zeek/src/broker/Data.cc
2024-09-27 15:11:17 +02:00

1217 lines
38 KiB
C++

#include "zeek/broker/Data.h"
#include <broker/error.hh>
#include "zeek/3rdparty/doctest.h"
#include "zeek/Desc.h"
#include "zeek/File.h"
#include "zeek/Func.h"
#include "zeek/ID.h"
#include "zeek/IntrusivePtr.h"
#include "zeek/RE.h"
#include "zeek/Scope.h"
#include "zeek/broker/data.bif.h"
#include "zeek/module_util.h"
using namespace std;
zeek::OpaqueTypePtr zeek::Broker::detail::opaque_of_data_type;
zeek::OpaqueTypePtr zeek::Broker::detail::opaque_of_set_iterator;
zeek::OpaqueTypePtr zeek::Broker::detail::opaque_of_table_iterator;
zeek::OpaqueTypePtr zeek::Broker::detail::opaque_of_vector_iterator;
zeek::OpaqueTypePtr zeek::Broker::detail::opaque_of_record_iterator;
static broker::port::protocol to_broker_port_proto(TransportProto tp) {
switch ( tp ) {
case TRANSPORT_TCP: return broker::port::protocol::tcp;
case TRANSPORT_UDP: return broker::port::protocol::udp;
case TRANSPORT_ICMP: return broker::port::protocol::icmp;
case TRANSPORT_UNKNOWN:
default: return broker::port::protocol::unknown;
}
}
TEST_CASE("converting Zeek to Broker protocol constants") {
CHECK_EQ(to_broker_port_proto(TRANSPORT_TCP), broker::port::protocol::tcp);
CHECK_EQ(to_broker_port_proto(TRANSPORT_UDP), broker::port::protocol::udp);
CHECK_EQ(to_broker_port_proto(TRANSPORT_ICMP), broker::port::protocol::icmp);
CHECK_EQ(to_broker_port_proto(TRANSPORT_UNKNOWN), broker::port::protocol::unknown);
}
namespace zeek::Broker::detail {
// Returns true if the given Zeek type is serialized as a broker::vector
static bool serialized_as_vector(TypeTag tag) {
switch ( tag ) {
case TYPE_VECTOR:
case TYPE_RECORD:
case TYPE_FUNC:
case TYPE_PATTERN:
case TYPE_OPAQUE: return true;
default: return false;
}
return false;
}
static bool data_type_check(const broker::data& d, Type* t);
TransportProto to_zeek_port_proto(broker::port::protocol tp) {
switch ( tp ) {
case broker::port::protocol::tcp: return TRANSPORT_TCP;
case broker::port::protocol::udp: return TRANSPORT_UDP;
case broker::port::protocol::icmp: return TRANSPORT_ICMP;
case broker::port::protocol::unknown:
default: return TRANSPORT_UNKNOWN;
}
}
TEST_CASE("converting Broker to Zeek protocol constants") {
CHECK_EQ(to_zeek_port_proto(broker::port::protocol::tcp), TRANSPORT_TCP);
CHECK_EQ(to_zeek_port_proto(broker::port::protocol::udp), TRANSPORT_UDP);
CHECK_EQ(to_zeek_port_proto(broker::port::protocol::icmp), TRANSPORT_ICMP);
CHECK_EQ(to_zeek_port_proto(broker::port::protocol::unknown), TRANSPORT_UNKNOWN);
}
struct val_converter {
using result_type = ValPtr;
Type* type;
result_type operator()(broker::none) { return nullptr; }
result_type operator()(bool a) {
if ( type->Tag() == TYPE_BOOL )
return val_mgr->Bool(a);
return nullptr;
}
result_type operator()(uint64_t a) {
if ( type->Tag() == TYPE_COUNT )
return val_mgr->Count(a);
return nullptr;
}
result_type operator()(int64_t a) {
if ( type->Tag() == TYPE_INT )
return val_mgr->Int(a);
return nullptr;
}
result_type operator()(double a) {
if ( type->Tag() == TYPE_DOUBLE )
return make_intrusive<DoubleVal>(a);
return nullptr;
}
result_type operator()(std::string& a) {
switch ( type->Tag() ) {
case TYPE_STRING: return make_intrusive<StringVal>(a.size(), a.data());
case TYPE_FILE: {
auto file = File::Get(a.data());
if ( file )
return make_intrusive<FileVal>(std::move(file));
return nullptr;
}
default: return nullptr;
}
}
result_type operator()(broker::address& a) {
