileType*)this;
}
FileType* Type::AsFileType() {
CHECK_TYPE_TAG(TYPE_FILE, "Type::AsFileType");
return (FileType*)this;
}
const EnumType* Type::AsEnumType() const {
CHECK_TYPE_TAG(TYPE_ENUM, "Type::AsEnumType");
return (const EnumType*)this;
}
EnumType* Type::AsEnumType() {
CHECK_TYPE_TAG(TYPE_ENUM, "Type::AsEnumType");
return (EnumType*)this;
}
const VectorType* Type::AsVectorType() const {
CHECK_TYPE_TAG(TYPE_VECTOR, "Type::AsVectorType");
return (const VectorType*)this;
}
VectorType* Type::AsVectorType() {
CHECK_TYPE_TAG(TYPE_VECTOR, "Type::AsVectorType");
return (VectorType*)this;
}
const OpaqueType* Type::AsOpaqueType() const {
CHECK_TYPE_TAG(TYPE_OPAQUE, "Type::AsOpaqueType");
return (const OpaqueType*)this;
}
OpaqueType* Type::AsOpaqueType() {
CHECK_TYPE_TAG(TYPE_OPAQUE, "Type::AsOpaqueType");
return (OpaqueType*)this;
}
const TypeType* Type::AsTypeType() const {
CHECK_TYPE_TAG(TYPE_TYPE, "Type::AsTypeType");
return (const TypeType*)this;
}
TypeType* Type::AsTypeType() {
CHECK_TYPE_TAG(TYPE_TYPE, "Type::AsTypeType");
return (TypeType*)this;
}
TypePtr Type::ShallowClone() {
switch ( tag ) {
case TYPE_VOID:
case TYPE_BOOL:
case TYPE_INT:
case TYPE_COUNT:
case TYPE_DOUBLE:
case TYPE_TIME:
case TYPE_INTERVAL:
case TYPE_STRING:
case TYPE_PATTERN:
case TYPE_PORT:
case TYPE_ADDR:
case TYPE_SUBNET:
case TYPE_ANY: return make_intrusive<Type>(tag, base_type);
default: reporter->InternalError("cloning illegal base Type");
}
return nullptr;
}
int Type::MatchesIndex(detail::ListExpr* const index) const {
if ( Tag() == TYPE_STRING ) {
if ( index->Exprs().length() != 1 && index->Exprs().length() != 2 )
return DOES_NOT_MATCH_INDEX;
if ( check_and_promote_exprs_to_type(index, zeek::base_type(TYPE_INT)) )
return MATCHES_INDEX_SCALAR;
}
return DOES_NOT_MATCH_INDEX;
}
const TypePtr& Type::Yield() const { return Type::nil; }
void Type::Describe(ODesc* d) const {
if ( ! d->IsBinary() && ! name.empty() )
d->Add(name);
else
DoDescribe(d);
}
void Type::DoDescribe(ODesc* d) const {
if ( d->IsBinary() )
d->Add(int(Tag()));
else {
TypeTag t = Tag();
if ( IsSet() )
d->Add("set");
else
d->Add(type_name(t));
}
}
void Type::DescribeReST(ODesc* d, bool roles_only) const { d->Add(util::fmt(":zeek:type:`%s`", type_name(Tag()))); }
void Type::SetError() { tag = TYPE_ERROR; }
detail::TraversalCode Type::Traverse(detail::TraversalCallback* cb) const {
auto tc = cb->PreType(this);
HANDLE_TC_TYPE_PRE(tc);
tc = cb->PostType(this);
HANDLE_TC_TYPE_POST(tc);
}
void TypeList::CheckPure() {
if ( pure_type )
return;
if ( ! types.empty() && AllMatch(types[0], false) )
pure_type = types[0];
}
bool TypeList::AllMatch(const Type* t, bool is_init) const {
for ( const auto& type : types )
if ( ! same_type(type, t, is_init) )
return false;
return true;
}
void TypeList::Append(TypePtr t) {
if ( pure_type && ! same_type(t, pure_type) )
reporter->InternalError("pure type-list violation");
types.emplace_back(std::move(t));
}
void TypeList::AppendEvenIfNotPure(TypePtr t) {
if ( pure_type && ! same_type(t, pure_type) )
pure_type = nullptr;
types.emplace_back(std::move(t));
}
void TypeList::DoDescribe(ODesc* d) const {
if ( d->IsReadable() )
d->AddSP("list of");
else {
d->Add(int(Tag()));
d->Add(IsPure());
if ( IsPure() )
pure_type->Describe(d);
d->Add(static_cast<uint64_t>(types.size()));
}
if ( IsPure() )
pure_type->Describe(d);
else {
for ( size_t i = 0; i < types.size(); ++i ) {
if ( i > 0 && ! d->IsBinary() )
d->Add(",");
types[i]->Describe(d);
}
}
}
detail::TraversalCode TypeList::Traverse(detail::TraversalCallback* cb) const {
auto tc = cb->PreType(this);
HANDLE_TC_TYPE_PRE(tc);
for ( const auto& type : types ) {
tc = type->Traverse(cb);
HANDLE_TC_TYPE_PRE(tc);
}
tc = cb->PostType(this);
HANDLE_TC_TYPE_POST(tc);
}
int IndexType::MatchesIndex(detail::ListExpr* const index) const {
// If we have a type indexed by subnets, addresses are ok.
const auto& types = indices->GetTypes();
const ExprPList& exprs = index->Exprs();
if ( types.size() == 1 && types[0]->Tag() == TYPE_SUBNET && exprs.length() == 1 &&
exprs[0]->GetType()->Tag() == TYPE_ADDR )
return MATCHES_INDEX_SCALAR;
return check_and_promote_exprs(index, GetIndices()) ? MATCHES_INDEX_SCALAR : DOES_NOT_MATCH_INDEX;
}
void IndexType::DoDescribe(ODesc* d) const {
Type::DoDescribe(d);
const auto& its = GetIndexTypes();
// Deal with unspecified table/set.
if ( its.empty() ) {
if ( ! d->IsBinary() )
d->Add("()");
return;
}
if ( ! d->IsBinary() )
d->Add("[");
for ( auto i = 0u; i < its.size(); ++i ) {
if ( ! d->IsBinary() && i > 0 )
d->Add(",");
its[i]->Describe(d);
}
if ( ! d->IsBinary() )
d->Add("]");
if ( yield_type ) {
if ( ! d->IsBinary() )
d->Add(" of ");
yield_type->Describe(d);
}
}
void IndexType::DescribeReST(ODesc* d, bool roles_only) const {
d->Add(":zeek:type:`");
if ( IsSet() )
d->Add("set");
else
d->Add(type_name(Tag()));
d->Add("` ");
d->Add("[");
const auto& its = GetIndexTypes();
for ( auto i = 0u; i < its.size(); ++i ) {
if ( i > 0 )
d->Add(", ");
const auto& t = its[i];
if ( ! t->GetName().empty() ) {
d->Add(":zeek:type:`");
d->Add(t->GetName());
d->Add("`");
}
else
t->DescribeReST(d, roles_only);
}
d->Add("]");
if ( yield_type ) {
d->Add(" of ");
if ( ! yield_type->GetName().empty() ) {
d->Add(":zeek:type:`");
d->Add(yield_type->GetName());
d->Add("`");
}
else
yield_type->DescribeReST(d, roles_only);
}
}
detail::TraversalCode IndexType::Traverse(detail::TraversalCallback* cb) const {
auto tc = cb->PreType(this);
HANDLE_TC_TYPE_PRE(tc);
for ( const auto& ind : GetIndexTypes() ) {
tc = ind->Traverse(cb);
HANDLE_TC_TYPE_PRE(tc);
}
if ( yield_type ) {
tc = yield_type->Traverse(cb);
HANDLE_TC_TYPE_PRE(tc);
}
tc = cb->PostType(this);
HANDLE_TC_TYPE_POST(tc);
}
static bool is_supported_index_type(const TypePtr& t, const char** tname, std::unordered_set<TypePtr>& seen) {
if ( t->InternalType() != TYPE_INTERNAL_OTHER )
return true;
// Handle recursive calls as good: If they turn out not
// to be, that should've been discovered further down.
if ( seen.contains(t) )
return true;
seen.insert(t);
auto tag = t->Tag();
switch ( tag ) {
// Allow functions, since they can be compared for Func* pointer equality.
