zeek/src/util.cc
Seth Hall 40e9724de7 Switching all use of gmtime and localtime to use reentrant variants.
This was causing occasional problems with the time on processes
running lots of threads.  The use of gmtime in the json
formatter is the likely culprit due to the fact that the
json formatter runs in threads.  More evidence for this is that
the problem only appears to exhibit when logs are being written
as JSON.
2016-05-07 01:22:38 -04:00

1724 lines
34 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include "bro-config.h"
#include "util-config.h"
#ifdef TIME_WITH_SYS_TIME
# include <sys/time.h>
# include <time.h>
#else
# ifdef HAVE_SYS_TIME_H
# include <sys/time.h>
# else
# include <time.h>
# endif
#endif
#include <string>
#include <vector>
#include <algorithm>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <stdarg.h>
#include <errno.h>
#include <signal.h>
#include <libgen.h>
#include <openssl/md5.h>
#include <openssl/sha.h>
#ifdef HAVE_MALLINFO
# include <malloc.h>
#endif
#include "input.h"
#include "util.h"
#include "Obj.h"
#include "Val.h"
#include "NetVar.h"
#include "Net.h"
#include "Reporter.h"
#include "iosource/Manager.h"
/**
* Return IP address without enclosing brackets and any leading 0x.
*/
std::string extract_ip(const std::string& i)
{
std::string s(skip_whitespace(i.c_str()));
if ( s.size() > 0 && s[0] == '[' )
s.erase(0, 1);
if ( s.size() > 1 && s.substr(0, 2) == "0x" )
s.erase(0, 2);
size_t pos = 0;
if ( (pos = s.find(']')) != std::string::npos )
s = s.substr(0, pos);
return s;
}
/**
* Given a subnet string, return IP address and subnet length separately.
*/
std::string extract_ip_and_len(const std::string& i, int* len)
{
size_t pos = i.find('/');
if ( pos == std::string::npos )
return i;
if ( len )
*len = atoi(i.substr(pos + 1).c_str());
return extract_ip(i.substr(0, pos));
}
/**
* Takes a string, unescapes all characters that are escaped as hex codes
* (\x##) and turns them into the equivalent ascii-codes. Returns a string
* containing no escaped values
*
* @param str string to unescape
* @return A str::string without escaped characters.
*/
std::string get_unescaped_string(const std::string& arg_str)
{
const char* str = arg_str.c_str();
char* buf = new char [arg_str.length() + 1]; // it will at most have the same length as str.
char* bufpos = buf;
size_t pos = 0;
while ( pos < arg_str.length() )
{
if ( str[pos] == '\\' && str[pos+1] == 'x' &&
isxdigit(str[pos+2]) && isxdigit(str[pos+3]) )
{
*bufpos = (decode_hex(str[pos+2]) << 4) +
decode_hex(str[pos+3]);
pos += 4;
bufpos++;
}
else
*bufpos++ = str[pos++];
}
*bufpos = 0;
string outstring(buf, bufpos - buf);
delete [] buf;
return outstring;
}
/**
* Takes a string, escapes characters into equivalent hex codes (\x##), and
* returns a string containing all escaped values.
*
* @param d an ODesc object to store the escaped hex version of the string,
* if null one will be allocated and returned from the function.
* @param str string to escape
* @param escape_all If true, all characters are escaped. If false, only
* characters are escaped that are either whitespace or not printable in
* ASCII.
* @return A ODesc object containing a list of escaped hex values of the form
* \x##, which may be newly allocated if \a d was a null pointer. */
ODesc* get_escaped_string(ODesc* d, const char* str, size_t len,
bool escape_all)
{
if ( ! d )
d = new ODesc();
for ( size_t i = 0; i < len; ++i )
{
char c = str[i];
if ( escape_all || isspace(c) || ! isascii(c) || ! isprint(c) )
{
if ( c == '\\' )
d->AddRaw("\\\\", 2);
else
{
char hex[4] = {'\\', 'x', '0', '0' };
bytetohex(c, hex + 2);
d->AddRaw(hex, 4);
}
}
else
d->AddRaw(&c, 1);
}
return d;
}
std::string get_escaped_string(const char* str, size_t len, bool escape_all)
{
ODesc d;
return get_escaped_string(&d, str, len, escape_all)->Description();
}
char* copy_string(const char* s)
{
if ( ! s )
return 0;
char* c = new char[strlen(s)+1];
strcpy(c, s);
return c;
}
int streq(const char* s1, const char* s2)
{
return ! strcmp(s1, s2);
}
int expand_escape(const char*& s)
{
switch ( *(s++) ) {
case 'b': return '\b';
case 'f': return '\f';
case 'n': return '\n';
case 'r': return '\r';
case 't': return '\t';
case 'a': return '\a';
case 'v': return '\v';
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7':
{ // \<octal>{1,3}
--s; // put back the first octal digit
const char* start = s;
// Don't increment inside loop control
// because if isdigit() is a macro it might
// expand into multiple increments ...
