mirror of
https://github.com/zeek/zeek.git
synced 2025-10-15 21:18:20 +00:00
556 lines
14 KiB
C++
556 lines
14 KiB
C++
// See the file "COPYING" in the main distribution directory for copyright.
|
|
|
|
#include "zeek/Desc.h"
|
|
#include "zeek/EventHandler.h"
|
|
#include "zeek/Frame.h"
|
|
#include "zeek/Overflow.h"
|
|
#include "zeek/RE.h"
|
|
#include "zeek/Reporter.h"
|
|
#include "zeek/Traverse.h"
|
|
#include "zeek/Trigger.h"
|
|
#include "zeek/script_opt/ScriptOpt.h"
|
|
#include "zeek/script_opt/ZAM/Compile.h"
|
|
|
|
// Needed for managing the corresponding values.
|
|
#include "zeek/File.h"
|
|
#include "zeek/Func.h"
|
|
#include "zeek/OpaqueVal.h"
|
|
|
|
// Just needed for BiFs.
|
|
#include "zeek/analyzer/Manager.h"
|
|
#include "zeek/broker/Manager.h"
|
|
#include "zeek/file_analysis/Manager.h"
|
|
#include "zeek/logging/Manager.h"
|
|
|
|
namespace zeek::detail
|
|
{
|
|
|
|
using std::vector;
|
|
|
|
static bool did_init = false;
|
|
|
|
// Count of how often each type of ZOP executed, and how much CPU it
|
|
// cumulatively took.
|
|
int ZOP_count[OP_NOP + 1];
|
|
double ZOP_CPU[OP_NOP + 1];
|
|
|
|
void report_ZOP_profile()
|
|
{
|
|
for ( int i = 1; i <= OP_NOP; ++i )
|
|
if ( ZOP_count[i] > 0 )
|
|
printf("%s\t%d\t%.06f\n", ZOP_name(ZOp(i)), ZOP_count[i], ZOP_CPU[i]);
|
|
}
|
|
|
|
// Sets the given element to a copy of an existing (not newly constructed)
|
|
// ZVal, including underlying memory management. Returns false if the
|
|
// assigned value was missing (which we can only tell for managed types),
|
|
// true otherwise.
|
|
|
|
static bool copy_vec_elem(VectorVal* vv, bro_uint_t ind, ZVal zv, const TypePtr& t)
|
|
{
|
|
if ( vv->Size() <= ind )
|
|
vv->Resize(ind + 1);
|
|
|
|
auto& elem = (*vv->RawVec())[ind];
|
|
|
|
if ( ! ZVal::IsManagedType(t) )
|
|
{
|
|
elem = zv;
|
|
return true;
|
|
}
|
|
|
|
if ( elem )
|
|
ZVal::DeleteManagedType(*elem);
|
|
|
|
elem = zv;
|
|
auto managed_elem = elem->ManagedVal();
|
|
|
|
if ( ! managed_elem )
|
|
{
|
|
elem = std::nullopt;
|
|
return false;
|
|
}
|
|
|
|
zeek::Ref(managed_elem);
|
|
return true;
|
|
}
|
|
|
|
// Unary and binary element-by-element vector operations, yielding a new
|
|
// VectorVal with a yield type of 't'. 'z' is passed in only for localizing
|
|
// errors.
|
|
static void vec_exec(ZOp op, TypePtr t, VectorVal*& v1, const VectorVal* v2, const ZInst& z);
|
|
|
|
static void vec_exec(ZOp op, TypePtr t, VectorVal*& v1, const VectorVal* v2, const VectorVal* v3,
|
|
const ZInst& z);
|
|
|
|
// Vector coercion.
