zeek/src/util.cc
Johanna Amann 499ed5b566 Remove the -K/-J options for setting keys.
The options were never really used and do not seem especially useful;
initialization with a seed file still works.

This also fixes a bug with the initialization of the siphash key.
2016-07-13 16:57:53 -07:00

1748 lines
34 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include "bro-config.h"
#include "util-config.h"
#ifdef TIME_WITH_SYS_TIME
# include <sys/time.h>
# include <time.h>
#else
# ifdef HAVE_SYS_TIME_H
# include <sys/time.h>
# else
# include <time.h>
# endif
#endif
#ifdef HAVE_DARWIN
#include <mach/task.h>
#include <mach/mach_init.h>
#endif
#include <string>
#include <vector>
#include <algorithm>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <stdarg.h>
#include <errno.h>
#include <signal.h>
#include <libgen.h>
#include <openssl/md5.h>
#include <openssl/sha.h>
#ifdef HAVE_MALLINFO
# include <malloc.h>
#endif
#include "input.h"
#include "util.h"
#include "Obj.h"
#include "Val.h"
#include "NetVar.h"
#include "Net.h"
#include "Reporter.h"
#include "iosource/Manager.h"
/**
* Return IP address without enclosing brackets and any leading 0x.
*/
std::string extract_ip(const std::string& i)
{
std::string s(skip_whitespace(i.c_str()));
if ( s.size() > 0 && s[0] == '[' )
s.erase(0, 1);
if ( s.size() > 1 && s.substr(0, 2) == "0x" )
s.erase(0, 2);
size_t pos = 0;
if ( (pos = s.find(']')) != std::string::npos )
s = s.substr(0, pos);
return s;
}
/**
* Given a subnet string, return IP address and subnet length separately.
*/
std::string extract_ip_and_len(const std::string& i, int* len)
{
size_t pos = i.find('/');
if ( pos == std::string::npos )
return i;
if ( len )
*len = atoi(i.substr(pos + 1).c_str());
return extract_ip(i.substr(0, pos));
}
/**
* Takes a string, unescapes all characters that are escaped as hex codes
* (\x##) and turns them into the equivalent ascii-codes. Returns a string
* containing no escaped values
*
* @param str string to unescape
* @return A str::string without escaped characters.
*/
std::string get_unescaped_string(const std::string& arg_str)
{
const char* str = arg_str.c_str();
char* buf = new char [arg_str.length() + 1]; // it will at most have the same length as str.
char* bufpos = buf;
size_t pos = 0;
while ( pos < arg_str.length() )
{
if ( str[pos] == '\\' && str[pos+1] == 'x' &&
isxdigit(str[pos+2]) && isxdigit(str[pos+3]) )
{
*bufpos = (decode_hex(str[pos+2]) << 4) +
decode_hex(str[pos+3]);
pos += 4;
bufpos++;
}
else
*bufpos++ = str[pos++];
}
*bufpos = 0;
string outstring(buf, bufpos - buf);
delete [] buf;
return outstring;
}
/**
* Takes a string, escapes characters into equivalent hex codes (\x##), and
* returns a string containing all escaped values.
*
* @param d an ODesc object to store the escaped hex version of the string,
* if null one will be allocated and returned from the function.
* @param str string to escape
* @param escape_all If true, all characters are escaped. If false, only
* characters are escaped that are either whitespace or not printable in
* ASCII.
* @return A ODesc object containing a list of escaped hex values of the form
* \x##, which may be newly allocated if \a d was a null pointer. */
ODesc* get_escaped_string(ODesc* d, const char* str, size_t len,
bool escape_all)
{
if ( ! d )
d = new ODesc();
for ( size_t i = 0; i < len; ++i )
{
char c = str[i];
if ( escape_all || isspace(c) || ! isascii(c) || ! isprint(c) )
{
if ( c == '\\' )
d->AddRaw("\\\\", 2);
else
{
char hex[4] = {'\\', 'x', '0', '0' };
bytetohex(c, hex + 2);
d->AddRaw(hex, 4);
}
}
else
d->AddRaw(&c, 1);
}
return d;
}
std::string get_escaped_string(const char* str, size_t len, bool escape_all)
{
ODesc d;
return get_escaped_string(&d, str, len, escape_all)->Description();
}
char* copy_string(const char* s)
{
if ( ! s )
return 0;
char* c = new char[strlen(s)+1];
strcpy(c, s);
return c;
}
int streq(const char* s1, const char* s2)
{
return ! strcmp(s1, s2);
}
int expand_escape(const char*& s)
{
switch ( *(s++) ) {
case 'b': return '\b';
case 'f': return '\f';
case 'n': return '\n';
case 'r': return '\r';
case 't': return '\t';
case 'a': return '\a';
case 'v': return '\v';
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7':
{ // \<octal>{1,3}
--s; // put back the first octal digit
const char* start = s;
// Don't increment inside loop control
// because if isdigit() is a macro it might
// expand into multiple increments ...