// Here we define a maximum length for escape sequence
// to allow easy handling of string like: "^H0" as
// "\0100".
for ( int len = 0; len < 3 && isascii(*s) && isdigit(*s);
++s, ++len)
;
int result;
if ( sscanf(start, "%3o", &result) != 1 )
{
reporter->Warning("bad octal escape: %s ", start);
result = 0;
}
return result;
}
case 'x':
{ /* \x<hex> */
const char* start = s;
// Look at most 2 characters, so that "\x0ddir" -> "^Mdir".
for ( int len = 0; len < 2 && isascii(*s) && isxdigit(*s);
++s, ++len)
;
int result;
if ( sscanf(start, "%2x", &result) != 1 )
{
reporter->Warning("bad hexadecimal escape: %s", start);
result = 0;
}
return result;
}
default:
return s[-1];
}
}
char* skip_whitespace(char* s)
{
while ( *s == ' ' || *s == '\t' )
++s;
return s;
}
const char* skip_whitespace(const char* s)
{
while ( *s == ' ' || *s == '\t' )
++s;
return s;
}
char* skip_whitespace(char* s, char* end_of_s)
{
while ( s < end_of_s && (*s == ' ' || *s == '\t') )
++s;
return s;
}
const char* skip_whitespace(const char* s, const char* end_of_s)
{
while ( s < end_of_s && (*s == ' ' || *s == '\t') )
++s;
return s;
}
char* skip_digits(char* s)
{
while ( *s && isdigit(*s) )
++s;
return s;
}
char* get_word(char*& s)
{
char* w = s;
while ( *s && ! isspace(*s) )
++s;
if ( *s )
{
*s = '\0'; // terminate the word
s = skip_whitespace(s+1);
}
return w;
}
void get_word(int length, const char* s, int& pwlen, const char*& pw)
{
pw = s;
int len = 0;
while ( len < length && *s && ! isspace(*s) )
{
++s;
++len;
}
pwlen = len;
}
void to_upper(char* s)
{
while ( *s )
{
if ( islower(*s) )
*s = toupper(*s);
++s;
}
}
string to_upper(const std::string& s)
{
string t = s;
std::transform(t.begin(), t.end(), t.begin(), ::toupper);
return t;
}
int decode_hex(char ch)
{
if ( ch >= '0' && ch <= '9' )
return ch - '0';
if ( ch >= 'A' && ch <= 'F' )
return ch - 'A' + 10;
if ( ch >= 'a' && ch <= 'f' )
return ch - 'a' + 10;
return -1;
}
unsigned char encode_hex(int h)
{
static const char hex[16] = {
'0', '1', '2', '3', '4', '5', '6', '7', '8',
'9', 'A', 'B', 'C', 'D', 'E', 'F'
};
if ( h < 0 || h > 15 )
{
reporter->InternalWarning("illegal value for encode_hex: %d", h);
return 'X';
}
return hex[h];
}
// Same as strpbrk except that s is not NUL-terminated, but limited by
// len. Note that '\0' is always implicitly contained in charset.
const char* strpbrk_n(size_t len, const char* s, const char* charset)
{
for ( const char* p = s; p < s + len; ++p )
if ( strchr(charset, *p) )
return p;
return 0;
}
#ifndef HAVE_STRCASESTR
// This code is derived from software contributed to BSD by Chris Torek.
char* strcasestr(const char* s, const char* find)
{
char c = *find++;
if ( c )
{
c = tolower((unsigned char) c);
size_t len = strlen(find);
do {
char sc;
do {
sc = *s++;
if ( sc == 0 )
return 0;
} while ( char(tolower((unsigned char) sc)) != c );
} while ( strncasecmp(s, find, len) != 0 );
--s;
}
return (char*) s;
}
#endif
template<class T> int atoi_n(int len, const char* s, const char** end, int base, T& result)
{
T n = 0;
int neg = 0;
if ( len > 0 && *s == '-' )
{
neg = 1;
--len; ++s;
}
int i;
for ( i = 0; i < len; ++i )
{
unsigned int d;
if ( isdigit(s[i]) )
d = s[i] - '0';
else if ( s[i] >= 'a' && s[i] < 'a' - 10 + base )
d = s[i] - 'a' + 10;
else if ( s[i] >= 'A' && s[i] < 'A' - 10 + base )
d = s[i] - 'A' + 10;
else if ( i > 0 )
break;
else
return 0;
n = n * base + d;
}
if ( neg )
result = -n;
else
result = n;
if ( end )
*end = s + i;
return 1;
}
// Instantiate the ones we need.