|
|
#define VEC_COERCE(tag, lhs_type, cast, rhs_accessor, ov_check, ov_err) \
|
|
static VectorVal* vec_coerce_##tag(VectorVal* vec, const ZInst& z) \
|
|
{ \
|
|
auto& v = *vec->RawVec(); \
|
|
auto yt = make_intrusive<VectorType>(base_type(lhs_type)); \
|
|
auto res_zv = new VectorVal(yt); \
|
|
auto n = v.size(); \
|
|
res_zv->Resize(n); \
|
|
auto& res = *res_zv->RawVec(); \
|
|
for ( auto i = 0U; i < n; ++i ) \
|
|
if ( v[i] ) \
|
|
{ \
|
|
auto vi = (*v[i]).rhs_accessor; \
|
|
if ( ov_check(vi) ) \
|
|
{ \
|
|
std::string err = "overflow promoting from "; \
|
|
err += ov_err; \
|
|
err += " arithmetic value"; \
|
|
ZAM_run_time_error(z.loc, err.c_str()); \
|
|
res[i] = std::nullopt; \
|
|
} \
|
|
else \
|
|
res[i] = ZVal(cast(vi)); \
|
|
} \
|
|
else \
|
|
res[i] = std::nullopt; \
|
|
return res_zv; \
|
|
}
|
|
|
|
#define false_func(x) false
|
|
|
|
VEC_COERCE(DI, TYPE_DOUBLE, double, AsInt(), false_func, "")
|
|
VEC_COERCE(DU, TYPE_DOUBLE, double, AsCount(), false_func, "")
|
|
VEC_COERCE(ID, TYPE_INT, bro_int_t, AsDouble(), double_to_int_would_overflow, "double to signed")
|
|
VEC_COERCE(IU, TYPE_INT, bro_int_t, AsCount(), count_to_int_would_overflow, "unsigned to signed")
|
|
VEC_COERCE(UD, TYPE_COUNT, bro_uint_t, AsDouble(), double_to_count_would_overflow,
|
|
"double to unsigned")
|
|
VEC_COERCE(UI, TYPE_COUNT, bro_int_t, AsInt(), int_to_count_would_overflow, "signed to unsigned")
|
|
|
|
double curr_CPU_time()
|
|
{
|
|
struct timespec ts;
|
|
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
|
|
return double(ts.tv_sec) + double(ts.tv_nsec) / 1e9;
|
|
}
|
|
|
|
ZBody::ZBody(const char* _func_name, const ZAMCompiler* zc) : Stmt(STMT_ZAM)
|
|
{
|
|
func_name = _func_name;
|
|
|
|
frame_denizens = zc->FrameDenizens();
|
|
frame_size = frame_denizens.size();
|
|
|
|
// Concretize the names of the frame denizens.
|
|
for ( auto& f : frame_denizens )
|
|
for ( auto& id : f.ids )
|
|
f.names.push_back(id->Name());
|
|
|
|
managed_slots = zc->ManagedSlots();
|
|
|
|
globals = zc->Globals();
|
|
num_globals = globals.size();
|
|
|
|
int_cases = zc->GetCases<bro_int_t>();
|
|
uint_cases = zc->GetCases<bro_uint_t>();
|
|
double_cases = zc->GetCases<double>();
|
|
str_cases = zc->GetCases<std::string>();
|
|
|
|
if ( zc->NonRecursive() )
|
|
{
|
|
fixed_frame = new ZVal[frame_size];
|
|
|
|
for ( auto& ms : managed_slots )
|
|
fixed_frame[ms].ClearManagedVal();
|
|
}
|
|
|
|
table_iters = zc->GetTableIters();
|
|
num_step_iters = zc->NumStepIters();
|
|
|
|
// It's a little weird doing this in the constructor, but unless
|
|
// we add a general "initialize for ZAM" function, this is as good
|
|
// a place as any.