if ( type->Tag() == TYPE_ADDR ) {
auto bits = reinterpret_cast<const in6_addr*>(&a.bytes());
return make_intrusive<AddrVal>(IPAddr(*bits));
}
return nullptr;
}
result_type operator()(broker::subnet& a) {
if ( type->Tag() == TYPE_SUBNET ) {
auto bits = reinterpret_cast<const in6_addr*>(&a.network().bytes());
return make_intrusive<SubNetVal>(IPPrefix(IPAddr(*bits), a.length()));
}
return nullptr;
}
result_type operator()(broker::port& a) {
if ( type->Tag() == TYPE_PORT )
return val_mgr->Port(a.number(), to_zeek_port_proto(a.type()));
return nullptr;
}
result_type operator()(broker::timestamp& a) {
if ( type->Tag() != TYPE_TIME )
return nullptr;
using namespace std::chrono;
auto s = duration_cast<broker::fractional_seconds>(a.time_since_epoch());
return make_intrusive<TimeVal>(s.count());
}
result_type operator()(broker::timespan& a) {
if ( type->Tag() != TYPE_INTERVAL )
return nullptr;
using namespace std::chrono;
auto s = duration_cast<broker::fractional_seconds>(a);
return make_intrusive<IntervalVal>(s.count());
}
result_type operator()(broker::enum_value& a) {
if ( type->Tag() == TYPE_ENUM ) {
auto etype = type->AsEnumType();
auto i = etype->Lookup(zeek::detail::GLOBAL_MODULE_NAME, a.name.data());
if ( i == -1 )
return nullptr;
auto rval = etype->GetEnumVal(i);
return rval;
}
return nullptr;
}
result_type operator()(broker::set& a) {
if ( ! type->IsSet() )
return nullptr;
auto tt = type->AsTableType();
auto rval = make_intrusive<TableVal>(IntrusivePtr{NewRef{}, tt});
for ( auto& item : a ) {
const auto& expected_index_types = tt->GetIndices()->GetTypes();
broker::vector composite_key;
auto indices = get_if<broker::vector>(&item);
if ( indices ) {
if ( expected_index_types.size() == 1 ) {
auto disambiguate = serialized_as_vector(expected_index_types[0]->Tag());
if ( disambiguate ) {
// Disambiguate from composite key w/ multiple vals.
composite_key.emplace_back(std::move(item));
indices = &composite_key;
}
}
}
else {
composite_key.emplace_back(std::move(item));
indices = &composite_key;
}
if ( expected_index_types.size() != indices->size() )
return nullptr;
auto list_val = make_intrusive<ListVal>(TYPE_ANY);
for ( size_t i = 0; i < indices->size(); ++i ) {
auto val = (*indices)[i]; // Must copy, because std::set has only immutable access.
auto index_val = data_to_val(val, expected_index_types[i].get());
if ( ! index_val )
return nullptr;
list_val->Append(std::move(index_val));
}
rval->Assign(std::move(list_val), nullptr);
}
return rval;
}
result_type operator()(broker::table& a) {
if ( ! type->IsTable() )
return nullptr;
auto tt = type->AsTableType();
auto rval = make_intrusive<TableVal>(IntrusivePtr{NewRef{}, tt});
for ( auto& item : a ) {
const auto& expected_index_types = tt->GetIndices()->GetTypes();
broker::vector composite_key;
auto indices = get_if<broker::vector>(&item.first);
if ( indices ) {
if ( expected_index_types.size() == 1 ) {
auto disambiguate = serialized_as_vector(expected_index_types[0]->Tag());
if ( disambiguate ) {
// Disambiguate from composite key w/ multiple vals.
composite_key.emplace_back(std::move(item.first));
indices = &composite_key;
}
}
}
else {
composite_key.emplace_back(std::move(item.first));
indices = &composite_key;
}
if ( expected_index_types.size() != indices->size() )
return nullptr;
auto list_val = make_intrusive<ListVal>(TYPE_ANY);
for ( size_t i = 0; i < indices->size(); ++i ) {
auto val = (*indices)[i]; // Must copy, because the key is immutable.