template int atoi_n<int>(int len, const char* s, const char** end, int base, int& result);
template int atoi_n<uint16_t>(int len, const char* s, const char** end, int base, uint16_t& result);
template int atoi_n<uint32_t>(int len, const char* s, const char** end, int base, uint32_t& result);
template int atoi_n<int64_t>(int len, const char* s, const char** end, int base, int64_t& result);
template int atoi_n<uint64_t>(int len, const char* s, const char** end, int base, uint64_t& result);
char* uitoa_n(uint64 value, char* str, int n, int base, const char* prefix)
{
static char dig[] = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
assert(n);
int i = 0;
uint64 v;
char* p, *q;
char c;
if ( prefix )
{
strncpy(str, prefix, n);
str[n-1] = '\0';
i += strlen(prefix);
}
if ( i >= n - 1 )
return str;
v = value;
do {
str[i++] = dig[v % base];
v /= base;
} while ( v && i < n - 1 );
str[i] = '\0';
return str;
}
int strstr_n(const int big_len, const u_char* big,
const int little_len, const u_char* little)
{
if ( little_len > big_len )
return -1;
for ( int i = 0; i <= big_len - little_len; ++i )
{
if ( ! memcmp(big + i, little, little_len) )
return i;
}
return -1;
}
int fputs(int len, const char* s, FILE* fp)
{
for ( int i = 0; i < len; ++i )
if ( fputc(s[i], fp) == EOF )
return EOF;
return 0;
}
bool is_printable(const char* s, int len)
{
while ( --len >= 0 )
if ( ! isprint(*s++) )
return false;
return true;
}
std::string strtolower(const std::string& s)
{
std::string t = s;
std::transform(t.begin(), t.end(), t.begin(), ::tolower);
return t;
}
const char* fmt_bytes(const char* data, int len)
{
static char buf[1024];
char* p = buf;
for ( int i = 0; i < len && p - buf < int(sizeof(buf)); ++i )
{
if ( isprint(data[i]) )
*p++ = data[i];
else
p += snprintf(p, sizeof(buf) - (p - buf),
"\\x%02x", (unsigned char) data[i]);
}
if ( p - buf < int(sizeof(buf)) )
*p = '\0';
else
buf[sizeof(buf) - 1] = '\0';
return buf;
}
const char* fmt(const char* format, ...)
{
static char* buf = 0;
static unsigned int buf_len = 1024;
if ( ! buf )
buf = (char*) safe_malloc(buf_len);
va_list al;
va_start(al, format);
int n = safe_vsnprintf(buf, buf_len, format, al);
va_end(al);
if ( (unsigned int) n >= buf_len )
{ // Not enough room, grow the buffer.
buf_len = n + 32;
buf = (char*) safe_realloc(buf, buf_len);
// Is it portable to restart?
va_start(al, format);
n = safe_vsnprintf(buf, buf_len, format, al);
va_end(al);
if ( (unsigned int) n >= buf_len )
reporter->InternalError("confusion reformatting in fmt()");
}
return buf;
}
const char* fmt_access_time(double t)
{
static char buf[256];
time_t time = (time_t) t;
struct tm ts;
if ( ! localtime_r(&time, &ts) )
{
reporter->InternalError("unable to get time");
}
strftime(buf, sizeof(buf), "%d/%m-%H:%M", &ts);
return buf;
}
bool ensure_intermediate_dirs(const char* dirname)
{
if ( ! dirname || strlen(dirname) == 0 )
return false;
bool absolute = dirname[0] == '/';
string path = normalize_path(dirname);
vector<string> path_components;
tokenize_string(path, "/", &path_components);
string current_dir;
for ( size_t i = 0; i < path_components.size(); ++i )
{
if ( i > 0 || absolute )
current_dir += "/";
current_dir += path_components[i];
if ( ! ensure_dir(current_dir.c_str()) )
return false;
}
return true;
}
bool ensure_dir(const char *dirname)
{
struct stat st;
if ( stat(dirname, &st) < 0 )
{
if ( errno != ENOENT )
{
reporter->Warning("can't stat directory %s: %s",
dirname, strerror(errno));
return false;
}
if ( mkdir(dirname, 0700) < 0 )
{
reporter->Warning("can't create directory %s: %s",
dirname, strerror(errno));
return false;
}
}
else if ( ! S_ISDIR(st.st_mode) )
{
reporter->Warning("%s exists but is not a directory", dirname);
return false;
}
return true;
}
bool is_dir(const std::string& path)
{
struct stat st;
if ( stat(path.c_str(), &st) < 0 )
{
if ( errno != ENOENT )
reporter->Warning("can't stat %s: %s", path.c_str(), strerror(errno));
return false;
}
return S_ISDIR(st.st_mode);
}
bool is_file(const std::string& path)
{
struct stat st;
if ( stat(path.c_str(), &st) < 0 )
{
if ( errno != ENOENT )
reporter->Warning("can't stat %s: %s", path.c_str(), strerror(errno));
return false;
}
return S_ISREG(st.st_mode);
}
string strreplace(const string& s, const string& o, const string& n)
{
string r = s;
while ( true )
{
size_t i = r.find(o);
if ( i == std::string::npos )
break;
r.replace(i, o.size(), n);
}
return r;
}
std::string strstrip(std::string s)
{
s.erase(s.begin(), std::find_if(s.begin(), s.end(), std::not1(std::ptr_fun<int, int>(std::isspace))));
s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
return s;
}
int hmac_key_set = 0;
uint8 shared_hmac_md5_key[16];
void hmac_md5(size_t size, const unsigned char* bytes, unsigned char digest[16])
{
if ( ! hmac_key_set )
reporter->InternalError("HMAC-MD5 invoked before the HMAC key is set");
MD5(bytes, size, digest);
for ( int i = 0; i < 16; ++i )
digest[i] ^= shared_hmac_md5_key[i];
MD5(digest, 16, digest);
}
static bool read_random_seeds(const char* read_file, uint32* seed,
uint32* buf, int bufsiz)
{
FILE* f = 0;
if ( ! (f = fopen(read_file, "r")) )
{
reporter->Warning("Could not open seed file '%s': %s",
read_file, strerror(errno));
return false;
}
// Read seed for srandom().
