zeek/src/IPAddr.cc
Arne Welzel ec0a85f553 IPAddr/ConnKey: Protect from uninitialized conn_id
Check if the non-default fields exist using HasField()
and use GetField() for proto such that it'll initialize
the default value which GetFieldAs<> doesn't do.
default
2025-01-17 17:53:02 +01:00

383 lines
11 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include "zeek/IPAddr.h"
#include <cstdlib>
#include <string>
#include "zeek/3rdparty/zeek_inet_ntop.h"
#include "zeek/Conn.h"
#include "zeek/Hash.h"
#include "zeek/Reporter.h"
#include "zeek/ZeekString.h"
namespace zeek {
const IPAddr IPAddr::v4_unspecified = IPAddr(in4_addr{});
const IPAddr IPAddr::v6_unspecified = IPAddr();
namespace detail {
ConnKey::ConnKey(const IPAddr& src, const IPAddr& dst, uint16_t src_port, uint16_t dst_port, uint16_t proto,
bool one_way) {
Init(src, dst, src_port, dst_port, proto, one_way);
}
ConnKey::ConnKey(const ConnTuple& id) {
Init(id.src_addr, id.dst_addr, id.src_port, id.dst_port, id.proto, id.is_one_way);
}
ConnKey& ConnKey::operator=(const ConnKey& rhs) {
if ( this == &rhs )
return *this;
// Because of padding in the object, this needs to memset to clear out
// the extra memory used by padding. Otherwise, the session key stuff
// doesn't work quite right.
memset(this, 0, sizeof(ConnKey));
memcpy(&ip1, &rhs.ip1, sizeof(in6_addr));
memcpy(&ip2, &rhs.ip2, sizeof(in6_addr));
port1 = rhs.port1;
port2 = rhs.port2;
transport = rhs.transport;
return *this;
}
ConnKey::ConnKey(Val* v) {
const auto& vt = v->GetType();
if ( ! IsRecord(vt->Tag()) ) {
transport = INVALID_CONN_KEY_IP_PROTO;
return;
}
RecordType* vr = vt->AsRecordType();
auto vl = v->As<RecordVal*>();
int orig_h, orig_p; // indices into record's value list
int resp_h, resp_p;
int proto;
if ( vr == id::conn_id ) {
orig_h = 0;
orig_p = 1;
resp_h = 2;
resp_p = 3;
proto = 4;
}
else {
// While it's not a conn_id, it may have equivalent fields.
orig_h = vr->FieldOffset("orig_h");
resp_h = vr->FieldOffset("resp_h");
orig_p = vr->FieldOffset("orig_p");
resp_p = vr->FieldOffset("resp_p");
proto = vr->FieldOffset("proto");
if ( orig_h < 0 || resp_h < 0 || orig_p < 0 || resp_p < 0 || proto < 0 ) {
transport = INVALID_CONN_KEY_IP_PROTO;
return;
}
// TODO we ought to check that the fields have the right
// types, too.
}
if ( ! vl->HasField(orig_h) || ! vl->HasField(resp_h) || ! vl->HasField(orig_p) || ! vl->HasField(resp_p) ) {
transport = INVALID_CONN_KEY_IP_PROTO;
return;
}
const IPAddr& orig_addr = vl->GetFieldAs<AddrVal>(orig_h);
const IPAddr& resp_addr = vl->GetFieldAs<AddrVal>(resp_h);
const auto& orig_portv = vl->GetFieldAs<PortVal>(orig_p);
const auto& resp_portv = vl->GetFieldAs<PortVal>(resp_p);
const auto& protov = vl->GetField<CountVal>(proto);
Init(orig_addr, resp_addr, htons((unsigned short)orig_portv->Port()), htons((unsigned short)resp_portv->Port()),
protov->AsCount(), false);
}
void ConnKey::Init(const IPAddr& src, const IPAddr& dst, uint16_t src_port, uint16_t dst_port, uint16_t proto,
bool one_way) {
// Because of padding in the object, this needs to memset to clear out
// the extra memory used by padding. Otherwise, the session key stuff
// doesn't work quite right.
memset(this, 0, sizeof(ConnKey));
// Lookup up connection based on canonical ordering, which is
// the smaller of <src addr, src port> and <dst addr, dst port>
// followed by the other.