auto index_val = data_to_val(val, expected_index_types[i].get());
if ( ! index_val )
return nullptr;
list_val->Append(std::move(index_val));
}
auto value_val = data_to_val(item.second, tt->Yield().get());
if ( ! value_val )
return nullptr;
rval->Assign(std::move(list_val), std::move(value_val));
}
return rval;
}
result_type operator()(broker::vector& a) {
if ( type->Tag() == TYPE_VECTOR ) {
auto vt = type->AsVectorType();
auto rval = make_intrusive<VectorVal>(IntrusivePtr{NewRef{}, vt});
for ( auto& item : a ) {
auto item_val = data_to_val(item, vt->Yield().get());
if ( ! item_val )
return nullptr;
rval->Assign(rval->Size(), std::move(item_val));
}
return rval;
}
else if ( type->Tag() == TYPE_LIST ) {
// lists are just treated as vectors on the broker side.
auto lt = type->AsTypeList();
auto pure = lt->IsPure();
const auto& types = lt->GetTypes();
if ( ! pure && a.size() > types.size() )
return nullptr;
auto lt_tag = pure ? lt->GetPureType()->Tag() : TYPE_ANY;
auto rval = make_intrusive<ListVal>(lt_tag);
unsigned int pos = 0;
for ( auto& item : a ) {
auto item_val = data_to_val(item, pure ? lt->GetPureType().get() : types[pos].get());
pos++;
if ( ! item_val )
return nullptr;
rval->Append(std::move(item_val));
}
return rval;
}
else if ( type->Tag() == TYPE_FUNC ) {
if ( a.size() < 1 || a.size() > 2 )
return nullptr;
auto name = broker::get_if<std::string>(a[0]);
if ( ! name )
return nullptr;
const auto& id = zeek::detail::global_scope()->Find(*name);
if ( ! id )
return nullptr;
const auto& rval = id->GetVal();
if ( ! rval )
return nullptr;
const auto& t = rval->GetType();
if ( ! t )
return nullptr;
if ( t->Tag() != TYPE_FUNC )
return nullptr;
if ( a.size() == 2 ) // we have a closure/capture frame
{
// Note, seems if we already have a separate
// instance of the same lambda, then unless
// we use a cloned value, we'll step on that
// one's captures, too. This is because
// the capture mapping lives with the Func
// object rather than the FuncVal. However,
// we can't readily Clone() here because
// rval is const (and, grrr, Clone() is not).
// -VP
// rval = rval->Clone();
auto frame = broker::get_if<broker::vector>(a[1]);
if ( ! frame )
return nullptr;
auto* b = dynamic_cast<zeek::detail::ScriptFunc*>(rval->AsFunc());
if ( ! b || ! b->DeserializeCaptures(BrokerListView{frame}) )
return nullptr;
}
return rval;
}
else if ( type->Tag() == TYPE_RECORD ) {
auto rt = type->AsRecordType();
auto rval = make_intrusive<RecordVal>(IntrusivePtr{NewRef{}, rt});
auto idx = 0u;
for ( size_t i = 0; i < static_cast<size_t>(rt->NumFields()); ++i ) {
if ( idx >= a.size() )
return nullptr;
if ( get_if<broker::none>(&a[idx]) != nullptr ) {
rval->Remove(i);
++idx;
continue;
}
auto item_val = data_to_val(a[idx], rt->GetFieldType(i).get());
if ( ! item_val )
return nullptr;
rval->Assign(i, std::move(item_val));
++idx;
}
return rval;
}
else if ( type->Tag() == TYPE_PATTERN ) {
if ( a.size() != 2 )
return nullptr;
auto exact_text = get_if<std::string>(&a[0]);
auto anywhere_text = get_if<std::string>(&a[1]);
if ( ! exact_text || ! anywhere_text )
return nullptr;
auto* re = new RE_Matcher(exact_text->c_str(), anywhere_text->c_str());
if ( ! re->Compile() ) {
reporter->Error("failed compiling unserialized pattern: %s, %s", exact_text->c_str(),
anywhere_text->c_str());
delete re;
return nullptr;
}