|
|
if ( ! did_init )
|
|
{
|
|
auto log_ID_type = lookup_ID("ID", "Log");
|
|
ASSERT(log_ID_type);
|
|
log_ID_enum_type = log_ID_type->GetType<EnumType>();
|
|
|
|
any_base_type = base_type(TYPE_ANY);
|
|
|
|
ZVal::SetZValNilStatusAddr(&ZAM_error);
|
|
|
|
did_init = false;
|
|
}
|
|
}
|
|
|
|
ZBody::~ZBody()
|
|
{
|
|
delete[] fixed_frame;
|
|
delete[] insts;
|
|
delete inst_count;
|
|
delete CPU_time;
|
|
}
|
|
|
|
void ZBody::SetInsts(vector<ZInst*>& _insts)
|
|
{
|
|
ninst = _insts.size();
|
|
auto insts_copy = new ZInst[ninst];
|
|
|
|
for ( auto i = 0U; i < ninst; ++i )
|
|
insts_copy[i] = *_insts[i];
|
|
|
|
insts = insts_copy;
|
|
|
|
InitProfile();
|
|
}
|
|
|
|
void ZBody::SetInsts(vector<ZInstI*>& instsI)
|
|
{
|
|
ninst = instsI.size();
|
|
auto insts_copy = new ZInst[ninst];
|
|
|
|
for ( auto i = 0U; i < ninst; ++i )
|
|
{
|
|
auto& iI = *instsI[i];
|
|
insts_copy[i] = iI;
|
|
if ( iI.stmt )
|
|
insts_copy[i].loc = iI.stmt->Original()->GetLocationInfo();
|
|
}
|
|
|
|
insts = insts_copy;
|
|
|
|
InitProfile();
|
|
}
|
|
|
|
void ZBody::InitProfile()
|
|
{
|
|
if ( analysis_options.profile_ZAM )
|
|
{
|
|
inst_count = new vector<int>;
|
|
inst_CPU = new vector<double>;
|
|
for ( auto i = 0U; i < ninst; ++i )
|
|
{
|
|
inst_count->push_back(0);
|
|
inst_CPU->push_back(0.0);
|
|
}
|
|
|
|
CPU_time = new double;
|
|
*CPU_time = 0.0;
|
|
}
|
|
}
|
|
|
|
ValPtr ZBody::Exec(Frame* f, StmtFlowType& flow)
|
|
{
|
|
#ifdef DEBUG
|
|
double t = analysis_options.profile_ZAM ? curr_CPU_time() : 0.0;
|
|
#endif
|
|
|
|
auto val = DoExec(f, 0, flow);
|
|
|
|
#ifdef DEBUG
|
|
if ( analysis_options.profile_ZAM )
|
|
*CPU_time += curr_CPU_time() - t;
|
|
#endif
|
|
|
|
return val;
|
|
}
|
|
|
|
ValPtr ZBody::DoExec(Frame* f, int start_pc, StmtFlowType& flow)
|
|
{
|
|
int pc = start_pc;
|
|
const int end_pc = ninst;
|
|
|
|
// Return value, or nil if none.
|
|
const ZVal* ret_u = nullptr;
|
|
|
|
// Type of the return value. If nil, then we don't have a value.
|
|
TypePtr ret_type;
|
|
|
|
#ifdef DEBUG
|
|
bool do_profile = analysis_options.profile_ZAM;
|
|
#endif
|
|
|
|
ZVal* frame;
|
|
std::unique_ptr<TableIterVec> local_table_iters;
|
|
std::vector<StepIterInfo> step_iters(num_step_iters);
|
|
|
|
if ( fixed_frame )
|
|
frame = fixed_frame;
|
|
else
|
|
{
|
|
frame = new ZVal[frame_size];
|
|
// Clear slots for which we do explicit memory management.
|
|
for ( auto s : managed_slots )
|
|
frame[s].ClearManagedVal();
|
|
|
|
if ( ! table_iters.empty() )
|
|
{
|
|
local_table_iters = std::make_unique<TableIterVec>(table_iters.size());
|
|
*local_table_iters = table_iters;
|
|
tiv_ptr = &(*local_table_iters);
|
|
}
|
|
}
|
|
|
|
flow = FLOW_RETURN; // can be over-written by a Hook-Break
|
|
|
|
while ( pc < end_pc && ! ZAM_error )
|
|
{
|
|
auto& z = insts[pc];
|
|
|
|
#ifdef DEBUG
|
|
int profile_pc;
|
|
double profile_CPU;
|
|
|
|
if ( do_profile )
|
|
{
|
|
++ZOP_count[z.op];
|
|
++(*inst_count)[pc];
|
|
|
|
profile_pc = pc;
|
|
profile_CPU = curr_CPU_time();
|
|
}
|
|
#endif
|
|
|
|
switch ( z.op )
|
|
{
|
|
case OP_NOP:
|
|
break;
|
|
|
|
// These must stay in this order or the build fails.