if ( one_way || addr_port_canon_lt(src, src_port, dst, dst_port) ) {
ip1 = src.in6;
ip2 = dst.in6;
port1 = src_port;
port2 = dst_port;
}
else {
ip1 = dst.in6;
ip2 = src.in6;
port1 = dst_port;
port2 = src_port;
}
transport = proto;
}
} // namespace detail
IPAddr::IPAddr(const String& s) { Init(s.CheckString()); }
std::unique_ptr<detail::HashKey> IPAddr::MakeHashKey() const {
return std::make_unique<detail::HashKey>((void*)in6.s6_addr, sizeof(in6.s6_addr));
}
static inline uint32_t bit_mask32(int bottom_bits) {
if ( bottom_bits >= 32 )
return 0xffffffff;
return (((uint32_t)1) << bottom_bits) - 1;
}
void IPAddr::Mask(int top_bits_to_keep) {
if ( top_bits_to_keep < 0 || top_bits_to_keep > 128 ) {
reporter->Error("Bad IPAddr::Mask value %d", top_bits_to_keep);
return;
}
uint32_t mask_bits[4] = {0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff};
std::ldiv_t res = std::ldiv(top_bits_to_keep, 32);
if ( res.quot < 4 )
mask_bits[res.quot] = htonl(mask_bits[res.quot] & ~bit_mask32(32 - res.rem));
for ( unsigned int i = res.quot + 1; i < 4; ++i )
mask_bits[i] = 0;
uint32_t* p = reinterpret_cast<uint32_t*>(in6.s6_addr);
for ( unsigned int i = 0; i < 4; ++i )
p[i] &= mask_bits[i];
}
void IPAddr::ReverseMask(int top_bits_to_chop) {
if ( top_bits_to_chop < 0 || top_bits_to_chop > 128 ) {
reporter->Error("Bad IPAddr::ReverseMask value %d", top_bits_to_chop);
return;
}
uint32_t mask_bits[4] = {0, 0, 0, 0};
std::ldiv_t res = std::ldiv(top_bits_to_chop, 32);
if ( res.quot < 4 )
mask_bits[res.quot] = htonl(bit_mask32(32 - res.rem));
for ( unsigned int i = res.quot + 1; i < 4; ++i )
mask_bits[i] = 0xffffffff;
uint32_t* p = reinterpret_cast<uint32_t*>(in6.s6_addr);
for ( unsigned int i = 0; i < 4; ++i )
p[i] &= mask_bits[i];
}
bool IPAddr::ConvertString(const char* s, in6_addr* result) {
for ( auto p = s; *p; ++p )
if ( *p == ':' )
// IPv6
return (inet_pton(AF_INET6, s, result->s6_addr) == 1);
// IPv4
// Parse the address directly instead of using inet_pton since
// some platforms have more sensitive implementations than others
// that can't e.g. handle leading zeroes.
int a[4];
int n = 0;
int match_count = sscanf(s, "%d.%d.%d.%d%n", a + 0, a + 1, a + 2, a + 3, &n);
if ( match_count != 4 )
return false;
if ( s[n] != '\0' )
return false;
for ( auto i = 0; i < 4; ++i )
if ( a[i] < 0 || a[i] > 255 )
return false;
uint32_t addr = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3];
addr = htonl(addr);
memcpy(result->s6_addr, v4_mapped_prefix, sizeof(v4_mapped_prefix));
memcpy(&result->s6_addr[12], &addr, sizeof(uint32_t));
return true;
}
void IPAddr::Init(const char* s) {
if ( ! ConvertString(s, &in6) ) {
reporter->Error("Bad IP address: %s", s);
memset(in6.s6_addr, 0, sizeof(in6.s6_addr));
}
}
std::string IPAddr::AsString() const {
if ( GetFamily() == IPv4 ) {
char s[INET_ADDRSTRLEN];
if ( ! zeek_inet_ntop(AF_INET, &in6.s6_addr[12], s, INET_ADDRSTRLEN) )
return "<bad IPv4 address conversion";
else
return s;
}
else {
char s[INET6_ADDRSTRLEN];
if ( ! zeek_inet_ntop(AF_INET6, in6.s6_addr, s, INET6_ADDRSTRLEN) )
return "<bad IPv6 address conversion";
else
return s;