case TYPE_FUNC:
case TYPE_PATTERN: return true;
case TYPE_RECORD: {
auto rt = t->AsRecordType();
for ( auto i = 0; i < rt->NumFields(); ++i )
if ( ! is_supported_index_type(rt->GetFieldType(i), tname, seen) )
return false;
return true;
}
case TYPE_LIST: {
for ( const auto& type : t->AsTypeList()->GetTypes() )
if ( ! is_supported_index_type(type, tname, seen) )
return false;
return true;
}
case TYPE_TABLE: {
auto tt = t->AsTableType();
if ( ! is_supported_index_type(tt->GetIndices(), tname, seen) )
return false;
const auto& yt = tt->Yield();
if ( ! yt )
return true;
return is_supported_index_type(yt, tname, seen);
}
case TYPE_VECTOR: return is_supported_index_type(t->AsVectorType()->Yield(), tname, seen);
default: *tname = type_name(tag); return false;
}
}
TableType::TableType(TypeListPtr ind, TypePtr yield) : IndexType(TYPE_TABLE, std::move(ind), std::move(yield)) {
if ( ! indices )
return;
const auto& tl = indices->GetTypes();
const char* unsupported_type_name = nullptr;
for ( const auto& tli : tl ) {
InternalTypeTag t = tli->InternalType();
if ( t == TYPE_INTERNAL_ERROR )
break;
std::unordered_set<TypePtr> seen;
if ( ! is_supported_index_type(tli, &unsupported_type_name, seen) ) {
auto msg = util::fmt("index type containing '%s' is not supported", unsupported_type_name);
Error(msg, tli.get());
SetError();
break;
}
}
if ( Tag() != TYPE_ERROR )
RegenerateHash();
}
TableType::~TableType() {}
bool TableType::CheckExpireFuncCompatibility(const detail::AttrPtr& attr) {
if ( reported_error )
return false;
bool success = DoExpireCheck(attr);
if ( ! success )
reported_error = true;
return success;
}
TypePtr TableType::ShallowClone() { return make_intrusive<TableType>(indices, yield_type); }
void TableType::RegenerateHash() { table_hash = std::make_unique<detail::CompositeHash>(GetIndices()); }
bool TableType::IsUnspecifiedTable() const {
// Unspecified types have an empty list of indices.
return indices->GetTypes().empty();
}
bool TableType::DoExpireCheck(const detail::AttrPtr& attr) {
assert(attr->Tag() == detail::ATTR_EXPIRE_FUNC);
const auto& expire_func = attr->GetExpr();
if ( expire_func->GetType()->Tag() != TYPE_FUNC ) {
attr->Error("&expire_func attribute is not a function");
return false;
}
const FuncType* e_ft = expire_func->GetType()->AsFuncType();
if ( e_ft->Flavor() != FUNC_FLAVOR_FUNCTION ) {
attr->Error("&expire_func attribute is not a function");
return false;
}
if ( e_ft->Yield()->Tag() != TYPE_INTERVAL ) {
attr->Error("&expire_func must yield a value of type interval");
return false;
}
if ( IsUnspecifiedTable() )
return true;
const auto& func_index_types = e_ft->ParamList()->GetTypes();
// Keep backwards compatibility with idx: any idiom.
if ( func_index_types.size() == 2 ) {
if ( func_index_types[1]->Tag() == TYPE_ANY )
return true;
}
const auto& table_index_types = GetIndexTypes();
std::vector<TypePtr> expected_args;
expected_args.reserve(1 + table_index_types.size());
expected_args.emplace_back(NewRef{}, this);
for ( const auto& t : table_index_types )
expected_args.emplace_back(t);
if ( ! e_ft->CheckArgs(expected_args) ) {
attr->Error("&expire_func argument type clash");
return false;
}
return true;
}
SetType::SetType(TypeListPtr ind, detail::ListExprPtr arg_elements)
: TableType(std::move(ind), nullptr), elements(std::move(arg_elements)) {
if ( elements ) {
if ( indices ) { // We already have a type.
if ( ! check_and_promote_exprs(elements.get(), indices) )
SetError();
}
else {
TypeList* tl_type = elements->GetType()->AsTypeList();
const auto& tl = tl_type->GetTypes();
if ( tl.size() < 1 ) {
Error("no type given for set");
SetError();
}
else if ( tl.size() == 1 ) {
TypePtr ft{NewRef{}, flatten_type(tl[0].get())};
indices = make_intrusive<TypeList>(ft);
indices->Append(std::move(ft));
}
else {
auto t = merge_types(tl[0], tl[1]);
for ( size_t i = 2; t && i < tl.size(); ++i )
t = merge_types(t, tl[i]);
if ( ! t ) {
Error("bad set type");
return;
}
indices = make_intrusive<TypeList>(t);
indices->Append(std::move(t));
}
}
}
}
TypePtr SetType::ShallowClone() { return make_intrusive<SetType>(indices, elements); }
SetType::~SetType() = default;
FuncType::Capture::Capture(detail::IDPtr _id, bool _deep_copy) : id(std::move(_id)), deep_copy(_deep_copy) {
is_managed = id ? ZVal::IsManagedType(id->GetType()) : false;
if ( ! is_managed )
// For non-managed types, deep copying isn't applicable.
deep_copy = false;
}
FuncType::FuncType(RecordTypePtr arg_args, TypePtr arg_yield, FunctionFlavor arg_flavor)
: Type(TYPE_FUNC), args(std::move(arg_args)), arg_types(make_intrusive<TypeList>()), yield(std::move(arg_yield)) {
flavor = arg_flavor;
bool has_default_arg = false;
std::map<int, int> offsets;
for ( int i = 0; i < args->NumFields(); ++i ) {
const TypeDecl* td = args->FieldDecl(i);
if ( td->attrs && td->attrs->Find(detail::ATTR_DEFAULT) )
has_default_arg = true;
else if ( has_default_arg ) {
const char* err_str = util::
fmt("required parameter '%s' must precede "
"default parameters",
td->id);
args->Error(err_str);
}
arg_types->Append(args->GetFieldType(i));
offsets[i] = i;
}
prototypes.emplace_back(Prototype{false, "", args, std::move(offsets)});
}
TypePtr FuncType::ShallowClone() {
auto f = make_intrusive<FuncType>();
f->args = args;
f->arg_types = arg_types;
f->yield = yield;
f->flavor = flavor;
f->prototypes = prototypes;
f->captures = captures;
return f;
}
string FuncType::FlavorString() const {
switch ( flavor ) {
case FUNC_FLAVOR_FUNCTION: return "function";
case FUNC_FLAVOR_EVENT: return "event";
case FUNC_FLAVOR_HOOK: return "hook";
default: reporter->InternalError("Invalid function flavor"); return "invalid_func_flavor";
}
}
int FuncType::MatchesIndex(detail::ListExpr* const index) const {
return check_and_promote_args(index, args.get()) ? MATCHES_INDEX_SCALAR : DOES_NOT_MATCH_INDEX;
}
bool FuncType::CheckArgs(const TypePList* args, bool is_init, bool do_warn) const {
std::vector<TypePtr> as;
as.reserve(args->length());
for ( auto a : *args )
as.emplace_back(NewRef{}, a);
return CheckArgs(as, is_init, do_warn);
}
bool FuncType::CheckArgs(const std::vector<TypePtr>& args, bool is_init, bool do_warn) const {
if ( reported_error )
return false;
const auto& my_args = arg_types->GetTypes();
if ( my_args.size() != args.size() ) {
if ( do_warn ) {
Warn(util::fmt("Wrong number of arguments for function. Expected %zu, got %zu.", args.size(),
my_args.size()));
const_cast<FuncType*>(this)->reported_error = true;
}
return false;
}
bool success = true;
for ( size_t i = 0; i < my_args.size(); ++i )
if ( ! same_type(args[i], my_args[i], is_init) ) {
if ( do_warn )
Warn(util::fmt("Type mismatch in function argument #%zu. Expected %s, got %s.", i,
type_name(args[i]->Tag()), type_name(my_args[i]->Tag())));
success = false;
}
const_cast<FuncType*>(this)->reported_error = ! success;
return success;
}
void FuncType::SetCaptures(std::optional<CaptureList> _captures) { captures = std::move(_captures); }
void FuncType::DoDescribe(ODesc* d) const {
if ( d->IsReadable() ) {
d->Add(FlavorString());
d->Add("(");
args->DescribeFields(d, true);
d->Add(")");
if ( yield ) {
d->AddSP(" :");
yield->Describe(d);
}
}
else {
d->Add(int(Tag()));
d->Add(flavor);
d->Add(yield != nullptr);
args->DescribeFields(d, true);
if ( yield )
yield->Describe(d);
}
}
void FuncType::DescribeReST(ODesc* d, bool roles_only) const {
d->Add(":zeek:type:`");
d->Add(FlavorString());
d->Add("`");
d->Add(" (");
args->DescribeFieldsReST(d, true);
d->Add(")");
if ( yield ) {
d->AddSP(" :");
if ( ! yield->GetName().empty() ) {
d->Add(":zeek:type:`");
d->Add(yield->GetName());
d->Add("`");
}
else
yield->DescribeReST(d, roles_only);
}
}
void FuncType::AddPrototype(Prototype p) { prototypes.emplace_back(std::move(p)); }
std::optional<FuncType::Prototype> FuncType::FindPrototype(const RecordType& args) const {
for ( const auto& p : prototypes ) {
if ( args.NumFields() != p.args->NumFields() )
continue;
if ( args.NumFields() == 0 ) {
if ( p.args->NumFields() == 0 )
return p;
continue;
}
bool matched = true;
for ( auto i = 0; i < args.NumFields(); ++i ) {
const auto& ptype = p.args->GetFieldType(i);
const auto& desired_type = args.GetFieldType(i);
if ( ! same_type(ptype, desired_type) || ! util::streq(args.FieldName(i), p.args->FieldName(i)) ) {
matched = false;
break;
}
}
if ( matched )
return p;
}
return {};
}
detail::TraversalCode FuncType::Traverse(detail::TraversalCallback* cb) const {
auto tc = cb->PreType(this);
HANDLE_TC_TYPE_PRE(tc);
tc = args->Traverse(cb);
HANDLE_TC_TYPE_PRE(tc);
if ( yield ) {
tc = yield->Traverse(cb);
HANDLE_TC_TYPE_PRE(tc);
}
tc = cb->PostType(this);
HANDLE_TC_TYPE_POST(tc);
}
detail::TraversalCode TypeType::Traverse(detail::TraversalCallback* cb) const {
auto tc = cb->PreType(this);
HANDLE_TC_TYPE_PRE(tc);
tc = type->Traverse(cb);
HANDLE_TC_TYPE_PRE(tc);
tc = cb->PostType(this);
HANDLE_TC_TYPE_POST(tc);
}
TypeDecl::TypeDecl(const char* i, TypePtr t, detail::AttributesPtr arg_attrs)
: type(std::move(t)), attrs(std::move(arg_attrs)), id(i) {}
TypeDecl::TypeDecl(const TypeDecl& other) {
type = other.type;
attrs = other.attrs;
id = util::copy_string(other.id);
}
TypeDecl::~TypeDecl() { delete[] id; }
TypeDecl& TypeDecl::operator=(const TypeDecl& other) {
if ( this == &other )
return *this;
type = other.type;
attrs = other.attrs;
delete[] id;
id = util::copy_string(other.id);
return *this;
}
void TypeDecl::DescribeReST(ODesc* d, bool roles_only) const {
d->Add(id);
d->Add(": ");
if ( ! type->GetName().empty() ) {
d->Add(":zeek:type:`");
d->Add(type->GetName());
d->Add("`");
}
else
type->DescribeReST(d, roles_only);
if ( attrs ) {
d->SP();
attrs->DescribeReST(d);
}
}
namespace detail {
ExprPtr FieldInit::InitExpr() const { return nullptr; }
// A record field initialization that directly assigns a fixed value ...