if ( fscanf(f, "%u", seed) != 1 )
{
fclose(f);
return false;
}
// Read seeds for MD5.
for ( int i = 0; i < bufsiz; ++i )
{
int tmp;
if ( fscanf(f, "%u", &tmp) != 1 )
{
fclose(f);
return false;
}
buf[i] = tmp;
}
fclose(f);
return true;
}
static bool write_random_seeds(const char* write_file, uint32 seed,
uint32* buf, int bufsiz)
{
FILE* f = 0;
if ( ! (f = fopen(write_file, "w+")) )
{
reporter->Warning("Could not create seed file '%s': %s",
write_file, strerror(errno));
return false;
}
fprintf(f, "%u\n", seed);
for ( int i = 0; i < bufsiz; ++i )
fprintf(f, "%u\n", buf[i]);
fclose(f);
return true;
}
static bool bro_rand_determistic = false;
static unsigned int bro_rand_state = 0;
static bool first_seed_saved = false;
static unsigned int first_seed = 0;
static void bro_srandom(unsigned int seed, bool deterministic)
{
bro_rand_state = seed;
bro_rand_determistic = deterministic;
srandom(seed);
}
void bro_srandom(unsigned int seed)
{
if ( bro_rand_determistic )
bro_rand_state = seed;
else
srandom(seed);
}
void init_random_seed(uint32 seed, const char* read_file, const char* write_file)
{
static const int bufsiz = 16;
uint32 buf[bufsiz];
memset(buf, 0, sizeof(buf));
int pos = 0; // accumulates entropy
bool seeds_done = false;
if ( read_file )
{
if ( ! read_random_seeds(read_file, &seed, buf, bufsiz) )
reporter->Error("Could not load seeds from file '%s'.\n",
read_file);
else
seeds_done = true;
}
if ( ! seeds_done )
{
// Gather up some entropy.
gettimeofday((struct timeval *)(buf + pos), 0);
pos += sizeof(struct timeval) / sizeof(uint32);
#if defined(O_NONBLOCK)
int fd = open("/dev/random", O_RDONLY | O_NONBLOCK);
#elif defined(O_NDELAY)
int fd = open("/dev/random", O_RDONLY | O_NDELAY);
#else
int fd = open("/dev/random", O_RDONLY);
#endif
if ( fd >= 0 )
{
int amt = read(fd, buf + pos,
sizeof(uint32) * (bufsiz - pos));
safe_close(fd);
if ( amt > 0 )
pos += amt / sizeof(uint32);
else
// Clear errno, which can be set on some
// systems due to a lack of entropy.
errno = 0;
}
if ( pos < bufsiz )
{
buf[pos++] = getpid();
if ( pos < bufsiz )
buf[pos++] = getuid();
}
if ( ! seed )
{
for ( int i = 0; i < pos; ++i )
{
seed ^= buf[i];
seed = (seed << 1) | (seed >> 31);
}
}
else
seeds_done = true;
}
bro_srandom(seed, seeds_done);
if ( ! first_seed_saved )
{
first_seed = seed;
first_seed_saved = true;
}
if ( ! hmac_key_set )
{
MD5((const u_char*) buf, sizeof(buf), shared_hmac_md5_key);
hmac_key_set = 1;
}
if ( write_file && ! write_random_seeds(write_file, seed, buf, bufsiz) )
reporter->Error("Could not write seeds to file '%s'.\n",
write_file);
}
unsigned int initial_seed()
{
return first_seed;
}
bool have_random_seed()
{
return bro_rand_determistic;
}
unsigned int bro_prng(unsigned int state)
{
// Use our own simple linear congruence PRNG to make sure we are
// predictable across platforms.
