zeek/src/script_opt/CPP/Driver.cc

357 lines
8.3 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include <errno.h>
#include <unistd.h>
#include <sys/stat.h>
#include "zeek/script_opt/CPP/Compile.h"
namespace zeek::detail {
using namespace std;
CPPCompile::CPPCompile(vector<FuncInfo>& _funcs, ProfileFuncs& _pfs,
const string& gen_name, const string& _addl_name,
CPPHashManager& _hm, bool _update, bool _standalone)
: funcs(_funcs), pfs(_pfs), hm(_hm),
update(_update), standalone(_standalone)
{
addl_name = _addl_name;
bool is_addl = hm.IsAppend();
auto target_name = is_addl ? addl_name.c_str() : gen_name.c_str();
auto mode = is_addl ? "a" : "w";
write_file = fopen(target_name, mode);
if ( ! write_file )
{
reporter->Error("can't open C++ target file %s", target_name);
exit(1);
}
if ( is_addl )
{
// We need a unique number to associate with the name
// space for the code we're adding. A convenient way to
// generate this safely is to use the present size of the
// file we're appending to. That guarantees that every
// incremental compilation will wind up with a different
// number.
struct stat st;
if ( fstat(fileno(write_file), &st) != 0 )
{
char buf[256];
util::zeek_strerror_r(errno, buf, sizeof(buf));
reporter->Error("fstat failed on %s: %s", target_name, buf);
exit(1);
}
// We use a value of "0" to mean "we're not appending,
// we're generating from scratch", so make sure we're
// distinct from that.
addl_tag = st.st_size + 1;
}
else
{
// Create an empty "additional" file.
auto addl_f = fopen(addl_name.c_str(), "w");
if ( ! addl_f )
{
reporter->Error("can't open C++ additional file %s",
addl_name.c_str());
exit(1);
}
fclose(addl_f);
}
Compile();
}
CPPCompile::~CPPCompile()
{
fclose(write_file);
}
void CPPCompile::Compile()
{
// Get the working directory so we can use it in diagnostic messages
// as a way to identify this compilation. Only germane when doing
// incremental compilation (particularly of the test suite).
char buf[8192];
if ( ! getcwd(buf, sizeof buf) )
reporter->FatalError("getcwd failed: %s", strerror(errno));
working_dir = buf;
if ( update && addl_tag > 0 && CheckForCollisions() )
// Inconsistent compilation environment.
exit(1);
GenProlog();
// Determine which functions we can call directly, and reuse
// previously compiled instances of those if present.
for ( const auto& func : funcs )
{
if ( func.Func()->Flavor() != FUNC_FLAVOR_FUNCTION )
// Can't be called directly.
continue;
if ( IsCompilable(func) )
compilable_funcs.insert(BodyName(func));
auto h = func.Profile()->HashVal();
if ( hm.HasHash(h) )
{
// Track the previously compiled instance
// of this function.
auto n = func.Func()->Name();
hashed_funcs[n] = hm.FuncBodyName(h);
}
}
// Track all of the types we'll be using.
for ( const auto& t : pfs.RepTypes() )
{
TypePtr tp{NewRef{}, (Type*)(t)};
types.AddKey(tp, pfs.HashType(t));
}
for ( const auto& t : types.DistinctKeys() )
if ( ! types.IsInherited(t) )
// Type is new to this compilation, so we'll
// be generating it.
Emit("TypePtr %s;", types.KeyName(t));
NL();
for ( const auto& c : pfs.Constants() )
AddConstant(c);
NL();
for ( auto& g : pfs.AllGlobals() )
CreateGlobal(g);
// Now that the globals are created, register their attributes,
// if any, and generate their initialization for use in standalone
// scripts. We can't do these in CreateGlobal() because at that
// point it's possible that some of the globals refer to other
// globals not-yet-created.
for ( auto& g : pfs.AllGlobals() )
{
RegisterAttributes(g->GetAttrs());
if ( g->HasVal() )
{
auto gn = string(g->Name());
GenGlobalInit(g, globals[gn], g->GetVal());
}
}
for ( const auto& e : pfs.Events() )
if ( AddGlobal(e, "gl", false) )
Emit("EventHandlerPtr %s_ev;", globals[string(e)]);
for ( const auto& t : pfs.RepTypes() )
{
ASSERT(types.HasKey(t));
TypePtr tp{NewRef{}, (Type*)(t)};
RegisterType(tp);
}
// The scaffolding is now in place to go ahead and generate
// the functions & lambdas. First declare them ...
for ( const auto& func : funcs )
DeclareFunc(func);
// We track lambdas by their internal names, because two different
// LambdaExpr's can wind up referring to the same underlying lambda
// if the bodies happen to be identical. In that case, we don't
// want to generate the lambda twice.