class DirectFieldInit final : public FieldInit {
public:
DirectFieldInit(ZVal _init_val) : init_val(_init_val) {}
ZVal Generate() const override { return init_val; }
private:
ZVal init_val;
};
// ... the same, but for a value that needs memory management.
class DirectManagedFieldInit final : public FieldInit {
public:
DirectManagedFieldInit(ZVal _init_val) : init_val(_init_val) {}
~DirectManagedFieldInit() override { ZVal::DeleteManagedType(init_val); }
ZVal Generate() const override {
zeek::Ref(init_val.ManagedVal());
return init_val;
}
private:
ZVal init_val;
};
// A record field initialization that's done by evaluating an expression.
class ExprFieldInit final : public FieldInit {
public:
// Initialization requires evaluating the given expression,
// yielding a value of the given type (which might require
// coercion for some records).
ExprFieldInit(detail::ExprPtr _init_expr, TypePtr _init_type)
: init_expr(std::move(_init_expr)), init_type(std::move(_init_type)) {
if ( init_type->Tag() == TYPE_RECORD && ! same_type(init_expr->GetType(), init_type) )
coerce_type = cast_intrusive<RecordType>(init_type);
}
ZVal Generate() const override {
auto v = init_expr->Eval(nullptr);
if ( ! v ) {
reporter->Error("failed &default in record creation");
return {};
}
if ( coerce_type )
v = v->AsRecordVal()->CoerceTo(coerce_type);
else if ( init_type->Tag() == TYPE_VECTOR )
concretize_if_unspecified(cast_intrusive<VectorVal>(v), init_type->Yield());
return {v, init_type};
}
bool IsDeferrable() const override {
if ( init_expr->Tag() == EXPR_RECORD_CONSTRUCTOR ) {
// Special-case deferrable record construction.
auto rce = zeek::cast_intrusive<RecordConstructorExpr>(init_expr);
auto rt = rce->GetType<zeek::RecordType>();
// The empty constructor_list check here is a short-cut: If the
// constructor expression contained only further const expressions
// or only further deferrable record constructors, this could be
// more aggressively deferring initializations.
auto constructor_list = rce->Op();
return rt->IsDeferrable() && constructor_list->Exprs().empty();
}
// Allow deferring fairly common &default=vector() field initialization...
if ( init_expr->Tag() == EXPR_VECTOR_CONSTRUCTOR ) {
auto vce = zeek::cast_intrusive<VectorConstructorExpr>(init_expr);
return vce->GetType<zeek::VectorType>()->IsUnspecifiedVector();
}
// ...and also &default=table() and &default=set().
if ( init_expr->Tag() == EXPR_TABLE_COERCE || init_expr->Tag() == EXPR_TABLE_CONSTRUCTOR ||
init_expr->Tag() == EXPR_SET_CONSTRUCTOR ) {
auto une = zeek::cast_intrusive<UnaryExpr>(init_expr);
return une->Op()->GetType()->Tag() == TYPE_TABLE &&
une->Op()->GetType<zeek::TableType>()->IsUnspecifiedTable();
}
return false;
}
ExprPtr InitExpr() const override { return init_expr; }
private:
detail::ExprPtr init_expr;
TypePtr init_type;
RecordTypePtr coerce_type; // non-nil iff coercion is required
};
// A record field initialization where the field is initialized to an
// empty/default record of the given type.
class RecordFieldInit final : public FieldInit {
public:
RecordFieldInit(RecordTypePtr _init_type) : init_type(std::move(_init_type)) {}
ZVal Generate() const override { return {new RecordVal(init_type)}; }
bool IsDeferrable() const override {
assert(! run_state::is_parsing);
return init_type->IsDeferrable();
}
private:
RecordTypePtr init_type;
};
// A record field initialization where the field is initialized to an
// empty table of the given type.
class TableFieldInit final : public FieldInit {
public:
TableFieldInit(TableTypePtr _init_type, detail::AttributesPtr _attrs)
: init_type(std::move(_init_type)), attrs(std::move(_attrs)) {}
ZVal Generate() const override { return {new TableVal(init_type, attrs)}; }
private:
TableTypePtr init_type;
detail::AttributesPtr attrs;
};
// A record field initialization where the field is initialized to an
// empty vector of the given type.
class VectorFieldInit final : public FieldInit {
public:
VectorFieldInit(VectorTypePtr _init_type) : init_type(std::move(_init_type)) {}
ZVal Generate() const override { return {new VectorVal(init_type)}; }
private:
VectorTypePtr init_type;
};
} // namespace detail
// Helper TraversalCallback optimizing RecordType instances by moving
// deferrable FieldInits from creation_inits to deferred_inits once
// parsing has completed.
class RecordType::CreationInitsOptimizer : public detail::TraversalCallback {
public:
detail::TraversalCode PreTypedef(const detail::ID* id) override {
const auto& t = id->GetType();
if ( analyzed_types.contains(t) )
return detail::TC_ABORTSTMT;
analyzed_types.emplace(t);
if ( t->Tag() == TYPE_RECORD )
OptimizeCreationInits(t->AsRecordType());
return detail::TC_CONTINUE;
}
private:
void OptimizeCreationInits(RecordType* rt) {
int i = 0;
for ( auto& ci : rt->creation_inits ) {
if ( ! ci.second->IsDeferrable() ) {
// A non-deferrable field with a &default attribute is expected to also exist in deferred_inits
// such that re-initialization after deletion of the field works.
if ( rt->FieldDecl(ci.first)->GetAttr(detail::ATTR_DEFAULT) != detail::Attr::nil ) {
if ( ! rt->deferred_inits[ci.first] )
zeek::reporter->InternalError("non-deferrable field %s$%s with &default not in deferred_inits",
rt->GetName().c_str(), rt->FieldName(i));
else if ( rt->deferred_inits[ci.first] != ci.second )
zeek::reporter->InternalError("non-deferrable field %s$%s with &default has inconsistent inits",
rt->GetName().c_str(), rt->FieldName(i));
}
rt->creation_inits[i++] = std::move(ci);
}
else {
// If deferred_inits already has a value, it should be the same as the one
// stored in creation_inits. This happens for deferrable record fields
// that have a &default attribute.
if ( rt->deferred_inits[ci.first] && rt->deferred_inits[ci.first] != ci.second )
zeek::reporter->InternalError("deferrable field %s$%s has inconsistent inits",
rt->GetName().c_str(), rt->FieldName(i));
rt->deferred_inits[ci.first].swap(ci.second);
}
}
// Discard remaining elements.
rt->creation_inits.resize(i);
}
// Endless recursion avoidance.
std::unordered_set<TypePtr> analyzed_types;
};
RecordType::RecordType(type_decl_list* arg_types) : Type(TYPE_RECORD) {
types = arg_types;
if ( types ) {
num_fields = types->length();
loop_over_list(*types, i) AddField(i, (*types)[i]);
}
else
num_fields = 0;
num_orig_fields = num_fields;
}
void RecordType::InitPostScript() {
auto cb = CreationInitsOptimizer();
detail::traverse_all(&cb);
}
// in this case the clone is actually not so shallow, since
// it gets modified by everyone.