// Here we define a maximum length for escape sequence
// to allow easy handling of string like: "^H0" as
// "\0100".
for ( int len = 0; len < 3 && isascii(*s) && isdigit(*s);
++s, ++len)
;
int result;
if ( sscanf(start, "%3o", &result) != 1 )
{
reporter->Warning("bad octal escape: %s ", start);
result = 0;
}
return result;
}
case 'x':
{ /* \x<hex> */
const char* start = s;
// Look at most 2 characters, so that "\x0ddir" -> "^Mdir".
for ( int len = 0; len < 2 && isascii(*s) && isxdigit(*s);
++s, ++len)
;
int result;
if ( sscanf(start, "%2x", &result) != 1 )
{
reporter->Warning("bad hexadecimal escape: %s", start);
result = 0;
}
return result;
}
default:
return s[-1];
}
}
char* skip_whitespace(char* s)
{
while ( *s == ' ' || *s == '\t' )
++s;
return s;
}
const char* skip_whitespace(const char* s)
{
while ( *s == ' ' || *s == '\t' )
++s;
return s;
}
char* skip_whitespace(char* s, char* end_of_s)
{
while ( s < end_of_s && (*s == ' ' || *s == '\t') )
++s;
return s;
}
const char* skip_whitespace(const char* s, const char* end_of_s)
{
while ( s < end_of_s && (*s == ' ' || *s == '\t') )
++s;
return s;
}
char* skip_digits(char* s)
{
while ( *s && isdigit(*s) )
++s;
return s;
}
char* get_word(char*& s)
{
char* w = s;
while ( *s && ! isspace(*s) )
++s;
if ( *s )
{
*s = '\0'; // terminate the word
s = skip_whitespace(s+1);
}
return w;
}
void get_word(int length, const char* s, int& pwlen, const char*& pw)
{
pw = s;
int len = 0;
while ( len < length && *s && ! isspace(*s) )
{
++s;
++len;
}
pwlen = len;
}
void to_upper(char* s)
{
while ( *s )
{
if ( islower(*s) )
*s = toupper(*s);
++s;
}
}
string to_upper(const std::string& s)
{
string t = s;
std::transform(t.begin(), t.end(), t.begin(), ::toupper);
return t;
}
int decode_hex(char ch)
{
if ( ch >= '0' && ch <= '9' )
return ch - '0';
if ( ch >= 'A' && ch <= 'F' )
return ch - 'A' + 10;
if ( ch >= 'a' && ch <= 'f' )
return ch - 'a' + 10;
return -1;
}
unsigned char encode_hex(int h)
{
static const char hex[16] = {
'0', '1', '2', '3', '4', '5', '6', '7', '8',
'9', 'A', 'B', 'C', 'D', 'E', 'F'
};
if ( h < 0 || h > 15 )
{
reporter->InternalWarning("illegal value for encode_hex: %d", h);
return 'X';
}
return hex[h];
}
// Same as strpbrk except that s is not NUL-terminated, but limited by
// len. Note that '\0' is always implicitly contained in charset.
const char* strpbrk_n(size_t len, const char* s, const char* charset)
{
for ( const char* p = s; p < s + len; ++p )
if ( strchr(charset, *p) )
return p;
return 0;
}
#ifndef HAVE_STRCASESTR
// This code is derived from software contributed to BSD by Chris Torek.
char* strcasestr(const char* s, const char* find)
{
char c = *find++;
if ( c )
{
c = tolower((unsigned char) c);
size_t len = strlen(find);
do {
char sc;
do {
sc = *s++;
if ( sc == 0 )
return 0;
} while ( char(tolower((unsigned char) sc)) != c );
} while ( strncasecmp(s, find, len) != 0 );
--s;
}
return (char*) s;
}
#endif
template<class T> int atoi_n(int len, const char* s, const char** end, int base, T& result)
{
T n = 0;
int neg = 0;
if ( len > 0 && *s == '-' )
{
neg = 1;
--len; ++s;
}
int i;
for ( i = 0; i < len; ++i )
{
unsigned int d;
if ( isdigit(s[i]) )
d = s[i] - '0';
else if ( s[i] >= 'a' && s[i] < 'a' - 10 + base )
d = s[i] - 'a' + 10;
else if ( s[i] >= 'A' && s[i] < 'A' - 10 + base )
d = s[i] - 'A' + 10;
else if ( i > 0 )
break;
else
return 0;
n = n * base + d;
}
if ( neg )
result = -n;
else
result = n;
if ( end )
*end = s + i;
return 1;
}
// Instantiate the ones we need.