auto rval = make_intrusive<PatternVal>(re);
return rval;
}
else if ( type->Tag() == TYPE_OPAQUE )
return OpaqueVal::UnserializeData(BrokerListView{&a});
return nullptr;
}
};
struct type_checker {
using result_type = bool;
Type* type;
result_type operator()(broker::none) { return false; }
result_type operator()(bool a) {
if ( type->Tag() == TYPE_BOOL )
return true;
return false;
}
result_type operator()(uint64_t a) {
if ( type->Tag() == TYPE_COUNT )
return true;
return false;
}
result_type operator()(int64_t a) {
if ( type->Tag() == TYPE_INT )
return true;
return false;
}
result_type operator()(double a) {
if ( type->Tag() == TYPE_DOUBLE )
return true;
return false;
}
result_type operator()(const std::string& a) {
switch ( type->Tag() ) {
case TYPE_STRING: return true;
case TYPE_FILE: return true;
default: return false;
}
}
result_type operator()(const broker::address& a) {
if ( type->Tag() == TYPE_ADDR )
return true;
return false;
}
result_type operator()(const broker::subnet& a) {
if ( type->Tag() == TYPE_SUBNET )
return true;
return false;
}
result_type operator()(const broker::port& a) {
if ( type->Tag() == TYPE_PORT )
return true;
return false;
}
result_type operator()(const broker::timestamp& a) {
if ( type->Tag() == TYPE_TIME )
return true;
return false;
}
result_type operator()(const broker::timespan& a) {
if ( type->Tag() == TYPE_INTERVAL )
return true;
return false;
}
result_type operator()(const broker::enum_value& a) {
if ( type->Tag() == TYPE_ENUM ) {
auto etype = type->AsEnumType();
auto i = etype->Lookup(zeek::detail::GLOBAL_MODULE_NAME, a.name.data());
return i != -1;
}
return false;
}
result_type operator()(const broker::set& a) {
if ( ! type->IsSet() )
return false;
auto tt = type->AsTableType();
for ( const auto& item : a ) {
const auto& expected_index_types = tt->GetIndices()->GetTypes();
auto indices = get_if<broker::vector>(&item);
vector<const broker::data*> indices_to_check;
if ( indices ) {
if ( expected_index_types.size() == 1 ) {
auto disambiguate = serialized_as_vector(expected_index_types[0]->Tag());
if ( disambiguate )
// Disambiguate from composite key w/ multiple vals.
indices_to_check.emplace_back(&item);
else {
indices_to_check.reserve(indices->size());
for ( size_t i = 0; i < indices->size(); ++i )
indices_to_check.emplace_back(&(*indices)[i]);
}
}
else {
indices_to_check.reserve(indices->size());
for ( size_t i = 0; i < indices->size(); ++i )
indices_to_check.emplace_back(&(*indices)[i]);
}
}
else
indices_to_check.emplace_back(&item);
if ( expected_index_types.size() != indices_to_check.size() )
return false;
for ( size_t i = 0; i < indices_to_check.size(); ++i ) {
auto expect = expected_index_types[i].get();
auto& index_to_check = *(indices_to_check)[i];
if ( ! data_type_check(index_to_check, expect) )
return false;
}
}
return true;
}
result_type operator()(const broker::table& a) {
if ( ! type->IsTable() )
return false;
auto tt = type->AsTableType();
for ( auto& item : a ) {
const auto& expected_index_types = tt->GetIndices()->GetTypes();
auto indices = get_if<broker::vector>(&item.first);
vector<const broker::data*> indices_to_check;
if ( indices ) {
if ( expected_index_types.size() == 1 ) {
auto disambiguate = serialized_as_vector(expected_index_types[0]->Tag());
if ( disambiguate )
// Disambiguate from composite key w/ multiple vals.