unordered_set<string> lambda_names;
for ( const auto& l : pfs.Lambdas() )
{
const auto& n = l->Name();
if ( lambda_names.count(n) > 0 )
// Skip it.
continue;
DeclareLambda(l, pfs.ExprProf(l).get());
lambda_names.insert(n);
}
NL();
// ... and now generate their bodies.
for ( const auto& func : funcs )
CompileFunc(func);
lambda_names.clear();
for ( const auto& l : pfs.Lambdas() )
{
const auto& n = l->Name();
if ( lambda_names.count(n) > 0 )
continue;
CompileLambda(l, pfs.ExprProf(l).get());
lambda_names.insert(n);
}
for ( const auto& f : compiled_funcs )
RegisterCompiledBody(f);
GenFuncVarInits();
GenEpilog();
}
void CPPCompile::GenProlog()
{
if ( addl_tag == 0 )
{
Emit("#include \"zeek/script_opt/CPP/Runtime.h\"\n");
Emit("namespace zeek::detail { //\n");
}
Emit("namespace CPP_%s { // %s\n", Fmt(addl_tag), working_dir.c_str());
// The following might-or-might-not wind up being populated/used.
Emit("std::vector<int> field_mapping;");
Emit("std::vector<int> enum_mapping;");
NL();
}
void CPPCompile::RegisterCompiledBody(const string& f)
{
auto h = body_hashes[f];
auto p = body_priorities[f];
// Build up an initializer of the events relevant to the function.
string events;
if ( body_events.count(f) > 0 )
for ( const auto& e : body_events[f] )
{
if ( events.size() > 0 )
events += ", ";
events = events + "\"" + e + "\"";
}
events = string("{") + events + "}";
if ( addl_tag > 0 )
// Hash in the location associated with this compilation
// pass, to get a final hash that avoids conflicts with
// identical-but-in-a-different-context function bodies
// when compiling potentially conflicting additional code
// (which we want to support to enable quicker test suite
// runs by enabling multiple tests to be compiled into the
// same binary).
h = merge_p_hashes(h, p_hash(cf_locs[f]));
auto init = string("register_body__CPP(make_intrusive<") +
f + "_cl>(\"" + f + "\"), " + Fmt(p) + ", " +
Fmt(h) + ", " + events + ");";
AddInit(names_to_bodies[f], init);
if ( update )
{
fprintf(hm.HashFile(), "func\n%s%s\n",
scope_prefix(addl_tag).c_str(), f.c_str());
fprintf(hm.HashFile(), "%llu\n", h);
}
}
void CPPCompile::GenEpilog()
{
NL();
for ( const auto& e : init_exprs.DistinctKeys() )
{
GenInitExpr(e);
if ( update )
init_exprs.LogIfNew(e, addl_tag, hm.HashFile());
}
for ( const auto& a : attributes.DistinctKeys() )
{
GenAttrs(a);
if ( update )
attributes.LogIfNew(a, addl_tag, hm.HashFile());
}
// Generate the guts of compound types, and preserve type names
// if present.
for ( const auto& t : types.DistinctKeys() )
{
ExpandTypeVar(t);
if ( update )
types.LogIfNew(t, addl_tag, hm.HashFile());
}
InitializeEnumMappings();
GenPreInits();
unordered_set<const Obj*> to_do;
for ( const auto& oi : obj_inits )
to_do.insert(oi.first);
CheckInitConsistency(to_do);
auto nc = GenDependentInits(to_do);
if ( standalone )
GenStandaloneActivation();
NL();
Emit("void init__CPP()");
StartBlock();
Emit("enum_mapping.resize(%s);\n", Fmt(int(enum_names.size())));
Emit("pre_init__CPP();");
NL();
for ( auto i = 1; i <= nc; ++i )
Emit("init_%s__CPP();", Fmt(i));
// Populate mappings for dynamic offsets.
NL();
InitializeFieldMappings();
if ( standalone )
Emit("standalone_init__CPP();");
EndBlock(true);
GenInitHook();
Emit("} // %s\n\n", scope_prefix(addl_tag).c_str());
if ( update )
UpdateGlobalHashes();
if ( addl_tag > 0 )
return;
Emit("#include \"" + addl_name + "\"\n");
Emit("} // zeek::detail");
}
bool CPPCompile::IsCompilable(const FuncInfo& func)
{
if ( func.ShouldSkip() )
// Caller marked this function as one to skip.
return false;
if ( hm.HasHash(func.Profile()->HashVal()) )
// We've already compiled it.
return false;
return is_CPP_compilable(func.Profile());
}
} // zeek::detail