template int atoi_n<int>(int len, const char* s, const char** end, int base, int& result);
template int atoi_n<uint16_t>(int len, const char* s, const char** end, int base, uint16_t& result);
template int atoi_n<uint32_t>(int len, const char* s, const char** end, int base, uint32_t& result);
template int atoi_n<int64_t>(int len, const char* s, const char** end, int base, int64_t& result);
template int atoi_n<uint64_t>(int len, const char* s, const char** end, int base, uint64_t& result);
char* uitoa_n(uint64 value, char* str, int n, int base, const char* prefix)
{
static char dig[] = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
assert(n);
int i = 0;
uint64 v;
char* p, *q;
char c;
if ( prefix )
{
strncpy(str, prefix, n);
str[n-1] = '\0';
i += strlen(prefix);
}
if ( i >= n - 1 )
return str;
v = value;
do {
str[i++] = dig[v % base];
v /= base;
} while ( v && i < n - 1 );
str[i] = '\0';
return str;
}
int strstr_n(const int big_len, const u_char* big,
const int little_len, const u_char* little)
{
if ( little_len > big_len )
return -1;
for ( int i = 0; i <= big_len - little_len; ++i )
{
if ( ! memcmp(big + i, little, little_len) )
return i;
}
return -1;
}
int fputs(int len, const char* s, FILE* fp)
{
for ( int i = 0; i < len; ++i )
if ( fputc(s[i], fp) == EOF )
return EOF;
return 0;
}
bool is_printable(const char* s, int len)
{
while ( --len >= 0 )
if ( ! isprint(*s++) )
return false;
return true;
}
std::string strtolower(const std::string& s)
{
std::string t = s;
std::transform(t.begin(), t.end(), t.begin(), ::tolower);
return t;
}
const char* fmt_bytes(const char* data, int len)
{
static char buf[1024];
char* p = buf;
for ( int i = 0; i < len && p - buf < int(sizeof(buf)); ++i )
{
if ( isprint(data[i]) )
*p++ = data[i];
else
p += snprintf(p, sizeof(buf) - (p - buf),
"\\x%02x", (unsigned char) data[i]);
}
if ( p - buf < int(sizeof(buf)) )
*p = '\0';
else
buf[sizeof(buf) - 1] = '\0';
return buf;
}
const char* fmt(const char* format, ...)
{
static char* buf = 0;
static unsigned int buf_len = 1024;
if ( ! buf )
buf = (char*) safe_malloc(buf_len);
va_list al;
va_start(al, format);
int n = safe_vsnprintf(buf, buf_len, format, al);
va_end(al);
if ( (unsigned int) n >= buf_len )
{ // Not enough room, grow the buffer.
buf_len = n + 32;
buf = (char*) safe_realloc(buf, buf_len);
// Is it portable to restart?
va_start(al, format);
n = safe_vsnprintf(buf, buf_len, format, al);
va_end(al);
if ( (unsigned int) n >= buf_len )
reporter->InternalError("confusion reformatting in fmt()");
}
return buf;
}
const char* fmt_access_time(double t)
{
static char buf[256];
time_t time = (time_t) t;
struct tm ts;
if ( ! localtime_r(&time, &ts) )
{
reporter->InternalError("unable to get time");
}
strftime(buf, sizeof(buf), "%d/%m-%H:%M", &ts);
return buf;
}
bool ensure_intermediate_dirs(const char* dirname)
{
if ( ! dirname || strlen(dirname) == 0 )
return false;
bool absolute = dirname[0] == '/';
string path = normalize_path(dirname);
vector<string> path_components;
tokenize_string(path, "/", &path_components);
string current_dir;
for ( size_t i = 0; i < path_components.size(); ++i )
{
if ( i > 0 || absolute )
current_dir += "/";
current_dir += path_components[i];
if ( ! ensure_dir(current_dir.c_str()) )
return false;
}
return true;
}
bool ensure_dir(const char *dirname)
{
struct stat st;
if ( stat(dirname, &st) < 0 )
{
if ( errno != ENOENT )
{
reporter->Warning("can't stat directory %s: %s",
dirname, strerror(errno));
return false;
}
if ( mkdir(dirname, 0700) < 0 )
{
reporter->Warning("can't create directory %s: %s",
dirname, strerror(errno));
return false;
}
}
else if ( ! S_ISDIR(st.st_mode) )
{
reporter->Warning("%s exists but is not a directory", dirname);
return false;
}
return true;
}
bool is_dir(const std::string& path)
{
struct stat st;
if ( stat(path.c_str(), &st) < 0 )
{
if ( errno != ENOENT )
reporter->Warning("can't stat %s: %s", path.c_str(), strerror(errno));
return false;
}
return S_ISDIR(st.st_mode);
}
bool is_file(const std::string& path)
{
struct stat st;
if ( stat(path.c_str(), &st) < 0 )
{
if ( errno != ENOENT )
reporter->Warning("can't stat %s: %s", path.c_str(), strerror(errno));
return false;
}
return S_ISREG(st.st_mode);
}
string strreplace(const string& s, const string& o, const string& n)
{
string r = s;
while ( true )
{
size_t i = r.find(o);
if ( i == std::string::npos )
break;
r.replace(i, o.size(), n);
}
return r;
}
std::string strstrip(std::string s)
{
s.erase(s.begin(), std::find_if(s.begin(), s.end(), std::not1(std::ptr_fun<int, int>(std::isspace))));
s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
return s;
}
bool hmac_key_set = 0;
uint8 shared_hmac_md5_key[16];
bool siphash_key_set = false;
uint8 shared_siphash_key[16];
void hmac_md5(size_t size, const unsigned char* bytes, unsigned char digest[16])
{
if ( ! hmac_key_set )
reporter->InternalError("HMAC-MD5 invoked before the HMAC key is set");
MD5(bytes, size, digest);
for ( int i = 0; i < 16; ++i )
digest[i] ^= shared_hmac_md5_key[i];
MD5(digest, 16, digest);
}
static bool read_random_seeds(const char* read_file, uint32* seed,
uint32* buf, int bufsiz)
{
FILE* f = 0;
if ( ! (f = fopen(read_file, "r")) )
{
reporter->Warning("Could not open seed file '%s': %s",
read_file, strerror(errno));
return false;
}
// Read seed for srandom().