static const long int m = 2147483647;
static const long int a = 16807;
const long int q = m / a;
const long int r = m % a;
state = a * ( state % q ) - r * ( state / q );
if ( state <= 0 )
state += m;
return state;
}
long int bro_random()
{
if ( ! bro_rand_determistic )
return random(); // Use system PRNG.
bro_rand_state = bro_prng(bro_rand_state);
return bro_rand_state;
}
// Returns a 64-bit random string.
uint64 rand64bit()
{
uint64 base = 0;
int i;
for ( i = 1; i <= 4; ++i )
base = (base<<16) | bro_random();
return base;
}
int int_list_cmp(const void* v1, const void* v2)
{
ptr_compat_int i1 = *(ptr_compat_int*) v1;
ptr_compat_int i2 = *(ptr_compat_int*) v2;
if ( i1 < i2 )
return -1;
else if ( i1 == i2 )
return 0;
else
return 1;
}
static string bro_path_value;
const std::string& bro_path()
{
if ( bro_path_value.empty() )
{
const char* path = getenv("BROPATH");
if ( ! path )
path = ".:"
BRO_SCRIPT_INSTALL_PATH ":"
BRO_SCRIPT_INSTALL_PATH "/policy" ":"
BRO_SCRIPT_INSTALL_PATH "/site";
bro_path_value = path;
}
return bro_path_value;
}
extern void add_to_bro_path(const string& dir)
{
// Make sure path is initialized.
bro_path();
bro_path_value += string(":") + dir;
}
const char* bro_plugin_path()
{
const char* path = getenv("BRO_PLUGIN_PATH");
if ( ! path )
path = BRO_PLUGIN_INSTALL_PATH;
return path;
}
const char* bro_plugin_activate()
{
const char* names = getenv("BRO_PLUGIN_ACTIVATE");
if ( ! names )
names = "";
return names;
}
string bro_prefixes()
{
string rval;
loop_over_list(prefixes, j)
if ( j == 0 )
rval.append(prefixes[j]);
else
rval.append(":").append(prefixes[j]);
return rval;
}
const char* PACKAGE_LOADER = "__load__.bro";
FILE* open_file(const string& path, const string& mode)
{
if ( path.empty() )
return 0;
FILE* rval = fopen(path.c_str(), mode.c_str());
if ( ! rval )
{
char buf[256];
strerror_r(errno, buf, sizeof(buf));
reporter->Error("Failed to open file %s: %s", filename, buf);
}
return rval;
}
static bool can_read(const string& path)
{
return access(path.c_str(), R_OK) == 0;
}
FILE* open_package(string& path, const string& mode)
{
string arg_path = path;
path.append("/").append(PACKAGE_LOADER);
if ( can_read(path) )
return open_file(path, mode);
reporter->Error("Failed to open package '%s': missing '%s' file",
arg_path.c_str(), PACKAGE_LOADER);
return 0;
}
void SafePathOp::CheckValid(const char* op_result, const char* path,
bool error_aborts)
{
if ( op_result )
{
result = op_result;
error = false;
}
else
{
if ( error_aborts )
reporter->InternalError("Path operation failed on %s: %s",
path ? path : "<null>", strerror(errno));
else
error = true;
}
}
SafeDirname::SafeDirname(const char* path, bool error_aborts)
: SafePathOp()
{
DoFunc(path ? path : "", error_aborts);
}
SafeDirname::SafeDirname(const string& path, bool error_aborts)
: SafePathOp()
{
DoFunc(path, error_aborts);
}
void SafeDirname::DoFunc(const string& path, bool error_aborts)
{
char* tmp = copy_string(path.c_str());
CheckValid(dirname(tmp), tmp, error_aborts);
delete [] tmp;
}
SafeBasename::SafeBasename(const char* path, bool error_aborts)
: SafePathOp()
{
DoFunc(path ? path : "", error_aborts);
}
SafeBasename::SafeBasename(const string& path, bool error_aborts)
: SafePathOp()
{
DoFunc(path, error_aborts);
}
void SafeBasename::DoFunc(const string& path, bool error_aborts)
{
char* tmp = copy_string(path.c_str());
CheckValid(basename(tmp), tmp, error_aborts);
delete [] tmp;
}
string implode_string_vector(const std::vector<std::string>& v,
const std::string& delim)
{
string rval;
for ( size_t i = 0; i < v.size(); ++i )
{
if ( i > 0 )
rval += delim;
rval += v[i];
}
return rval;
}
string flatten_script_name(const string& name, const string& prefix)
{
string rval = prefix;
if ( ! rval.empty() )