}
}
std::string IPAddr::AsHexString() const {
char buf[33];
if ( GetFamily() == IPv4 ) {
uint32_t* p = (uint32_t*)&in6.s6_addr[12];
snprintf(buf, sizeof(buf), "%08x", (uint32_t)ntohl(*p));
}
else {
uint32_t* p = (uint32_t*)in6.s6_addr;
snprintf(buf, sizeof(buf), "%08x%08x%08x%08x", (uint32_t)ntohl(p[0]), (uint32_t)ntohl(p[1]),
(uint32_t)ntohl(p[2]), (uint32_t)ntohl(p[3]));
}
return buf;
}
std::string IPAddr::PtrName() const {
if ( GetFamily() == IPv4 ) {
char buf[256];
uint32_t* p = (uint32_t*)&in6.s6_addr[12];
uint32_t a = ntohl(*p);
uint32_t a3 = (a >> 24) & 0xff;
uint32_t a2 = (a >> 16) & 0xff;
uint32_t a1 = (a >> 8) & 0xff;
uint32_t a0 = a & 0xff;
snprintf(buf, sizeof(buf), "%u.%u.%u.%u.in-addr.arpa", a0, a1, a2, a3);
return buf;
}
else {
static const char hex_digit[] = "0123456789abcdef";
std::string ptr_name("ip6.arpa");
uint32_t* p = (uint32_t*)in6.s6_addr;
for ( unsigned int i = 0; i < 4; ++i ) {
uint32_t a = ntohl(p[i]);
for ( unsigned int j = 1; j <= 8; ++j ) {
ptr_name.insert(0, 1, '.');
ptr_name.insert(0, 1, hex_digit[(a >> (32 - j * 4)) & 0x0f]);
}
}
return ptr_name;
}
}
IPPrefix::IPPrefix(const in4_addr& in4, uint8_t length) : prefix(in4), length(96 + length) {
if ( length > 32 ) {
reporter->Error("Bad in4_addr IPPrefix length : %d", length);
this->length = 0;
}
prefix.Mask(this->length);
}
IPPrefix::IPPrefix(const in6_addr& in6, uint8_t length) : prefix(in6), length(length) {
if ( length > 128 ) {
reporter->Error("Bad in6_addr IPPrefix length : %d", length);
this->length = 0;
}
prefix.Mask(this->length);
}
bool IPAddr::CheckPrefixLength(uint8_t length, bool len_is_v6_relative) const {
if ( GetFamily() == IPv4 && ! len_is_v6_relative ) {
if ( length > 32 )
return false;
}
else {
if ( length > 128 )
return false;
}
return true;
}
IPPrefix::IPPrefix(const IPAddr& addr, uint8_t length, bool len_is_v6_relative) : prefix(addr) {
if ( prefix.CheckPrefixLength(length, len_is_v6_relative) ) {
if ( prefix.GetFamily() == IPv4 && ! len_is_v6_relative )
this->length = length + 96;
else
this->length = length;
}
else {
auto vstr = prefix.GetFamily() == IPv4 ? "v4" : "v6";
reporter->Error("Bad IPAddr(%s) IPPrefix length : %d", vstr, length);
this->length = 0;
}
prefix.Mask(this->length);
}
std::string IPPrefix::AsString() const {
char l[16];
if ( prefix.GetFamily() == IPv4 )
modp_uitoa10(length - 96, l);
else
modp_uitoa10(length, l);
return prefix.AsString() + "/" + l;
}
std::unique_ptr<detail::HashKey> IPPrefix::MakeHashKey() const {
struct {
in6_addr ip;
uint32_t len;
} key;
key.ip = prefix.in6;
key.len = Length();
return std::make_unique<detail::HashKey>(&key, sizeof(key));
}
bool IPPrefix::ConvertString(const char* text, IPPrefix* result) {
std::string s(text);
size_t slash_loc = s.find('/');
if ( slash_loc == std::string::npos )
return false;
auto ip_str = s.substr(0, slash_loc);
auto len = atoi(s.substr(slash_loc + 1).data());
in6_addr tmp;
if ( ! IPAddr::ConvertString(ip_str.data(), &tmp) )
return false;
auto ip = IPAddr(tmp);
if ( ! ip.CheckPrefixLength(len) )
return false;
*result = IPPrefix(ip, len);
return true;
}
} // namespace zeek