if ( fscanf(f, "%u", seed) != 1 )
{
fclose(f);
return false;
}
// Read seeds for MD5.
for ( int i = 0; i < bufsiz; ++i )
{
int tmp;
if ( fscanf(f, "%u", &tmp) != 1 )
{
fclose(f);
return false;
}
buf[i] = tmp;
}
fclose(f);
return true;
}
static bool write_random_seeds(const char* write_file, uint32 seed,
uint32* buf, int bufsiz)
{
FILE* f = 0;
if ( ! (f = fopen(write_file, "w+")) )
{
reporter->Warning("Could not create seed file '%s': %s",
write_file, strerror(errno));
return false;
}
fprintf(f, "%u\n", seed);
for ( int i = 0; i < bufsiz; ++i )
fprintf(f, "%u\n", buf[i]);
fclose(f);
return true;
}
static bool bro_rand_determistic = false;
static unsigned int bro_rand_state = 0;
static bool first_seed_saved = false;
static unsigned int first_seed = 0;
static void bro_srandom(unsigned int seed, bool deterministic)
{
bro_rand_state = seed;
bro_rand_determistic = deterministic;
srandom(seed);
}
void bro_srandom(unsigned int seed)
{
if ( bro_rand_determistic )
bro_rand_state = seed;
else
srandom(seed);
}
void init_random_seed(const char* read_file, const char* write_file)
{
static const int bufsiz = 20;
uint32 buf[bufsiz];
memset(buf, 0, sizeof(buf));
int pos = 0; // accumulates entropy
bool seeds_done = false;
uint32 seed = 0;
if ( read_file )
{
if ( ! read_random_seeds(read_file, &seed, buf, bufsiz) )
reporter->Error("Could not load seeds from file '%s'.\n",
read_file);
else
seeds_done = true;
}
if ( ! seeds_done )
{
// Gather up some entropy.
gettimeofday((struct timeval *)(buf + pos), 0);
pos += sizeof(struct timeval) / sizeof(uint32);
// use urandom. For reasons see e.g. http://www.2uo.de/myths-about-urandom/
#if defined(O_NONBLOCK)
int fd = open("/dev/urandom", O_RDONLY | O_NONBLOCK);
#elif defined(O_NDELAY)
int fd = open("/dev/urandom", O_RDONLY | O_NDELAY);
#else
int fd = open("/dev/urandom", O_RDONLY);
#endif
if ( fd >= 0 )
{
int amt = read(fd, buf + pos,
sizeof(uint32) * (bufsiz - pos));
safe_close(fd);
if ( amt > 0 )
pos += amt / sizeof(uint32);
else
// Clear errno, which can be set on some
// systems due to a lack of entropy.
errno = 0;
}
if ( pos < bufsiz )
reporter->InternalError("Could not read enough random data from /dev/urandom. Wanted %d, got %d", bufsiz, pos);
if ( ! seed )
{
for ( int i = 0; i < pos; ++i )
{
seed ^= buf[i];
seed = (seed << 1) | (seed >> 31);
}
}
else
seeds_done = true;
}
bro_srandom(seed, seeds_done);
if ( ! first_seed_saved )
{
first_seed = seed;
first_seed_saved = true;
}
if ( ! hmac_key_set )
{
assert(sizeof(buf)-16 == 64);
MD5((const u_char*) buf, sizeof(buf)-16, shared_hmac_md5_key); // The last 128 bits of buf are for siphash
hmac_key_set = true;
}
if ( ! siphash_key_set )
{
assert(sizeof(buf)-64 == 16);
memcpy(shared_siphash_key, reinterpret_cast<const char*>(buf)+64, 16);
siphash_key_set = true;
}
if ( write_file && ! write_random_seeds(write_file, seed, buf, bufsiz) )
reporter->Error("Could not write seeds to file '%s'.\n",
write_file);
}
unsigned int initial_seed()
{
return first_seed;
}
bool have_random_seed()
{
return bro_rand_determistic;
}
unsigned int bro_prng(unsigned int state)
{
// Use our own simple linear congruence PRNG to make sure we are
// predictable across platforms.