rval.append(".");
if ( SafeBasename(name).result == PACKAGE_LOADER )
rval.append(SafeDirname(name).result);
else
rval.append(name);
size_t i;
while ( (i = rval.find('/')) != string::npos )
rval[i] = '.';
return rval;
}
vector<string>* tokenize_string(string input, const string& delim,
vector<string>* rval)
{
if ( ! rval )
rval = new vector<string>();
size_t n;
while ( (n = input.find(delim)) != string::npos )
{
rval->push_back(input.substr(0, n));
input.erase(0, n + 1);
}
rval->push_back(input);
return rval;
}
string normalize_path(const string& path)
{
size_t n;
vector<string> components, final_components;
string new_path;
if ( path[0] == '/' )
new_path = "/";
tokenize_string(path, "/", &components);
vector<string>::const_iterator it;
for ( it = components.begin(); it != components.end(); ++it )
{
if ( *it == "" ) continue;
final_components.push_back(*it);
if ( *it == "." && it != components.begin() )
final_components.pop_back();
else if ( *it == ".." && final_components[0] != ".." )
{
final_components.pop_back();
final_components.pop_back();
}
}
for ( it = final_components.begin(); it != final_components.end(); ++it )
{
new_path.append(*it);
new_path.append("/");
}
if ( new_path.size() > 1 && new_path[new_path.size() - 1] == '/' )
new_path.erase(new_path.size() - 1);
return new_path;
}
string without_bropath_component(const string& path)
{
string rval = normalize_path(path);
vector<string> paths;
tokenize_string(bro_path(), ":", &paths);
for ( size_t i = 0; i < paths.size(); ++i )
{
string common = normalize_path(paths[i]);
if ( rval.find(common) != 0 )
continue;
// Found the containing directory.
rval.erase(0, common.size());
// Remove leading path separators.
while ( rval.size() && rval[0] == '/' )
rval.erase(0, 1);
return rval;
}
return rval;
}
static string find_file_in_path(const string& filename, const string& path,
const string& opt_ext = "")
{
if ( filename.empty() )
return string();
// If file name is an absolute path, searching within *path* is pointless.
if ( filename[0] == '/' )
{
if ( can_read(filename) )
return filename;
else
return string();
}
string abs_path = path + '/' + filename;
if ( ! opt_ext.empty() )
{
string with_ext = abs_path + '.' + opt_ext;
if ( can_read(with_ext) )
return with_ext;
}
if ( can_read(abs_path) )
return abs_path;
return string();
}
string find_file(const string& filename, const string& path_set,
const string& opt_ext)
{
vector<string> paths;
tokenize_string(path_set, ":", &paths);
for ( size_t n = 0; n < paths.size(); ++n )
{
string f = find_file_in_path(filename, paths[n], opt_ext);
if ( ! f.empty() )
return f;
}
return string();
}
FILE* rotate_file(const char* name, RecordVal* rotate_info)
{
// Build file names.
const int buflen = strlen(name) + 128;
char tmpname[buflen], newname[buflen+4];
safe_snprintf(newname, buflen, "%s.%d.%.06f.tmp",
name, getpid(), network_time);
newname[buflen-1] = '\0';
strcpy(tmpname, newname);
strcat(tmpname, ".tmp");
// First open the new file using a temporary name.
FILE* newf = fopen(tmpname, "w");
if ( ! newf )
{
reporter->Error("rotate_file: can't open %s: %s", tmpname, strerror(errno));
return 0;
}
// Then move old file to "<name>.<pid>.<timestamp>" and make sure
// it really gets created.
struct stat dummy;
if ( link(name, newname) < 0 || stat(newname, &dummy) < 0 )
{
reporter->Error("rotate_file: can't move %s to %s: %s", name, newname, strerror(errno));
fclose(newf);
unlink(newname);
unlink(tmpname);
return 0;
}
// Close current file, and move the tmp to its place.
if ( unlink(name) < 0 || link(tmpname, name) < 0 || unlink(tmpname) < 0 )
{
reporter->Error("rotate_file: can't move %s to %s: %s", tmpname, name, strerror(errno));
exit(1); // hard to fix, but shouldn't happen anyway...