|
|
#include "ZAM-EvalMacros.h"
|
|
#include "ZAM-EvalDefs.h"
|
|
|
|
default:
|
|
reporter->InternalError("bad ZAM opcode");
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if ( do_profile )
|
|
{
|
|
double dt = curr_CPU_time() - profile_CPU;
|
|
inst_CPU->at(profile_pc) += dt;
|
|
ZOP_CPU[z.op] += dt;
|
|
}
|
|
#endif
|
|
|
|
++pc;
|
|
}
|
|
|
|
auto result = ret_type ? ret_u->ToVal(ret_type) : nullptr;
|
|
|
|
if ( fixed_frame )
|
|
{
|
|
// Make sure we don't have any dangling iterators.
|
|
for ( auto& ti : table_iters )
|
|
ti.Clear();
|
|
|
|
// Free slots for which we do explicit memory management,
|
|
// preparing them for reuse.
|
|
for ( auto& ms : managed_slots )
|
|
{
|
|
auto& v = frame[ms];
|
|
ZVal::DeleteManagedType(v);
|
|
v.ClearManagedVal();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Free those slots for which we do explicit memory management.
|
|
// No need to then clear them, as we're about to throw away
|
|
// the entire frame.
|
|
for ( auto& ms : managed_slots )
|
|
{
|
|
auto& v = frame[ms];
|
|
ZVal::DeleteManagedType(v);
|
|
}
|
|
|
|
delete[] frame;
|
|
}
|
|
|
|
// Clear any error state.
|
|
ZAM_error = false;
|
|
|
|
return result;
|
|
}
|
|
|
|
void ZBody::ProfileExecution() const
|
|
{
|
|
if ( inst_count->empty() )
|
|
{
|
|
printf("%s has an empty body\n", func_name);
|
|
return;
|
|
}
|
|
|
|
if ( (*inst_count)[0] == 0 )
|
|
{
|
|
printf("%s did not execute\n", func_name);
|
|
return;
|
|
}
|
|
|
|
printf("%s CPU time: %.06f\n", func_name, *CPU_time);
|
|
|
|
for ( auto i = 0U; i < inst_count->size(); ++i )
|
|
{
|
|
printf("%s %d %d %.06f ", func_name, i, (*inst_count)[i], (*inst_CPU)[i]);
|
|
insts[i].Dump(i, &frame_denizens);
|
|
}
|
|
}
|
|
|
|
bool ZBody::CheckAnyType(const TypePtr& any_type, const TypePtr& expected_type,
|
|
const Location* loc) const
|
|
{
|
|
if ( IsAny(expected_type) )
|
|
return true;
|
|
|
|
if ( ! same_type(any_type, expected_type, false, false) )
|
|
{
|
|
auto at = any_type->Tag();
|
|
auto et = expected_type->Tag();
|
|
|
|
if ( at == TYPE_RECORD && et == TYPE_RECORD )
|
|
{
|
|
auto at_r = any_type->AsRecordType();
|
|
auto et_r = expected_type->AsRecordType();
|
|
|
|
if ( record_promotion_compatible(et_r, at_r) )
|
|
return true;
|
|
}
|
|
|
|
char buf[8192];
|
|
snprintf(buf, sizeof buf, "run-time type clash (%s/%s)", type_name(at), type_name(et));
|
|
|
|
reporter->RuntimeError(loc, "%s", buf);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ZBody::Dump() const
|
|
{
|
|
printf("Frame:\n");
|
|
|
|
for ( unsigned i = 0; i < frame_denizens.size(); ++i )
|
|
{
|
|
auto& d = frame_denizens[i];
|
|
|
|
printf("frame[%d] =", i);
|
|
|
|
if ( d.names.empty() )
|
|
for ( auto& id : d.ids )
|
|
printf(" %s", id->Name());
|
|
else
|
|
for ( auto& n : d.names )
|
|
printf(" %s", n);
|
|
printf("\n");