static const long int m = 2147483647;
static const long int a = 16807;
const long int q = m / a;
const long int r = m % a;
state = a * ( state % q ) - r * ( state / q );
if ( state <= 0 )
state += m;
return state;
}
long int bro_random()
{
if ( ! bro_rand_determistic )
return random(); // Use system PRNG.
bro_rand_state = bro_prng(bro_rand_state);
return bro_rand_state;
}
// Returns a 64-bit random string.
uint64 rand64bit()
{
uint64 base = 0;
int i;
for ( i = 1; i <= 4; ++i )
base = (base<<16) | bro_random();
return base;
}
int int_list_cmp(const void* v1, const void* v2)
{
ptr_compat_int i1 = *(ptr_compat_int*) v1;
ptr_compat_int i2 = *(ptr_compat_int*) v2;
if ( i1 < i2 )
return -1;
else if ( i1 == i2 )
return 0;
else
return 1;
}
static string bro_path_value;
const std::string& bro_path()
{
if ( bro_path_value.empty() )
{
const char* path = getenv("BROPATH");
if ( ! path )
path = ".:"
BRO_SCRIPT_INSTALL_PATH ":"
BRO_SCRIPT_INSTALL_PATH "/policy" ":"
BRO_SCRIPT_INSTALL_PATH "/site";
bro_path_value = path;
}
return bro_path_value;
}
extern void add_to_bro_path(const string& dir)
{
// Make sure path is initialized.
bro_path();
bro_path_value += string(":") + dir;
}
const char* bro_plugin_path()
{
const char* path = getenv("BRO_PLUGIN_PATH");
if ( ! path )
path = BRO_PLUGIN_INSTALL_PATH;
return path;
}
const char* bro_plugin_activate()
{
const char* names = getenv("BRO_PLUGIN_ACTIVATE");
if ( ! names )
names = "";
return names;
}
string bro_prefixes()
{
string rval;
loop_over_list(prefixes, j)
if ( j == 0 )
rval.append(prefixes[j]);
else
rval.append(":").append(prefixes[j]);
return rval;
}
const char* PACKAGE_LOADER = "__load__.bro";
FILE* open_file(const string& path, const string& mode)
{
if ( path.empty() )
return 0;
FILE* rval = fopen(path.c_str(), mode.c_str());
if ( ! rval )
{
char buf[256];
strerror_r(errno, buf, sizeof(buf));
reporter->Error("Failed to open file %s: %s", filename, buf);
}
return rval;
}
static bool can_read(const string& path)
{
return access(path.c_str(), R_OK) == 0;
}
FILE* open_package(string& path, const string& mode)
{
string arg_path = path;
path.append("/").append(PACKAGE_LOADER);
if ( can_read(path) )
return open_file(path, mode);
reporter->Error("Failed to open package '%s': missing '%s' file",
arg_path.c_str(), PACKAGE_LOADER);
return 0;
}
void SafePathOp::CheckValid(const char* op_result, const char* path,
bool error_aborts)
{
if ( op_result )
{
result = op_result;
error = false;
}
else
{
if ( error_aborts )
reporter->InternalError("Path operation failed on %s: %s",
path ? path : "<null>", strerror(errno));
else
error = true;
}
}
SafeDirname::SafeDirname(const char* path, bool error_aborts)
: SafePathOp()
{
DoFunc(path ? path : "", error_aborts);
}
SafeDirname::SafeDirname(const string& path, bool error_aborts)
: SafePathOp()
{
DoFunc(path, error_aborts);
}
void SafeDirname::DoFunc(const string& path, bool error_aborts)
{
char* tmp = copy_string(path.c_str());
CheckValid(dirname(tmp), tmp, error_aborts);
delete [] tmp;
}
SafeBasename::SafeBasename(const char* path, bool error_aborts)
: SafePathOp()
{
DoFunc(path ? path : "", error_aborts);
}
SafeBasename::SafeBasename(const string& path, bool error_aborts)
: SafePathOp()
{
DoFunc(path, error_aborts);
}
void SafeBasename::DoFunc(const string& path, bool error_aborts)
{
char* tmp = copy_string(path.c_str());
CheckValid(basename(tmp), tmp, error_aborts);
delete [] tmp;
}
string implode_string_vector(const std::vector<std::string>& v,
const std::string& delim)
{
string rval;
for ( size_t i = 0; i < v.size(); ++i )
{
if ( i > 0 )
rval += delim;
rval += v[i];
}
return rval;
}
string flatten_script_name(const string& name, const string& prefix)
{
string rval = prefix;
if ( ! rval.empty() )
rval.append(".");
if ( SafeBasename(name).result == PACKAGE_LOADER )
rval.append(SafeDirname(name).result);
else
rval.append(name);
size_t i;
while ( (i = rval.find('/')) != string::npos )
rval[i] = '.';
return rval;
}
vector<string>* tokenize_string(string input, const string& delim,
vector<string>* rval)
{
if ( ! rval )
rval = new vector<string>();
size_t n;
while ( (n = input.find(delim)) != string::npos )
{
rval->push_back(input.substr(0, n));
input.erase(0, n + 1);
}