TypePtr RecordType::ShallowClone() {
auto pass = new type_decl_list();
for ( const auto& type : *types )
pass->push_back(new TypeDecl(*type));
return make_intrusive<RecordType>(pass);
}
RecordType::~RecordType() {
if ( types ) {
for ( auto type : *types )
delete type;
delete types;
}
}
void RecordType::AddField(unsigned int field, const TypeDecl* td) {
ASSERT(field == deferred_inits.size());
ASSERT(field == managed_fields.size());
managed_fields.push_back(ZVal::IsManagedType(td->type));
// We defer error-checking until here so that we can keep deferred_inits
// and managed_fields correctly tracking the associated fields.
if ( field_ids.contains(td->id) ) {
reporter->Error("duplicate field '%s' found in record definition", td->id);
deferred_inits.push_back(nullptr);
return;
}
field_ids.insert(std::string(td->id));
auto a = td->attrs;
auto type = td->type;
auto def_attr = a ? a->Find(detail::ATTR_DEFAULT) : nullptr;
auto def_expr = def_attr ? def_attr->GetExpr() : nullptr;
std::shared_ptr<detail::FieldInit> init;
if ( def_expr && ! IsErrorType(type->Tag()) ) {
if ( def_expr->Tag() == detail::EXPR_CONST ) {
auto zv = ZVal(def_expr->Eval(nullptr), type);
if ( ZVal::IsManagedType(type) )
init = std::make_shared<detail::DirectManagedFieldInit>(zv);
else
init = std::make_shared<detail::DirectFieldInit>(zv);
}
else if ( def_expr->Tag() == detail::EXPR_ARITH_COERCE &&
(def_expr->GetOp1()->IsZero() || def_expr->GetOp1()->IsOne()) ) {
auto zv = ZVal(def_expr->Eval(nullptr), type);
init = std::make_shared<detail::DirectFieldInit>(zv);
}
else {
// Note that init is placed into creation_inits and deferred_inits
// such that accessing a record field after deleting it will run the
// &default expression to re-initialize it again.
//
// Also see RecordType::CreationInitsOptimizer.
init = std::make_shared<detail::ExprFieldInit>(def_expr, type);
creation_inits.emplace_back(field, init);
}
}
else if ( ! (a && a->Find(detail::ATTR_OPTIONAL)) ) {
TypeTag tag = type->Tag();
if ( tag == TYPE_RECORD ) {
// Initially, put record fields into creation_inits. Once parsing has
// completed, they may move into deferred_inits. See RecordType::InitPostScript()
// and RecordType::CreationInitisOptimizer.
//
// init (nil) is appended to deferred_inits as placeholder.
auto rfi = std::make_shared<detail::RecordFieldInit>(cast_intrusive<RecordType>(type));
creation_inits.emplace_back(field, std::move(rfi));
}
else if ( tag == TYPE_TABLE )
init = std::make_shared<detail::TableFieldInit>(cast_intrusive<TableType>(type), a);
else if ( tag == TYPE_VECTOR )
init = std::make_shared<detail::VectorFieldInit>(cast_intrusive<VectorType>(type));
}
deferred_inits.push_back(std::move(init));
}
bool RecordType::HasField(const char* field) const { return field_ids.contains(field); }
ValPtr RecordType::FieldDefault(int field) const {
const TypeDecl* td = FieldDecl(field);
if ( ! td->attrs )
return nullptr;
const auto& def_attr = td->attrs->Find(detail::ATTR_DEFAULT);
return def_attr ? def_attr->GetExpr()->Eval(nullptr) : nullptr;
}
int RecordType::FieldOffset(const char* field) const {
loop_over_list(*types, i) {
TypeDecl* td = (*types)[i];
if ( util::streq(td->id, field) )
return i;
}
return -1;
}
const char* RecordType::FieldName(int field) const { return FieldDecl(field)->id; }
const TypeDecl* RecordType::FieldDecl(int field) const { return (*types)[field]; }
TypeDecl* RecordType::FieldDecl(int field) { return (*types)[field]; }
void RecordType::DoDescribe(ODesc* d) const {
d->PushType(this);
if ( d->IsReadable() ) {
if ( d->IsShort() && GetName().size() )
d->Add(GetName());
else {
d->AddSP("record {");
DescribeFields(d);
d->SP();
d->Add("}");
}
}
else {
d->Add(int(Tag()));
DescribeFields(d);
}
d->PopType(this);
}
void RecordType::DescribeReST(ODesc* d, bool roles_only) const {
d->PushType(this);
d->Add(":zeek:type:`record`");
if ( num_fields == 0 )
return;
d->NL();
DescribeFieldsReST(d, false);
d->PopType(this);
}
static string container_type_name(const Type* ft) {
string s;
if ( ft->Tag() == TYPE_RECORD )
s = "record " + ft->GetName();
else if ( ft->Tag() == TYPE_VECTOR )
s = "vector of " + container_type_name(ft->Yield().get());
else if ( ft->Tag() == TYPE_TABLE ) {
if ( ft->IsSet() )
s = "set[";
else
s = "table[";
const auto& tl = ((const IndexType*)ft)->GetIndexTypes();
for ( auto i = 0u; i < tl.size(); ++i ) {
if ( i > 0 )
s += ",";
s += container_type_name(tl[i].get());
}
s += "]";
if ( ft->Yield() ) {
s += " of ";
s += container_type_name(ft->Yield().get());
}
}
else if ( ft->Tag() == TYPE_ENUM )
s = "enum " + ft->GetName();
else
s = type_name(ft->Tag());
return s;
}
TableValPtr RecordType::GetRecordFieldsVal(const RecordVal* rv) const {
static auto record_field = id::find_type<RecordType>("record_field");
static auto record_field_table = id::find_type<TableType>("record_field_table");
auto attrs = zeek::make_intrusive<detail::Attributes>(record_field_table,
/*in_record=*/false,
/*is_global=*/false);
attrs->AddAttr(make_intrusive<detail::Attr>(detail::ATTR_ORDERED));
auto rval = make_intrusive<TableVal>(record_field_table, std::move(attrs));
for ( int i = 0; i < NumFields(); ++i ) {
const auto& ft = GetFieldType(i);
const TypeDecl* fd = FieldDecl(i);
ValPtr fv;
if ( rv )
fv = rv->GetField(i);
bool logged = (fd->attrs && fd->GetAttr(detail::ATTR_LOG) != nullptr);
auto nr = make_intrusive<RecordVal>(record_field);
string s = container_type_name(ft.get());
nr->Assign(0, s);
nr->Assign(1, logged);
nr->Assign(2, std::move(fv));
nr->Assign(3, FieldDefault(i));
nr->Assign(4, fd->GetAttr(detail::ATTR_OPTIONAL) != detail::Attr::nil);
auto field_name = make_intrusive<StringVal>(FieldName(i));
rval->Assign(std::move(field_name), std::move(nr));
}
return rval;
}
const char* RecordType::AddFields(const type_decl_list& others, bool add_log_attr) {
assert(types);
bool log = false;
for ( const auto& td : others ) {
if ( ! td->GetAttr(detail::ATTR_DEFAULT) && ! td->GetAttr(detail::ATTR_OPTIONAL) )
return "extension field must be &optional or have &default";
}
TableVal::SaveParseTimeTableState(this);
AddFieldsDirectly(others, add_log_attr);
RecordVal::ResizeParseTimeRecords(this);
TableVal::RebuildParseTimeTables();
return nullptr;
}
void RecordType::AddFieldsDirectly(const type_decl_list& others, bool add_log_attr) {
for ( const auto& td : others ) {
if ( add_log_attr ) {
if ( ! td->attrs )
td->attrs = make_intrusive<detail::Attributes>(td->type, true, false);
td->attrs->AddAttr(make_intrusive<detail::Attr>(detail::ATTR_LOG));
}
int field = types->size();
types->push_back(td);
AddField(field, td);
}
num_fields = types->length();
}
void RecordType::DescribeFields(ODesc* d, bool func_args) const {
if ( d->IsReadable() ) {
for ( int i = 0; i < num_fields; ++i ) {
if ( i > 0 )
d->SP();
const TypeDecl* td = FieldDecl(i);
d->Add(td->id);
d->Add(":");
if ( d->FindType(td->type.get()) )
d->Add("<recursion>");
else
td->type->Describe(d);
if ( td->attrs ) {
d->SP();
td->attrs->Describe(d);
}
if ( func_args ) {
if ( i + 1 < num_fields )
d->Add(",");
}
else
d->Add(";");
}
}
else {
if ( types ) {
d->AddCount(0);
d->AddCount(types->length());
for ( const auto& type : *types ) {
d->Add(type->id);
d->SP();
if ( d->FindType(type->type.get()) )
d->Add("<recursion>");
else
type->type->Describe(d);
d->SP();
}
}
}
}
void RecordType::DescribeFieldsReST(ODesc* d, bool func_args) const {
for ( int i = 0; i < num_fields; ++i ) {
if ( func_args ) {
if ( i > 0 )
d->Add(", ");
}
else {
d->NL();
d->NL();
}
const TypeDecl* td = FieldDecl(i);
if ( d->FindType(td->type.get()) )
d->Add("<recursion>");
else {
if ( num_fields == 1 && util::streq(td->id, "va_args") && td->type->Tag() == TYPE_ANY )
// This was a BIF using variable argument list
d->Add("...");
else {
if ( func_args ) {
td->DescribeReST(d);
}
else {
// ReST rendering of a TypeDecl as zeek:field directive if
// this is about rendering a proper record type and not
// function parameters.