indices_to_check.emplace_back(&item.first);
else {
indices_to_check.reserve(indices->size());
for ( size_t i = 0; i < indices->size(); ++i )
indices_to_check.emplace_back(&(*indices)[i]);
}
}
else {
indices_to_check.reserve(indices->size());
for ( size_t i = 0; i < indices->size(); ++i )
indices_to_check.emplace_back(&(*indices)[i]);
}
}
else
indices_to_check.emplace_back(&item.first);
if ( expected_index_types.size() != indices_to_check.size() ) {
return false;
}
for ( size_t i = 0; i < indices_to_check.size(); ++i ) {
auto expect = expected_index_types[i].get();
auto& index_to_check = *(indices_to_check)[i];
if ( ! data_type_check(index_to_check, expect) )
return false;
}
if ( ! data_type_check(item.second, tt->Yield().get()) )
return false;
}
return true;
}
result_type operator()(const broker::vector& a) {
if ( type->Tag() == TYPE_VECTOR ) {
auto vt = type->AsVectorType();
for ( auto& item : a ) {
if ( ! data_type_check(item, vt->Yield().get()) )
return false;
}
return true;
}
else if ( type->Tag() == TYPE_FUNC ) {
if ( a.size() < 1 || a.size() > 2 )
return false;
auto name = broker::get_if<std::string>(a[0]);
if ( ! name )
return false;
const auto& id = zeek::detail::global_scope()->Find(*name);
if ( ! id )
return false;
const auto& rval = id->GetVal();
if ( ! rval )
return false;
const auto& t = rval->GetType();
if ( ! t )
return false;
if ( t->Tag() != TYPE_FUNC )
return false;
return true;
}
else if ( type->Tag() == TYPE_RECORD ) {
auto rt = type->AsRecordType();
auto idx = 0u;
for ( size_t i = 0; i < static_cast<size_t>(rt->NumFields()); ++i ) {
if ( idx >= a.size() )
return false;
if ( get_if<broker::none>(&a[idx]) != nullptr ) {
++idx;
continue;
}
if ( ! data_type_check(a[idx], rt->GetFieldType(i).get()) )
return false;
++idx;
}
return true;
}
else if ( type->Tag() == TYPE_PATTERN ) {
if ( a.size() != 2 )
return false;
auto exact_text = get_if<std::string>(&a[0]);
auto anywhere_text = get_if<std::string>(&a[1]);
if ( ! exact_text || ! anywhere_text )
return false;
auto* re = new RE_Matcher(exact_text->c_str(), anywhere_text->c_str());
auto compiled = re->Compile();
delete re;
if ( ! compiled ) {
reporter->Error("failed compiling pattern: %s, %s", exact_text->c_str(), anywhere_text->c_str());
return false;
}
return true;
}
else if ( type->Tag() == TYPE_OPAQUE ) {
// TODO: Could avoid doing the full unserialization here
// and just check if the type is a correct match.
auto cpy = a;
auto ov = OpaqueVal::UnserializeData(BrokerListView{&cpy});
return ov != nullptr;
}
return false;
}
};
static bool data_type_check(const broker::data& d, Type* t) {
if ( t->Tag() == TYPE_ANY )
return true;
return visit(type_checker{t}, d);
}
ValPtr data_to_val(broker::data& d, Type* type) {
if ( type->Tag() == TYPE_ANY ) {
BrokerData tmp{std::move(d)};
return std::move(tmp).ToRecordVal();
}
return visit(val_converter{type}, d);
}
std::optional<broker::data> val_to_data(const Val* v) {
switch ( v->GetType()->Tag() ) {
case TYPE_BOOL: return {v->AsBool()};
case TYPE_INT: return {v->AsInt()};
case TYPE_COUNT: return {v->AsCount()};
case TYPE_PORT: {
auto p = v->AsPortVal();
return {broker::port(p->Port(), to_broker_port_proto(p->PortType()))};
}
case TYPE_ADDR: {
auto a = v->AsAddr();
in6_addr tmp;
a.CopyIPv6(&tmp);
return {broker::address(reinterpret_cast<const uint32_t*>(&tmp), broker::address::family::ipv6,
broker::address::byte_order::network)};
} break;
case TYPE_SUBNET: {
auto s = v->AsSubNet();
in6_addr tmp;
s.Prefix().CopyIPv6(&tmp);
auto a = broker::address(reinterpret_cast<const uint32_t*>(&tmp), broker::address::family::ipv6,
broker::address::byte_order::network);
return {broker::subnet(std::move(a), s.Length())};
} break;
case TYPE_DOUBLE: return {v->AsDouble()};
case TYPE_TIME: {
auto secs = broker::fractional_seconds{v->AsTime()};
auto since_epoch = std::chrono::duration_cast<broker::timespan>(secs);
return {broker::timestamp{since_epoch}};
}
case TYPE_INTERVAL: {
auto secs = broker::fractional_seconds{v->AsInterval()};
return {std::chrono::duration_cast<broker::timespan>(secs)};
}
case TYPE_ENUM: {
auto enum_type = v->GetType()->AsEnumType();
auto enum_name = enum_type->Lookup(v->AsEnum());
return {broker::enum_value(enum_name ? enum_name : "<unknown enum>")};
}
case TYPE_STRING: {
auto s = v->AsString();
return {string(reinterpret_cast<const char*>(s->Bytes()), s->Len())};
}
case TYPE_FILE: return {string(v->AsFile()->Name())};
case TYPE_FUNC: {
const Func* f = v->AsFunc();
broker::vector rval;
rval.emplace_back(f->GetName());
if ( f->GetName().find("lambda_<") == 0 ) {
// Only ScriptFuncs have closures.