}
// Init rotate_info.
if ( rotate_info )
{
rotate_info->Assign(0, new StringVal(name));
rotate_info->Assign(1, new StringVal(newname));
rotate_info->Assign(2, new Val(network_time, TYPE_TIME));
rotate_info->Assign(3, new Val(network_time, TYPE_TIME));
}
return newf;
}
const char* log_file_name(const char* tag)
{
const char* env = getenv("BRO_LOG_SUFFIX");
return fmt("%s.%s", tag, (env ? env : "log"));
}
double parse_rotate_base_time(const char* rotate_base_time)
{
double base = -1;
if ( rotate_base_time && rotate_base_time[0] != '\0' )
{
struct tm t;
if ( ! strptime(rotate_base_time, "%H:%M", &t) )
reporter->Error("calc_next_rotate(): can't parse rotation base time");
else
base = t.tm_min * 60 + t.tm_hour * 60 * 60;
}
return base;
}
double calc_next_rotate(double current, double interval, double base)
{
if ( ! interval )
{
reporter->Error("calc_next_rotate(): interval is zero, falling back to 24hrs");
interval = 86400;
}
// Calculate start of day.
time_t teatime = time_t(current);
struct tm t;
if ( ! localtime_r(&teatime, &t) )
{
reporter->Error("calc_next_rotate(): failure processing current time (%.6f)", current);
// fall back to the method used if no base time is given
base = -1;
}
if ( base < 0 )
// No base time given. To get nice timestamps, we round
// the time up to the next multiple of the rotation interval.
return floor(current / interval) * interval
+ interval - current;
t.tm_hour = t.tm_min = t.tm_sec = 0;
double startofday = mktime(&t);
// current < startofday + base + i * interval <= current + interval
return startofday + base +
ceil((current - startofday - base) / interval) * interval -
current;
}
RETSIGTYPE sig_handler(int signo);
void terminate_processing()
{
if ( ! terminating )
sig_handler(SIGTERM);
}
extern const char* proc_status_file;
void _set_processing_status(const char* status)
{
if ( ! proc_status_file )
return;
// This function can be called from a signal context, so we have to
// make sure to only call reentrant functions and to restore errno
// afterwards.
int old_errno = errno;
int fd = open(proc_status_file, O_CREAT | O_WRONLY | O_TRUNC, 0700);
if ( fd < 0 )
{
char buf[256];
strerror_r(errno, buf, sizeof(buf));
reporter->Error("Failed to open process status file '%s': %s",
proc_status_file, buf);
errno = old_errno;
return;
}
int len = strlen(status);
while ( len )
{
int n = write(fd, status, len);
if ( n < 0 && errno != EINTR && errno != EAGAIN )
// Ignore errors, as they're too difficult to
// safely report here.
break;
status += n;
len -= n;
}
safe_close(fd);
errno = old_errno;
}
double current_time(bool real)
{
struct timeval tv;
if ( gettimeofday(&tv, 0) < 0 )
reporter->InternalError("gettimeofday failed in current_time()");
double t = double(tv.tv_sec) + double(tv.tv_usec) / 1e6;
const iosource::Manager::PktSrcList& pkt_srcs(iosource_mgr->GetPktSrcs());
if ( ! pseudo_realtime || real || pkt_srcs.empty() )
return t;
// This obviously only works for a single source ...
iosource::PktSrc* src = pkt_srcs.front();
if ( net_is_processing_suspended() )
return src->CurrentPacketTimestamp();
// We don't scale with pseudo_realtime here as that would give us a
// jumping real-time.
return src->CurrentPacketTimestamp() +
(t - src->CurrentPacketWallClock());
}
struct timeval double_to_timeval(double t)
{
struct timeval tv;
double t1 = floor(t);
tv.tv_sec = int(t1);
tv.tv_usec = int((t - t1) * 1e6 + 0.5);
return tv;
}
int time_compare(struct timeval* tv_a, struct timeval* tv_b)
{
if ( tv_a->tv_sec == tv_b->tv_sec )
return tv_a->tv_usec - tv_b->tv_usec;
else
return tv_a->tv_sec - tv_b->tv_sec;
}
struct UIDEntry {
UIDEntry() : key(0, 0), needs_init(true) { }
UIDEntry(const uint64 i) : key(i, 0), needs_init(false) { }
struct UIDKey {
UIDKey(uint64 i, uint64 c) : instance(i), counter(c) { }
uint64 instance;
uint64 counter;
} key;
bool needs_init;
};
static std::vector<UIDEntry> uid_pool;
uint64 calculate_unique_id()
{
return calculate_unique_id(UID_POOL_DEFAULT_INTERNAL);
}
uint64 calculate_unique_id(size_t pool)
{
uint64 uid_instance = 0;
if( pool >= uid_pool.size() )
{
if ( pool < 10000 )
uid_pool.resize(pool + 1);
else
{
reporter->Warning("pool passed to calculate_unique_id() too large, using default");
pool = UID_POOL_DEFAULT_INTERNAL;
}
}
if ( uid_pool[pool].needs_init )
{
// This is the first time we need a UID for this pool.
if ( ! have_random_seed() )
{
// If we don't need deterministic output (as
// indicated by a set seed), we calculate the
// instance ID by hashing something likely to be
// globally unique.
struct {
char hostname[120];
uint64 pool;
struct timeval time;
pid_t pid;
int rnd;
} unique;
memset(&unique, 0, sizeof(unique)); // Make valgrind happy.
gethostname(unique.hostname, 120);
unique.hostname[sizeof(unique.hostname)-1] = '\0';
gettimeofday(&unique.time, 0);
unique.pool = (uint64) pool;
unique.pid = getpid();
unique.rnd = bro_random();
uid_instance = HashKey::HashBytes(&unique, sizeof(unique));
++uid_instance; // Now it's larger than zero.