//
// Not sure why we're treating record types and function
// signatures the same thing and than denote what it is
// by passing around a bool. Open-code the field directive
// rendering here.
d->Add(".. zeek:field:: ");
d->Add(td->id);
d->Add(" ");
if ( ! td->type->GetName().empty() ) {
d->Add(":zeek:type:`");
d->Add(td->type->GetName());
d->Add("`");
}
else {
td->type->DescribeReST(d, /*roles_only=*/true);
}
if ( td->attrs ) {
d->SP();
td->attrs->DescribeReST(d, /*shorten=*/true);
}
// Good thing ReST doesn't care too much about extra whitespace.
d->NL();
}
}
}
if ( func_args )
continue;
zeekygen::detail::IdentifierInfo* doc = detail::zeekygen_mgr->GetIdentifierInfo(GetName());
if ( ! doc ) {
reporter->InternalWarning("Failed to lookup record doc: %s", GetName().c_str());
continue;
}
string field_from_script = doc->GetDeclaringScriptForField(td->id);
string type_from_script;
if ( doc->GetDeclaringScript() )
type_from_script = doc->GetDeclaringScript()->Name();
if ( ! field_from_script.empty() && field_from_script != type_from_script ) {
d->PushIndent();
d->Add(zeekygen::detail::redef_indication(field_from_script).c_str());
d->PopIndent();
}
vector<string> cmnts = doc->GetFieldComments(td->id);
if ( cmnts.empty() )
continue;
d->PushIndent();
for ( size_t i = 0; i < cmnts.size(); ++i ) {
if ( i > 0 )
d->NL();
if ( IsFunc(td->type->Tag()) ) {
string s = cmnts[i];
if ( zeekygen::detail::prettify_params(s) )
d->NL();
d->Add(s.c_str());
}
else
d->Add(cmnts[i].c_str());
}
d->PopIndent();
}
}
string RecordType::GetFieldDeprecationWarning(int field, bool has_check) const {
const TypeDecl* decl = FieldDecl(field);
if ( decl ) {
string result;
if ( const auto& deprecation = decl->GetAttr(detail::ATTR_DEPRECATED) )
result = deprecation->DeprecationMessage();
if ( result.empty() )
return util::fmt("deprecated (%s%s$%s)", GetName().c_str(), has_check ? "?" : "", FieldName(field));
else
return util::fmt("deprecated (%s%s$%s): %s", GetName().c_str(), has_check ? "?" : "", FieldName(field),
result.c_str());
}
return "";
}
detail::TraversalCode RecordType::Traverse(detail::TraversalCallback* cb) const {
auto tc = cb->PreType(this);
HANDLE_TC_TYPE_PRE(tc);
if ( types )
for ( const auto& td : *types ) {
tc = td->type->Traverse(cb);
HANDLE_TC_TYPE_PRE(tc);
if ( td->attrs ) {
tc = td->attrs->Traverse(cb);
HANDLE_TC_TYPE_PRE(tc);
}
}
tc = cb->PostType(this);
HANDLE_TC_TYPE_POST(tc);
}
bool RecordType::IsDeferrable() const {
assert(! run_state::is_parsing);
auto is_deferrable = [](const auto& p) -> bool { return p.second->IsDeferrable(); };
// If all creation_inits are deferrable, this record type is deferrable, too.
// It will be optimized later on. Note, all_of() returns true for an empty
// range, which is correct.
return std::ranges::all_of(creation_inits, is_deferrable);
}
FileType::FileType(TypePtr yield_type) : Type(TYPE_FILE), yield(std::move(yield_type)) {}
FileType::~FileType() = default;
void FileType::DoDescribe(ODesc* d) const {
if ( d->IsReadable() ) {
d->AddSP("file of");
yield->Describe(d);
}
else {
d->Add(int(Tag()));
yield->Describe(d);
}
}
detail::TraversalCode FileType::Traverse(detail::TraversalCallback* cb) const {
auto tc = cb->PreType(this);
HANDLE_TC_TYPE_PRE(tc);
tc = yield->Traverse(cb);
HANDLE_TC_TYPE_PRE(tc);
tc = cb->PostType(this);
HANDLE_TC_TYPE_POST(tc);
}
OpaqueType::OpaqueType(const string& arg_name) : Type(TYPE_OPAQUE) { name = arg_name; }
void OpaqueType::DoDescribe(ODesc* d) const {
if ( d->IsReadable() )
d->AddSP("opaque of");
else
d->Add(int(Tag()));
d->Add(name.c_str());
}
void OpaqueType::DescribeReST(ODesc* d, bool roles_only) const {
d->Add(util::fmt(":zeek:type:`%s` of %s", type_name(Tag()), name.c_str()));
}
EnumType::EnumType(const string& name) : Type(TYPE_ENUM) {
counter = 0;
SetName(name);
}
EnumType::EnumType(const EnumType* e) : Type(TYPE_ENUM), names(e->names), rev_names(e->rev_names), vals(e->vals) {
counter = e->counter;
SetName(e->GetName());
}
TypePtr EnumType::ShallowClone() {
if ( counter == 0 )
return make_intrusive<EnumType>(GetName());
return make_intrusive<EnumType>(this);
}
EnumType::~EnumType() = default;
// Note, we use reporter->Error() here (not Error()) to include the current script
// location in the error message, rather than the one where the type was
// originally defined.
void EnumType::AddName(const string& module_name, const char* name, bool is_export, detail::Expr* deprecation,
bool from_redef) {
/* implicit, auto-increment */
if ( counter < 0 ) {
reporter->Error("cannot mix explicit enumerator assignment and implicit auto-increment");
SetError();
return;
}
CheckAndAddName(module_name, name, counter, is_export, deprecation, from_redef);
counter++;
}
void EnumType::AddName(const string& module_name, const char* name, zeek_int_t val, bool is_export,
detail::Expr* deprecation, bool from_redef) {
/* explicit value specified */
if ( counter > 0 ) {
reporter->Error("cannot mix explicit enumerator assignment and implicit auto-increment");
SetError();
return;
}
counter = -1;
CheckAndAddName(module_name, name, val, is_export, deprecation, from_redef);
}
void EnumType::CheckAndAddName(const string& module_name, const char* name, zeek_int_t val, bool is_export,
detail::Expr* deprecation, bool from_redef) {
if ( from_redef )
has_redefs = true;
if ( Lookup(val) ) {
reporter->Error("enumerator value in enumerated type definition already exists");
SetError();
return;
}
if ( val < 0 ) {
reporter->Error("enumerator value cannot be negative");
SetError();
return;
}
auto fullname = detail::make_full_var_name(module_name.c_str(), name);
auto id = id::find(fullname);
if ( ! id ) {
id = detail::install_ID(name, module_name.c_str(), true, is_export);
id->SetType({NewRef{}, this});
id->SetEnumConst();
if ( deprecation )
id->MakeDeprecated({NewRef{}, deprecation});
detail::zeekygen_mgr->Identifier(id, from_redef);
}
else {
// We allow double-definitions if matching exactly. This is so that
// we can define an enum both in a *.bif and *.zeek for avoiding
// cyclic dependencies.
if ( ! id->IsEnumConst() || (id->HasVal() && val != id->GetVal()->AsEnum()) ||
GetName() != id->GetType()->GetName() || (names.contains(fullname) && names[fullname] != val) ) {
auto cl = detail::GetCurrentLocation();
reporter->PushLocation(&cl, id->GetLocationInfo());
reporter->Error("conflicting definition of enum value '%s' in type '%s'", fullname.data(),
GetName().data());
reporter->PopLocation();
SetError();
return;
}
}
AddNameInternal(module_name, name, val, is_export);
if ( ! vals.contains(val) )
vals[val] = make_intrusive<EnumVal>(IntrusivePtr{NewRef{}, this}, val);
if ( ! id->HasVal() )
id->SetVal(vals[val]);
else if ( id->GetVal()->AsEnum() != val )
reporter->InternalError("inconsistent enum integer value for '%s' (old %" PRId64 " new %" PRId64 ")",
fullname.c_str(), id->GetVal()->AsEnum(), val);
const auto& types = Type::Aliases(GetName());
for ( const auto& t : types )
if ( t.get() != this )
t->AsEnumType()->AddNameInternal(module_name, name, val, is_export);
}
void EnumType::AddNameInternal(const string& module_name, const char* name, zeek_int_t val, bool is_export) {
string fullname = detail::make_full_var_name(module_name.c_str(), name);
names[fullname] = val;
rev_names[val] = std::move(fullname);
}
void EnumType::AddNameInternal(const string& full_name, zeek_int_t val) {
names[full_name] = val;
rev_names[val] = full_name;
if ( ! vals.contains(val) )
vals[val] = make_intrusive<EnumVal>(IntrusivePtr{NewRef{}, this}, val);
}
zeek_int_t EnumType::Lookup(const string& module_name, const char* name) const {
return Lookup(detail::make_full_var_name(module_name.c_str(), name));
}
zeek_int_t EnumType::Lookup(const string& full_name) const {
if ( auto pos = names.find(full_name.c_str()); pos != names.end() )
return pos->second;
return -1;
}
const char* EnumType::Lookup(zeek_int_t value) const {
if ( auto it = rev_names.find(value); it != rev_names.end() )
return it->second.c_str();
return nullptr;
}
EnumType::enum_name_list EnumType::Names() const {
enum_name_list n;
for ( const auto& [name, value] : names )
n.emplace_back(name, value);
return n;
}
const EnumValPtr& EnumType::GetEnumVal(zeek_int_t i) {
if ( auto it = vals.find(i); it != vals.end() )
return it->second;
auto ev = make_intrusive<EnumVal>(IntrusivePtr{NewRef{}, this}, i);
return vals.emplace(i, std::move(ev)).first->second;
}
void EnumType::DoDescribe(ODesc* d) const {
auto t = Tag();
if ( d->IsBinary() ) {
d->Add(int(t));
if ( ! d->IsShort() )
d->Add(GetName());
}
else {
d->Add(type_name(t));
if ( ! d->IsShort() ) {
d->SP();
d->Add(GetName());
}
}
}
void EnumType::DescribeReST(ODesc* d, bool roles_only) const {
d->Add(":zeek:type:`enum`");
for ( const auto& [_, enum_name] : rev_names ) {
d->NL();
d->PushIndent();
if ( roles_only )
d->Add(util::fmt(":zeek:enum:`%s`", enum_name.c_str()));
else
d->Add(util::fmt(".. zeek:enum:: %s %s", enum_name.c_str(), GetName().c_str()));
zeekygen::detail::IdentifierInfo* doc = detail::zeekygen_mgr->GetIdentifierInfo(enum_name);
if ( ! doc ) {
reporter->InternalWarning("Enum %s documentation lookup failure", enum_name.c_str());
continue;
}
string enum_from_script;
string type_from_script;
if ( doc->GetDeclaringScript() )
enum_from_script = doc->GetDeclaringScript()->Name();
zeekygen::detail::IdentifierInfo* type_doc = detail::zeekygen_mgr->GetIdentifierInfo(GetName());
if ( type_doc && type_doc->GetDeclaringScript() )
type_from_script = type_doc->GetDeclaringScript()->Name();
if ( ! enum_from_script.empty() && enum_from_script != type_from_script ) {
d->NL();
d->PushIndent();
d->Add(zeekygen::detail::redef_indication(enum_from_script).c_str());
d->PopIndent();
}
vector<string> cmnts = doc->GetComments();
if ( cmnts.empty() ) {
d->PopIndentNoNL();
continue;
}
d->NL();
d->PushIndent();
for ( size_t i = 0; i < cmnts.size(); ++i ) {
if ( i > 0 )
d->NL();
d->Add(cmnts[i].c_str());
}
d->PopIndentNoNL();
d->PopIndentNoNL();
}
}
VectorType::VectorType(TypePtr element_type) : Type(TYPE_VECTOR), yield_type(std::move(element_type)) {}
TypePtr VectorType::ShallowClone() { return make_intrusive<VectorType>(yield_type); }
VectorType::~VectorType() = default;
const TypePtr& VectorType::Yield() const {
// Work around the fact that we use void internally to mark a vector
// as being unspecified. When looking at its yield type, we need to
// return any as that's what other code historically expects for type
// comparisons.