rval->push_back(input);
return rval;
}
string normalize_path(const string& path)
{
size_t n;
vector<string> components, final_components;
string new_path;
if ( path[0] == '/' )
new_path = "/";
tokenize_string(path, "/", &components);
vector<string>::const_iterator it;
for ( it = components.begin(); it != components.end(); ++it )
{
if ( *it == "" ) continue;
final_components.push_back(*it);
if ( *it == "." && it != components.begin() )
final_components.pop_back();
else if ( *it == ".." && final_components[0] != ".." )
{
final_components.pop_back();
final_components.pop_back();
}
}
for ( it = final_components.begin(); it != final_components.end(); ++it )
{
new_path.append(*it);
new_path.append("/");
}
if ( new_path.size() > 1 && new_path[new_path.size() - 1] == '/' )
new_path.erase(new_path.size() - 1);
return new_path;
}
string without_bropath_component(const string& path)
{
string rval = normalize_path(path);
vector<string> paths;
tokenize_string(bro_path(), ":", &paths);
for ( size_t i = 0; i < paths.size(); ++i )
{
string common = normalize_path(paths[i]);
if ( rval.find(common) != 0 )
continue;
// Found the containing directory.
rval.erase(0, common.size());
// Remove leading path separators.
while ( rval.size() && rval[0] == '/' )
rval.erase(0, 1);
return rval;
}
return rval;
}
static string find_file_in_path(const string& filename, const string& path,
const string& opt_ext = "")
{
if ( filename.empty() )
return string();
// If file name is an absolute path, searching within *path* is pointless.
if ( filename[0] == '/' )
{
if ( can_read(filename) )
return filename;
else
return string();
}
string abs_path = path + '/' + filename;
if ( ! opt_ext.empty() )
{
string with_ext = abs_path + '.' + opt_ext;
if ( can_read(with_ext) )
return with_ext;
}
if ( can_read(abs_path) )
return abs_path;
return string();
}
string find_file(const string& filename, const string& path_set,
const string& opt_ext)
{
vector<string> paths;
tokenize_string(path_set, ":", &paths);
for ( size_t n = 0; n < paths.size(); ++n )
{
string f = find_file_in_path(filename, paths[n], opt_ext);
if ( ! f.empty() )
return f;
}
return string();
}
FILE* rotate_file(const char* name, RecordVal* rotate_info)
{
// Build file names.
const int buflen = strlen(name) + 128;
char tmpname[buflen], newname[buflen+4];
safe_snprintf(newname, buflen, "%s.%d.%.06f.tmp",
name, getpid(), network_time);
newname[buflen-1] = '\0';
strcpy(tmpname, newname);
strcat(tmpname, ".tmp");
// First open the new file using a temporary name.
FILE* newf = fopen(tmpname, "w");
if ( ! newf )
{
reporter->Error("rotate_file: can't open %s: %s", tmpname, strerror(errno));
return 0;
}
// Then move old file to "<name>.<pid>.<timestamp>" and make sure
// it really gets created.
struct stat dummy;
if ( link(name, newname) < 0 || stat(newname, &dummy) < 0 )
{
reporter->Error("rotate_file: can't move %s to %s: %s", name, newname, strerror(errno));
fclose(newf);
unlink(newname);
unlink(tmpname);
return 0;
}
// Close current file, and move the tmp to its place.
if ( unlink(name) < 0 || link(tmpname, name) < 0 || unlink(tmpname) < 0 )
{
reporter->Error("rotate_file: can't move %s to %s: %s", tmpname, name, strerror(errno));
exit(1); // hard to fix, but shouldn't happen anyway...
}
// Init rotate_info.
if ( rotate_info )
{
rotate_info->Assign(0, new StringVal(name));
rotate_info->Assign(1, new StringVal(newname));
rotate_info->Assign(2, new Val(network_time, TYPE_TIME));
rotate_info->Assign(3, new Val(network_time, TYPE_TIME));
}
return newf;
}
const char* log_file_name(const char* tag)
{
const char* env = getenv("BRO_LOG_SUFFIX");
return fmt("%s.%s", tag, (env ? env : "log"));
}
double parse_rotate_base_time(const char* rotate_base_time)
{
double base = -1;
if ( rotate_base_time && rotate_base_time[0] != '\0' )
{
struct tm t;
if ( ! strptime(rotate_base_time, "%H:%M", &t) )
reporter->Error("calc_next_rotate(): can't parse rotation base time");
else
base = t.tm_min * 60 + t.tm_hour * 60 * 60;
}
return base;
}
double calc_next_rotate(double current, double interval, double base)
{
if ( ! interval )
{
reporter->Error("calc_next_rotate(): interval is zero, falling back to 24hrs");
interval = 86400;
}
// Calculate start of day.