}
else
// Generate determistic UIDs for each individual pool.
uid_instance = pool;
// Our instance is unique. Huzzah.
uid_pool[pool] = UIDEntry(uid_instance);
}
assert(!uid_pool[pool].needs_init);
assert(uid_pool[pool].key.instance != 0);
++uid_pool[pool].key.counter;
return HashKey::HashBytes(&(uid_pool[pool].key), sizeof(uid_pool[pool].key));
}
bool safe_write(int fd, const char* data, int len)
{
while ( len > 0 )
{
int n = write(fd, data, len);
if ( n < 0 )
{
if ( errno == EINTR )
continue;
fprintf(stderr, "safe_write error: %d\n", errno);
abort();
return false;
}
data += n;
len -= n;
}
return true;
}
bool safe_pwrite(int fd, const unsigned char* data, size_t len, size_t offset)
{
while ( len != 0 )
{
ssize_t n = pwrite(fd, data, len, offset);
if ( n < 0 )
{
if ( errno == EINTR )
continue;
fprintf(stderr, "safe_write error: %d\n", errno);
abort();
return false;
}
data += n;
offset +=n;
len -= n;
}
return true;
}
void safe_close(int fd)
{
/*
* Failure cases of close(2) are ...
* EBADF: Indicative of programming logic error that needs to be fixed, we
* should always be attempting to close a valid file descriptor.
* EINTR: Ignore signal interruptions, most implementations will actually
* reclaim the open descriptor and POSIX standard doesn't leave many
* options by declaring the state of the descriptor as "unspecified".
* Attempting to inspect actual state or re-attempt close() is not
* thread safe.
* EIO: Again the state of descriptor is "unspecified", but don't recover
* from an I/O error, safe_write() won't either.
*
* Note that we don't use the reporter here to allow use from different threads.
*/
if ( close(fd) < 0 && errno != EINTR )
{
char buf[128];
strerror_r(errno, buf, sizeof(buf));
fprintf(stderr, "safe_close error %d: %s\n", errno, buf);
abort();
}
}
extern "C" void out_of_memory(const char* where)
{
fprintf(stderr, "out of memory in %s.\n", where);
if ( reporter )
// Guess that might fail here if memory is really tight ...
reporter->FatalError("out of memory in %s.\n", where);
abort();
}
void get_memory_usage(unsigned int* total, unsigned int* malloced)
{
unsigned int ret_total;
#ifdef HAVE_MALLINFO
struct mallinfo mi = mallinfo();
if ( malloced )
*malloced = mi.uordblks;
#endif
struct rusage r;
getrusage(RUSAGE_SELF, &r);
// In KB.
ret_total = r.ru_maxrss * 1024;
if ( total )
*total = ret_total;
}
#ifdef malloc
#undef malloc
#undef realloc
#undef free
extern "C" {
void* malloc(size_t);
void* realloc(void*, size_t);
void free(void*);
}
static int malloc_debug = 0;
void* debug_malloc(size_t t)
{
void* v = malloc(t);
if ( malloc_debug )
printf("%.6f malloc %x %d\n", network_time, v, t);
return v;
}
void* debug_realloc(void* v, size_t t)
{
v = realloc(v, t);
if ( malloc_debug )
printf("%.6f realloc %x %d\n", network_time, v, t);
return v;
}
void debug_free(void* v)
{
if ( malloc_debug )
printf("%.6f free %x\n", network_time, v);
free(v);
}
void* operator new(size_t t)
{
void* v = malloc(t);
if ( malloc_debug )
printf("%.6f new %x %d\n", network_time, v, t);
return v;
}
void* operator new[](size_t t)
{
void* v = malloc(t);
if ( malloc_debug )
printf("%.6f new[] %x %d\n", network_time, v, t);
return v;
}
void operator delete(void* v)
{
if ( malloc_debug )
printf("%.6f delete %x\n", network_time, v);
free(v);
}
void operator delete[](void* v)
{
if ( malloc_debug )
printf("%.6f delete %x\n", network_time, v);
free(v);
}
#endif
std::string canonify_name(const std::string& name)
{
unsigned int len = name.size();
std::string nname;
for ( unsigned int i = 0; i < len; i++ )
{
char c = isalnum(name[i]) ? name[i] : '_';
nname += toupper(c);
}
return nname;
}