if ( IsUnspecifiedVector() )
return zeek::base_type(TYPE_ANY);
return yield_type;
}
int VectorType::MatchesIndex(detail::ListExpr* const index) const {
ExprPList& el = index->Exprs();
if ( el.length() != 1 && el.length() != 2 )
return DOES_NOT_MATCH_INDEX;
if ( el.length() == 2 )
return MATCHES_INDEX_VECTOR;
else if ( el[0]->GetType()->Tag() == TYPE_VECTOR )
return (IsIntegral(el[0]->GetType()->Yield()->Tag()) || IsBool(el[0]->GetType()->Yield()->Tag())) ?
MATCHES_INDEX_VECTOR :
DOES_NOT_MATCH_INDEX;
else
return (IsIntegral(el[0]->GetType()->Tag()) || IsBool(el[0]->GetType()->Tag())) ? MATCHES_INDEX_SCALAR :
DOES_NOT_MATCH_INDEX;
}
bool VectorType::IsUnspecifiedVector() const { return yield_type->Tag() == TYPE_VOID; }
void VectorType::DoDescribe(ODesc* d) const {
if ( IsUnspecifiedVector() && d->IsReadable() ) {
d->Add("vector()");
return;
}
if ( d->IsReadable() )
d->AddSP("vector of");
else
d->Add(int(Tag()));
yield_type->Describe(d);
}
void VectorType::DescribeReST(ODesc* d, bool roles_only) const {
d->Add(util::fmt(":zeek:type:`%s` of ", type_name(Tag())));
if ( yield_type->GetName().empty() )
yield_type->DescribeReST(d, roles_only);
else
d->Add(util::fmt(":zeek:type:`%s`", yield_type->GetName().c_str()));
}
detail::TraversalCode VectorType::Traverse(detail::TraversalCallback* cb) const {
auto tc = cb->PreType(this);
HANDLE_TC_TYPE_PRE(tc);
tc = yield_type->Traverse(cb);
HANDLE_TC_TYPE_PRE(tc);
tc = cb->PostType(this);
HANDLE_TC_TYPE_POST(tc);
}
// Returns true if t1 is initialization-compatible with t2 (i.e., if an
// initializer with type t1 can be used to initialize a value with type t2),
// false otherwise. Assumes that t1's tag is different from t2's. Note
// that the test is in only one direction - we don't check whether t2 is
// initialization-compatible with t1.
static bool is_init_compat(const Type& t1, const Type& t2) {
if ( t1.Tag() == TYPE_LIST ) {
if ( t2.Tag() == TYPE_RECORD )
return true;
else
return t1.AsTypeList()->AllMatch(&t2, true);
}
if ( t1.IsSet() )
return same_type(*t1.AsTableType()->GetIndices(), t2, true);
return false;
}
bool same_type(const Type& arg_t1, const Type& arg_t2, bool is_init, bool match_record_field_names) {
if ( &arg_t1 == &arg_t2 || arg_t1.Tag() == TYPE_ANY || arg_t2.Tag() == TYPE_ANY )
return true;
auto t1 = &arg_t1;
auto t2 = &arg_t2;
if ( t1->Tag() != t2->Tag() ) {
if ( is_init )
return is_init_compat(*t1, *t2) || is_init_compat(*t2, *t1);
return false;
}
// A major complication we have to deal with is the potential
// presence of recursive types (records, in particular). If
// we simply traverse a type's members recursively, then if the
// type is itself recursive we will end up with infinite recursion.
// To prevent this, we need to instead track our analysis process
// Which types we're in the process of analyzing. We add (compound)
// types to this as we recurse into their elements, and remove them
// when we're done processing them.
static std::unordered_set<const Type*> analyzed_types;
// First do all checks that don't require any recursion.
switch ( t1->Tag() ) {
case TYPE_VOID: // NOLINT(bugprone-branch-clone)
case TYPE_BOOL:
case TYPE_INT:
case TYPE_COUNT:
case TYPE_DOUBLE:
case TYPE_TIME:
case TYPE_INTERVAL:
case TYPE_STRING:
case TYPE_PATTERN:
case TYPE_PORT:
case TYPE_ADDR:
case TYPE_SUBNET:
case TYPE_ANY:
case TYPE_ERROR: return true;
case TYPE_ENUM:
// We should probably check to see whether all of the
// enumerations are present and in the same location.
// FIXME: Yes, but perhaps we should better return
// true per default?
return true;
case TYPE_OPAQUE: {
const OpaqueType* ot1 = (const OpaqueType*)t1;
const OpaqueType* ot2 = (const OpaqueType*)t2;
return ot1->Name() == ot2->Name();
}
case TYPE_TABLE: {
const IndexType* it1 = (const IndexType*)t1;
const IndexType* it2 = (const IndexType*)t2;
const auto& tl1 = it1->GetIndices();
const auto& tl2 = it2->GetIndices();
if ( (tl1 || tl2) && ! (tl1 && tl2) )
return false;
// If one is a set and one isn't, they shouldn't
// be considered the same type.
if ( t1->IsSet() != t2->IsSet() )
return false;
const auto& y1 = t1->Yield();
const auto& y2 = t2->Yield();
if ( (y1 || y2) && ! (y1 && y2) )
return false;
break;
}
case TYPE_FUNC: {
const FuncType* ft1 = (const FuncType*)t1;
const FuncType* ft2 = (const FuncType*)t2;
if ( ft1->Flavor() != ft2->Flavor() )
return false;
const auto& y1 = t1->Yield();
const auto& y2 = t2->Yield();
if ( (y1 || y2) && ! (y1 && y2) )
return false;
break;
}
case TYPE_RECORD: {
const RecordType* rt1 = (const RecordType*)t1;
const RecordType* rt2 = (const RecordType*)t2;
if ( rt1->NumFields() != rt2->NumFields() )
return false;
for ( int i = 0; i < rt1->NumFields(); ++i ) {
const TypeDecl* td1 = rt1->FieldDecl(i);
const TypeDecl* td2 = rt2->FieldDecl(i);
if ( match_record_field_names && ! util::streq(td1->id, td2->id) )
return false;
if ( ! same_attrs(td1->attrs.get(), td2->attrs.get()) )
return false;
}
break;
}
case TYPE_LIST: {
const auto& tl1 = t1->AsTypeList()->GetTypes();
const auto& tl2 = t2->AsTypeList()->GetTypes();
if ( tl1.size() != tl2.size() )
return false;
break;
}
case TYPE_VECTOR:
case TYPE_FILE:
case TYPE_TYPE: break;
}
// If we get to here, then we're dealing with a type with
// subtypes, and thus potentially recursive.
if ( analyzed_types.contains(t1) || analyzed_types.contains(t2) ) {
// We've analyzed at least one of the types previously.
// Avoid infinite recursion.
if ( analyzed_types.contains(t1) && analyzed_types.contains(t2) )
// We've analyzed them both. In theory, this
// could happen while the types are still different.