time_t teatime = time_t(current);
struct tm t;
if ( ! localtime_r(&teatime, &t) )
{
reporter->Error("calc_next_rotate(): failure processing current time (%.6f)", current);
// fall back to the method used if no base time is given
base = -1;
}
if ( base < 0 )
// No base time given. To get nice timestamps, we round
// the time up to the next multiple of the rotation interval.
return floor(current / interval) * interval
+ interval - current;
t.tm_hour = t.tm_min = t.tm_sec = 0;
double startofday = mktime(&t);
// current < startofday + base + i * interval <= current + interval
return startofday + base +
ceil((current - startofday - base) / interval) * interval -
current;
}
RETSIGTYPE sig_handler(int signo);
void terminate_processing()
{
if ( ! terminating )
sig_handler(SIGTERM);
}
extern const char* proc_status_file;
void _set_processing_status(const char* status)
{
if ( ! proc_status_file )
return;
// This function can be called from a signal context, so we have to
// make sure to only call reentrant functions and to restore errno
// afterwards.
int old_errno = errno;
int fd = open(proc_status_file, O_CREAT | O_WRONLY | O_TRUNC, 0700);
if ( fd < 0 )
{
char buf[256];
strerror_r(errno, buf, sizeof(buf));
reporter->Error("Failed to open process status file '%s': %s",
proc_status_file, buf);
errno = old_errno;
return;
}
int len = strlen(status);
while ( len )
{
int n = write(fd, status, len);
if ( n < 0 && errno != EINTR && errno != EAGAIN )
// Ignore errors, as they're too difficult to
// safely report here.
break;
status += n;
len -= n;
}
safe_close(fd);
errno = old_errno;
}
double current_time(bool real)
{
struct timeval tv;
if ( gettimeofday(&tv, 0) < 0 )
reporter->InternalError("gettimeofday failed in current_time()");
double t = double(tv.tv_sec) + double(tv.tv_usec) / 1e6;
const iosource::Manager::PktSrcList& pkt_srcs(iosource_mgr->GetPktSrcs());
if ( ! pseudo_realtime || real || pkt_srcs.empty() )
return t;
// This obviously only works for a single source ...
iosource::PktSrc* src = pkt_srcs.front();
if ( net_is_processing_suspended() )
return src->CurrentPacketTimestamp();
// We don't scale with pseudo_realtime here as that would give us a
// jumping real-time.
return src->CurrentPacketTimestamp() +
(t - src->CurrentPacketWallClock());
}
struct timeval double_to_timeval(double t)
{
struct timeval tv;
double t1 = floor(t);
tv.tv_sec = int(t1);
tv.tv_usec = int((t - t1) * 1e6 + 0.5);
return tv;
}
int time_compare(struct timeval* tv_a, struct timeval* tv_b)
{
if ( tv_a->tv_sec == tv_b->tv_sec )
return tv_a->tv_usec - tv_b->tv_usec;
else
return tv_a->tv_sec - tv_b->tv_sec;
}
struct UIDEntry {
UIDEntry() : key(0, 0), needs_init(true) { }
UIDEntry(const uint64 i) : key(i, 0), needs_init(false) { }
struct UIDKey {
UIDKey(uint64 i, uint64 c) : instance(i), counter(c) { }
uint64 instance;
uint64 counter;
} key;
bool needs_init;
};
static std::vector<UIDEntry> uid_pool;
uint64 calculate_unique_id()
{
return calculate_unique_id(UID_POOL_DEFAULT_INTERNAL);
}
uint64 calculate_unique_id(size_t pool)
{
uint64 uid_instance = 0;
if( pool >= uid_pool.size() )
{
if ( pool < 10000 )
uid_pool.resize(pool + 1);
else
{
reporter->Warning("pool passed to calculate_unique_id() too large, using default");
pool = UID_POOL_DEFAULT_INTERNAL;
}
}
if ( uid_pool[pool].needs_init )
{
// This is the first time we need a UID for this pool.
if ( ! have_random_seed() )
{
// If we don't need deterministic output (as
// indicated by a set seed), we calculate the
// instance ID by hashing something likely to be
// globally unique.
struct {
char hostname[120];
uint64 pool;
struct timeval time;
pid_t pid;
int rnd;
} unique;
memset(&unique, 0, sizeof(unique)); // Make valgrind happy.
gethostname(unique.hostname, 120);
unique.hostname[sizeof(unique.hostname)-1] = '\0';
gettimeofday(&unique.time, 0);
unique.pool = (uint64) pool;
unique.pid = getpid();
unique.rnd = bro_random();
uid_instance = HashKey::HashBytes(&unique, sizeof(unique));
++uid_instance; // Now it's larger than zero.