|
|
}
|
|
|
|
printf("Final code:\n");
|
|
|
|
for ( unsigned i = 0; i < ninst; ++i )
|
|
{
|
|
auto& inst = insts[i];
|
|
printf("%d: ", i);
|
|
inst.Dump(i, &frame_denizens);
|
|
}
|
|
}
|
|
|
|
void ZBody::StmtDescribe(ODesc* d) const
|
|
{
|
|
d->AddSP("ZAM-code");
|
|
d->AddSP(func_name);
|
|
}
|
|
|
|
TraversalCode ZBody::Traverse(TraversalCallback* cb) const
|
|
{
|
|
TraversalCode tc = cb->PreStmt(this);
|
|
HANDLE_TC_STMT_PRE(tc);
|
|
|
|
tc = cb->PostStmt(this);
|
|
HANDLE_TC_STMT_POST(tc);
|
|
}
|
|
|
|
ValPtr ZAMResumption::Exec(Frame* f, StmtFlowType& flow)
|
|
{
|
|
return am->DoExec(f, xfer_pc, flow);
|
|
}
|
|
|
|
void ZAMResumption::StmtDescribe(ODesc* d) const
|
|
{
|
|
d->Add("<resumption of compiled code>");
|
|
}
|
|
|
|
TraversalCode ZAMResumption::Traverse(TraversalCallback* cb) const
|
|
{
|
|
TraversalCode tc = cb->PreStmt(this);
|
|
HANDLE_TC_STMT_PRE(tc);
|
|
|
|
tc = cb->PostStmt(this);
|
|
HANDLE_TC_STMT_POST(tc);
|
|
}
|
|
|
|
// Unary vector operation of v1 <vec-op> v2.
|
|
static void vec_exec(ZOp op, TypePtr t, VectorVal*& v1, const VectorVal* v2, const ZInst& z)
|
|
{
|
|
// We could speed this up further still by gen'ing up an instance
|
|
// of the loop inside each switch case (in which case we might as
|
|
// well move the whole kit-and-caboodle into the Exec method). But
|
|
// that seems like a lot of code bloat for only a very modest gain.
|
|
|
|
auto& vec2 = *v2->RawVec();
|
|
auto n = vec2.size();
|
|
auto vec1_ptr = new vector<std::optional<ZVal>>(n);
|
|
auto& vec1 = *vec1_ptr;
|
|
|
|
for ( auto i = 0U; i < n; ++i )
|
|
{
|
|
if ( vec2[i] )
|
|
switch ( op )
|
|
{
|
|
|
|
#include "ZAM-Vec1EvalDefs.h"
|
|
|
|
default:
|
|
reporter->InternalError("bad invocation of VecExec");
|
|
}
|
|
else
|
|
vec1[i] = std::nullopt;
|
|
}
|
|
|
|
auto vt = cast_intrusive<VectorType>(std::move(t));
|
|
auto old_v1 = v1;
|
|
v1 = new VectorVal(std::move(vt), vec1_ptr);
|
|
Unref(old_v1);
|
|
}
|
|
|
|
// Binary vector operation of v1 = v2 <vec-op> v3.
|
|
static void vec_exec(ZOp op, TypePtr t, VectorVal*& v1, const VectorVal* v2, const VectorVal* v3,
|
|
const ZInst& z)
|
|
{
|
|
// See comment above re further speed-up.
|
|
|
|
auto& vec2 = *v2->RawVec();
|
|
auto& vec3 = *v3->RawVec();
|
|
auto n = vec2.size();
|
|
auto vec1_ptr = new vector<std::optional<ZVal>>(n);
|
|
auto& vec1 = *vec1_ptr;
|
|
|
|
for ( auto i = 0U; i < vec2.size(); ++i )
|
|
{
|
|
if ( vec2[i] && vec3[i] )
|
|
switch ( op )
|
|
{
|
|
|
|
#include "ZAM-Vec2EvalDefs.h"
|
|
|
|
default:
|
|
reporter->InternalError("bad invocation of VecExec");
|
|
}
|
|
else
|
|
vec1[i] = std::nullopt;
|
|
}
|
|
|
|
auto vt = cast_intrusive<VectorType>(std::move(t));
|
|
auto old_v1 = v1;
|
|
v1 = new VectorVal(std::move(vt), vec1_ptr);
|
|
Unref(old_v1);
|
|
}
|
|
|
|
} // zeek::detail
|