// Checking for that is a pain - we could do so
// by recursively expanding all of the types present
// when traversing them (suppressing repeats), and
// see that they individually match in a non-recursive
// manner. For now, we assume they're a direct match.
return true;
// One is definitely recursive and the other has not yet
// manifested as such. In theory, they again could still
// be a match, if the non-recursive one would manifest
// becoming recursive if only we traversed it further, but
// for now we assume they're not a match.
return false;
}
// Track the two types for when we recurse.
analyzed_types.insert(t1);
analyzed_types.insert(t2);
bool result;
switch ( t1->Tag() ) {
case TYPE_TABLE: {
const IndexType* it1 = (const IndexType*)t1;
const IndexType* it2 = (const IndexType*)t2;
const auto& tl1 = it1->GetIndices();
const auto& tl2 = it2->GetIndices();
if ( ! same_type(tl1, tl2, is_init, match_record_field_names) )
result = false;
else if ( t1->IsSet() && t2->IsSet() )
// Sets don't have yield types because they don't have values. If
// both types are sets, and we already matched on the indices
// above consider that a success. We already checked the case
// where only one of the two is a set earlier.
result = true;
else {
const auto& y1 = t1->Yield();
const auto& y2 = t2->Yield();
result = same_type(y1, y2, is_init, match_record_field_names);
}
break;
}
case TYPE_FUNC: {
const FuncType* ft1 = (const FuncType*)t1;
const FuncType* ft2 = (const FuncType*)t2;
if ( ! same_type(t1->Yield(), t2->Yield(), is_init, match_record_field_names) )
result = false;
else
result = ft1->CheckArgs(ft2->ParamList()->GetTypes(), is_init, false);
break;
}
case TYPE_RECORD: {
const RecordType* rt1 = (const RecordType*)t1;
const RecordType* rt2 = (const RecordType*)t2;
result = true;
for ( int i = 0; i < rt1->NumFields(); ++i ) {
const TypeDecl* td1 = rt1->FieldDecl(i);
const TypeDecl* td2 = rt2->FieldDecl(i);
if ( ! same_type(td1->type, td2->type, is_init, match_record_field_names) ) {
result = false;
break;
}
}
break;
}
case TYPE_LIST: {
const auto& tl1 = t1->AsTypeList()->GetTypes();
const auto& tl2 = t2->AsTypeList()->GetTypes();
result = true;
for ( auto i = 0u; i < tl1.size(); ++i )
if ( ! same_type(tl1[i], tl2[i], is_init, match_record_field_names) ) {
result = false;
break;
}
break;
}
case TYPE_VECTOR:
case TYPE_FILE: result = same_type(t1->Yield(), t2->Yield(), is_init, match_record_field_names); break;
case TYPE_TYPE: {
auto tt1 = t1->AsTypeType();
auto tt2 = t2->AsTypeType();
result = same_type(tt1->GetType(), tt1->GetType(), is_init, match_record_field_names);
break;
}
default: result = false;
}
analyzed_types.erase(t1);
analyzed_types.erase(t2);
return result;
}
bool same_attrs(const detail::Attributes* a1, const detail::Attributes* a2) {
if ( ! a1 )
return (a2 == nullptr);
if ( ! a2 )
return (a1 == nullptr);
return (*a1 == *a2);
}
bool record_promotion_compatible(const RecordType* super_rec, const RecordType* sub_rec) {
for ( int i = 0; i < sub_rec->NumFields(); ++i ) {
int o = super_rec->FieldOffset(sub_rec->FieldName(i));
if ( o < 0 )
// Orphaned field.
continue;
const auto& sub_field_type = sub_rec->GetFieldType(i);
const auto& super_field_type = super_rec->GetFieldType(o);
if ( same_type(sub_field_type, super_field_type) )
continue;
if ( BothArithmetic(sub_field_type->Tag(), super_field_type->Tag()) )
continue;
if ( sub_field_type->Tag() != TYPE_RECORD )
return false;
if ( super_field_type->Tag() != TYPE_RECORD )
return false;
if ( ! record_promotion_compatible(super_field_type->AsRecordType(), sub_field_type->AsRecordType()) )
return false;
}
return true;
}
const Type* flatten_type(const Type* t) {
if ( t->Tag() != TYPE_LIST )
return t;
const TypeList* tl = t->AsTypeList();
if ( tl->IsPure() )
return tl->GetPureType().get();
const auto& types = tl->GetTypes();
if ( types.size() == 0 )
reporter->InternalError("empty type list in flatten_type");
const auto& ft = types[0];
if ( types.size() == 1 || tl->AllMatch(ft, false) )
return ft.get();
return t;
}
Type* flatten_type(Type* t) { return (Type*)flatten_type((const Type*)t); }
bool is_assignable(TypeTag t) {
switch ( t ) {
case TYPE_BOOL:
case TYPE_INT:
case TYPE_COUNT:
case TYPE_DOUBLE:
case TYPE_TIME:
case TYPE_INTERVAL:
case TYPE_STRING:
case TYPE_PATTERN:
case TYPE_ENUM:
case TYPE_PORT:
case TYPE_ADDR:
case TYPE_SUBNET:
case TYPE_RECORD:
case TYPE_FUNC:
case TYPE_ANY:
case TYPE_ERROR:
case TYPE_LIST:
case TYPE_VECTOR:
case TYPE_FILE:
case TYPE_OPAQUE:
case TYPE_TABLE:
case TYPE_TYPE: return true;
case TYPE_VOID: return false;
}
return false;
}
TypeTag max_type(TypeTag t1, TypeTag t2) {
if ( t1 == TYPE_INTERVAL || t1 == TYPE_TIME )
t1 = TYPE_DOUBLE;
if ( t2 == TYPE_INTERVAL || t2 == TYPE_TIME )
t2 = TYPE_DOUBLE;
if ( BothArithmetic(t1, t2) ) {
if ( t1 == TYPE_DOUBLE || t2 == TYPE_DOUBLE )
return TYPE_DOUBLE;
else if ( t1 == TYPE_INT || t2 == TYPE_INT )
return TYPE_INT;
else if ( t1 == TYPE_COUNT || t2 == TYPE_COUNT )
return TYPE_COUNT;
return TYPE_COUNT;
}
else {
reporter->InternalError("non-arithmetic tags in max_type()");
return TYPE_ERROR;
}
}
TypePtr merge_enum_types(const Type* t1, const Type* t2) {
// Could compare pointers t1 == t2, but maybe there's someone out
// there creating clones of the type, so safer to compare name.
if ( t1->GetName() != t2->GetName() ) {
std::string msg =
util::fmt("incompatible enum types: '%s' and '%s'", t1->GetName().data(), t2->GetName().data());
t1->Error(msg.data(), t2);
return nullptr;
}
// Doing a lookup here as a roundabout way of ref-ing t1, without
// changing the function params which has t1 as const and also
// (potentially) avoiding a pitfall mentioned earlier about clones.
const auto& id = detail::global_scope()->Find(t1->GetName());
if ( id && id->IsType() && id->GetType()->Tag() == TYPE_ENUM )
// It should make most sense to return the real type here rather
// than a copy since it may be redef'd later in parsing. If we
// return a copy, then whoever is using this return value won't
// actually see those changes from the redef.
return id->GetType();
std::string msg = util::
fmt("incompatible enum types: '%s' and '%s'"
" ('%s' enum type ID is invalid)",
t1->GetName().data(), t2->GetName().data(), t1->GetName().data());
t1->Error(msg.data(), t2);
return nullptr;
}
TypePtr merge_table_types(const Type* t1, const Type* t2) {
const IndexType* it1 = (const IndexType*)t1;
const IndexType* it2 = (const IndexType*)t2;
const auto& tl1 = it1->GetIndexTypes();
const auto& tl2 = it2->GetIndexTypes();
TypeListPtr tl3;
if ( tl1.size() != tl2.size() ) {
t1->Error("incompatible types", t2);
return nullptr;
}
tl3 = make_intrusive<TypeList>();
for ( auto i = 0u; i < tl1.size(); ++i ) {
auto tl3_i = merge_types(tl1[i], tl2[i]);
if ( ! tl3_i )
return nullptr;
tl3->Append(std::move(tl3_i));
}
const auto& y1 = t1->Yield();
const auto& y2 = t2->Yield();
TypePtr y3;
if ( y1 || y2 ) {
if ( ! y1 || ! y2 ) {
t1->Error("incompatible types", t2);
return nullptr;
}
y3 = merge_types(y1, y2);
if ( ! y3 )
return nullptr;
}
return make_intrusive<TableType>(std::move(tl3), std::move(y3));
}
TypePtr merge_func_types(const Type* t1, const Type* t2) {
if ( ! same_type(t1, t2) ) {
t1->Error("incompatible types", t2);
return nullptr;
}
const FuncType* ft1 = (const FuncType*)t1;
const FuncType* ft2 = (const FuncType*)t1;
auto args = cast_intrusive<RecordType>(merge_types(ft1->Params(), ft2->Params()));
auto yield = t1->Yield() ? merge_types(t1->Yield(), t2->Yield()) : nullptr;
return make_intrusive<FuncType>(std::move(args), std::move(yield), ft1->Flavor());
}
TypePtr merge_record_types(const Type* t1, const Type* t2) {
const RecordType* rt1 = (const RecordType*)t1;
const RecordType* rt2 = (const RecordType*)t2;
// We allow the records to have different numbers of fields.