}
else
// Generate determistic UIDs for each individual pool.
uid_instance = pool;
// Our instance is unique. Huzzah.
uid_pool[pool] = UIDEntry(uid_instance);
}
assert(!uid_pool[pool].needs_init);
assert(uid_pool[pool].key.instance != 0);
++uid_pool[pool].key.counter;
return HashKey::HashBytes(&(uid_pool[pool].key), sizeof(uid_pool[pool].key));
}
bool safe_write(int fd, const char* data, int len)
{
while ( len > 0 )
{
int n = write(fd, data, len);
if ( n < 0 )
{
if ( errno == EINTR )
continue;
fprintf(stderr, "safe_write error: %d\n", errno);
abort();
return false;
}
data += n;
len -= n;
}
return true;
}
bool safe_pwrite(int fd, const unsigned char* data, size_t len, size_t offset)
{
while ( len != 0 )
{
ssize_t n = pwrite(fd, data, len, offset);
if ( n < 0 )
{
if ( errno == EINTR )
continue;
fprintf(stderr, "safe_write error: %d\n", errno);
abort();
return false;
}
data += n;
offset +=n;
len -= n;
}
return true;
}
void safe_close(int fd)
{
/*
* Failure cases of close(2) are ...
* EBADF: Indicative of programming logic error that needs to be fixed, we
* should always be attempting to close a valid file descriptor.
* EINTR: Ignore signal interruptions, most implementations will actually
* reclaim the open descriptor and POSIX standard doesn't leave many
* options by declaring the state of the descriptor as "unspecified".
* Attempting to inspect actual state or re-attempt close() is not
* thread safe.
* EIO: Again the state of descriptor is "unspecified", but don't recover
* from an I/O error, safe_write() won't either.
*
* Note that we don't use the reporter here to allow use from different threads.
*/
if ( close(fd) < 0 && errno != EINTR )
{
char buf[128];
strerror_r(errno, buf, sizeof(buf));
fprintf(stderr, "safe_close error %d: %s\n", errno, buf);
abort();
}
}
extern "C" void out_of_memory(const char* where)
{
fprintf(stderr, "out of memory in %s.\n", where);
if ( reporter )
// Guess that might fail here if memory is really tight ...
reporter->FatalError("out of memory in %s.\n", where);
abort();
}
void get_memory_usage(uint64* total, uint64* malloced)
{
uint64 ret_total;
#ifdef HAVE_MALLINFO
struct mallinfo mi = mallinfo();
if ( malloced )
*malloced = mi.uordblks;
#endif
#ifdef HAVE_DARWIN
struct mach_task_basic_info t_info;
mach_msg_type_number_t t_info_count = MACH_TASK_BASIC_INFO;
if ( KERN_SUCCESS != task_info(mach_task_self(),
MACH_TASK_BASIC_INFO,
(task_info_t)&t_info,
&t_info_count) )
ret_total = 0;
else
ret_total = t_info.resident_size;
#else
struct rusage r;
getrusage(RUSAGE_SELF, &r);
// In KB.
ret_total = r.ru_maxrss * 1024;
#endif
if ( total )
*total = ret_total;
}
#ifdef malloc
#undef malloc
#undef realloc
#undef free
extern "C" {
void* malloc(size_t);
void* realloc(void*, size_t);
void free(void*);
}
static int malloc_debug = 0;
void* debug_malloc(size_t t)
{
void* v = malloc(t);
if ( malloc_debug )
printf("%.6f malloc %x %d\n", network_time, v, t);
return v;
}
void* debug_realloc(void* v, size_t t)
{
v = realloc(v, t);
if ( malloc_debug )
printf("%.6f realloc %x %d\n", network_time, v, t);
return v;
}
void debug_free(void* v)
{
if ( malloc_debug )
printf("%.6f free %x\n", network_time, v);
free(v);
}
void* operator new(size_t t)
{
void* v = malloc(t);
if ( malloc_debug )
printf("%.6f new %x %d\n", network_time, v, t);
return v;
}
void* operator new[](size_t t)
{
void* v = malloc(t);
if ( malloc_debug )
printf("%.6f new[] %x %d\n", network_time, v, t);
return v;
}
void operator delete(void* v)
{
if ( malloc_debug )
printf("%.6f delete %x\n", network_time, v);
free(v);
}
void operator delete[](void* v)
{
if ( malloc_debug )
printf("%.6f delete %x\n", network_time, v);
free(v);
}
#endif
std::string canonify_name(const std::string& name)
{
unsigned int len = name.size();
std::string nname;
for ( unsigned int i = 0; i < len; i++ )
{
char c = isalnum(name[i]) ? name[i] : '_';
nname += toupper(c);
}
return nname;
}