// We first go through all of the fields in rt1, and then we
// check for whether rt2 has any additional fields.
type_decl_list* tdl3 = new type_decl_list();
for ( int i = 0; i < rt1->NumFields(); ++i ) {
auto td1 = rt1->FieldDecl(i);
auto td2_offset_i = rt2->FieldOffset(rt1->FieldName(i));
TypePtr tdl3_i;
auto attrs3 = make_intrusive<detail::Attributes>(nullptr, true, false);
if ( td1->attrs )
attrs3->AddAttrs(td1->attrs);
if ( td2_offset_i >= 0 ) {
auto td2 = rt2->FieldDecl(td2_offset_i);
tdl3_i = merge_types(td1->type, td2->type);
if ( td2->attrs )
attrs3->AddAttrs(td2->attrs);
if ( ! util::streq(td1->id, td2->id) || ! tdl3_i ) {
t1->Error("incompatible record fields", t2);
delete tdl3;
return nullptr;
}
}
else {
tdl3_i = td1->type;
attrs3->AddAttr(make_intrusive<detail::Attr>(detail::ATTR_OPTIONAL));
}
if ( attrs3->GetAttrs().empty() )
attrs3 = nullptr;
auto td3 = new TypeDecl(util::copy_string(td1->id), std::move(tdl3_i), attrs3);
tdl3->push_back(td3);
}
// Now add in any extras from rt2.
for ( int i = 0; i < rt2->NumFields(); ++i ) {
auto td2 = rt2->FieldDecl(i);
auto td1_offset_i = rt1->FieldOffset(rt2->FieldName(i));
if ( td1_offset_i < 0 ) {
auto attrs3 = make_intrusive<detail::Attributes>(nullptr, true, false);
if ( td2->attrs )
attrs3->AddAttrs(td2->attrs);
attrs3->AddAttr(make_intrusive<detail::Attr>(detail::ATTR_OPTIONAL));
auto td_merge = new TypeDecl(util::copy_string(td2->id), td2->type, attrs3);
tdl3->push_back(td_merge);
}
}
return make_intrusive<RecordType>(tdl3);
}
TypeListPtr merge_list_types(const Type* t1, const Type* t2) {
const TypeList* tl1 = t1->AsTypeList();
const TypeList* tl2 = t2->AsTypeList();
if ( tl1->IsPure() != tl2->IsPure() ) {
tl1->Error("incompatible lists", tl2);
return nullptr;
}
const auto& l1 = tl1->GetTypes();
const auto& l2 = tl2->GetTypes();
if ( l1.size() == 0 || l2.size() == 0 ) {
if ( l1.size() == 0 )
tl1->Error("empty list");
else
tl2->Error("empty list");
return nullptr;
}
if ( l1.size() != l2.size() ) {
tl1->Error("different number of indices", tl2);
return nullptr;
}
auto tl3 = make_intrusive<TypeList>();
for ( auto i = 0u; i < l1.size(); ++i )
tl3->Append(merge_types(l1[i], l2[i]));
return tl3;
}
TypePtr merge_types(const TypePtr& arg_t1, const TypePtr& arg_t2) {
if ( arg_t1 == arg_t2 )
return arg_t1;
auto t1 = arg_t1.get();
auto t2 = arg_t2.get();
// t1 = flatten_type(t1);
// t2 = flatten_type(t2);
TypeTag tg1 = t1->Tag();
TypeTag tg2 = t2->Tag();
if ( BothArithmetic(tg1, tg2) )
return base_type(max_type(tg1, tg2));
if ( tg1 != tg2 ) {
t1->Error("incompatible types", t2);
return nullptr;
}
switch ( tg1 ) {
case TYPE_TIME:
case TYPE_INTERVAL:
case TYPE_STRING:
case TYPE_PATTERN:
case TYPE_PORT:
case TYPE_ADDR:
case TYPE_SUBNET:
case TYPE_BOOL:
case TYPE_ANY:
case TYPE_ERROR: return base_type(tg1);
case TYPE_ENUM: return merge_enum_types(t1, t2);
case TYPE_TABLE: return merge_table_types(t1, t2);
case TYPE_FUNC: return merge_func_types(t1, t2);
case TYPE_RECORD: return merge_record_types(t1, t2);
case TYPE_LIST: return merge_list_types(t1, t2);
case TYPE_VECTOR:
if ( ! same_type(t1->Yield(), t2->Yield()) ) {
t1->Error("incompatible types", t2);
return nullptr;
}
return make_intrusive<VectorType>(merge_types(t1->Yield(), t2->Yield()));
case TYPE_FILE:
if ( ! same_type(t1->Yield(), t2->Yield()) ) {
t1->Error("incompatible types", t2);
return nullptr;
}
return make_intrusive<FileType>(merge_types(t1->Yield(), t2->Yield()));
default: reporter->InternalError("bad type in merge_types()"); return nullptr;
}
}
TypePtr maximal_type(detail::ListExpr* elements) {
TypeList* tl_type = elements->GetType()->AsTypeList();
const auto& tl = tl_type->GetTypes();
if ( tl.size() < 1 ) {
reporter->Error("no type can be inferred for empty list");
return nullptr;
}
auto t = tl[0];
if ( tl.size() == 1 )
return t;
for ( size_t i = 1; t && i < tl.size(); ++i ) {
const auto& tl_i = tl[i];
if ( t == tl_i )
continue;
if ( BothArithmetic(t->Tag(), tl_i->Tag()) )
t = merge_types(t, tl_i);
else if ( t->Tag() == TYPE_ENUM && tl_i->Tag() == TYPE_ENUM )
t = merge_enum_types(t.get(), tl_i.get());
else if ( ! same_type(t, tl_i) )
t = nullptr;
}
if ( ! t )
reporter->Error("inconsistent types in list");
return t;
}
// Reduces an aggregate type.
static Type* reduce_type(Type* t) {
if ( t->Tag() == TYPE_LIST )
return flatten_type(t);
else if ( t->IsSet() ) {
const auto& tl = t->AsTableType()->GetIndices();
if ( tl->GetTypes().size() == 1 )
return tl->GetTypes()[0].get();
else
return tl.get();
}
else
return t;
}
static TableTypePtr init_table_type(detail::ListExpr* l) {
auto& elems = l->Exprs();
TypePtr index;
TypePtr yield;
for ( auto e : elems ) {
if ( e->Tag() != detail::EXPR_ASSIGN ) {
e->Error("table constructor element lacks '=' structure");
return nullptr;
}
auto& ind = e->GetOp1()->GetType();
auto& y = e->GetOp2()->GetType();
if ( ! index ) {
index = ind;
yield = y;
continue;
}
index = merge_types(index, ind);
yield = merge_types(yield, y);
if ( ! index || ! yield )
// Error message already generated.
return nullptr;
}
if ( index->Tag() != TYPE_LIST )
return nullptr;
return make_intrusive<TableType>(cast_intrusive<TypeList>(index), yield);
}
static TableTypePtr init_set_type(detail::ListExpr* l) {
auto& elems = l->Exprs();
TypePtr index;
for ( auto e : elems ) {
auto& ind = e->GetType();
if ( ! index ) {
index = ind;
continue;
}
index = merge_types(index, ind);
if ( ! index )
return nullptr;
}
TypeListPtr ind_list;
if ( index->Tag() == TYPE_LIST )
ind_list = cast_intrusive<TypeList>(index);
else {
ind_list = make_intrusive<TypeList>(index);
ind_list->Append(index);
}
return make_intrusive<TableType>(ind_list, nullptr);
}
TypePtr init_type(const detail::ExprPtr& init) {
if ( init->Tag() != detail::EXPR_LIST ) {
auto t = init->InitType();
if ( ! t ) {
init->Error("not a valid initializer");
return nullptr;
}
if ( (t->Tag() == TYPE_TABLE && cast_intrusive<TableType>(t)->IsUnspecifiedTable()) ||
(t->Tag() == TYPE_VECTOR && cast_intrusive<VectorType>(t)->IsUnspecifiedVector()) ) {
init->Error("empty constructor in untyped initialization");
return nullptr;
}
return t;
}
auto init_list = init->AsListExpr();
const auto& el = init_list->Exprs();
if ( el.length() == 0 ) {
init->Error("empty list in untyped initialization");
return nullptr;
}
// Could be a record, a set, or a list of table elements.
auto e0 = el[0];
if ( e0->IsRecordElement(nullptr) )
// ListExpr's know how to build a record from their components.
return init_list->InitType();
if ( e0->Tag() == detail::EXPR_ASSIGN )
return init_table_type(init_list);
else
return init_set_type(init_list);
}
bool is_atomic_type(const Type& t) {
switch ( t.InternalType() ) {
case TYPE_INTERNAL_INT:
case TYPE_INTERNAL_UNSIGNED:
case TYPE_INTERNAL_DOUBLE:
case TYPE_INTERNAL_STRING:
case TYPE_INTERNAL_ADDR:
case TYPE_INTERNAL_SUBNET: return true;
default: return false;
}
}
const TypePtr& base_type(TypeTag tag) {
static TypePtr base_types[NUM_TYPES];
// We could check here that "tag" actually corresponds to a basic type.
if ( ! base_types[tag] ) {
base_types[tag] = make_intrusive<Type>(tag, true);
// Give the base types a pseudo-location for easier identification.
detail::Location l(type_name(tag), 0, 0);
base_types[tag]->SetLocationInfo(&l);
}
return base_types[tag];
}
} // namespace zeek