if ( auto b = dynamic_cast<const zeek::detail::ScriptFunc*>(f) ) {
auto bc = b->SerializeCaptures();
if ( ! bc )
return std::nullopt;
auto& raw = zeek::detail::BrokerDataAccess::Unbox(*bc);
rval.emplace_back(std::move(raw));
}
else {
reporter->InternalWarning("Closure with non-ScriptFunc");
return std::nullopt;
}
}
return {std::move(rval)};
}
case TYPE_TABLE: {
auto is_set = v->GetType()->IsSet();
auto table = v->AsTable();
auto table_val = v->AsTableVal();
broker::data rval;
if ( is_set )
rval = broker::set();
else
rval = broker::table();
for ( const auto& te : *table ) {
auto hk = te.GetHashKey();
auto vl = table_val->RecreateIndex(*hk);
broker::vector composite_key;
composite_key.reserve(vl->Length());
for ( auto k = 0; k < vl->Length(); ++k ) {
auto key_part = val_to_data(vl->Idx(k).get());
if ( ! key_part )
return std::nullopt;
composite_key.emplace_back(std::move(*key_part));
}
broker::data key;
if ( composite_key.size() == 1 )
key = std::move(composite_key[0]);
else
key = std::move(composite_key);
if ( is_set )
get<broker::set>(rval).emplace(std::move(key));
else {
auto val = val_to_data(te.value->GetVal().get());
if ( ! val )
return std::nullopt;
get<broker::table>(rval).emplace(std::move(key), std::move(*val));
}
}
return {std::move(rval)};
}
case TYPE_VECTOR: {
auto vec = v->AsVectorVal();
broker::vector rval;
rval.reserve(vec->Size());
for ( auto i = 0u; i < vec->Size(); ++i ) {
auto item_val = vec->ValAt(i);
if ( ! item_val )
continue;
auto item = val_to_data(item_val.get());
if ( ! item )
return std::nullopt;
rval.emplace_back(std::move(*item));
}
return {std::move(rval)};
}
case TYPE_LIST: {
// We don't really support lists on the broker side.
// So we just pretend that it is a vector instead.
auto list = v->AsListVal();
broker::vector rval;
rval.reserve(list->Length());
for ( auto i = 0; i < list->Length(); ++i ) {
const auto& item_val = list->Idx(i);
if ( ! item_val )
continue;
auto item = val_to_data(item_val.get());
if ( ! item )
return std::nullopt;
rval.emplace_back(std::move(*item));
}
return {std::move(rval)};
}
case TYPE_RECORD: {
auto rec = v->AsRecordVal();
broker::vector rval;
size_t num_fields = v->GetType()->AsRecordType()->NumFields();
rval.reserve(num_fields);
for ( size_t i = 0; i < num_fields; ++i ) {
auto item_val = rec->GetFieldOrDefault(i);
if ( ! item_val ) {
rval.emplace_back(broker::nil);
continue;
}
auto item = val_to_data(item_val.get());
if ( ! item )
return std::nullopt;
rval.emplace_back(std::move(*item));
}
return {std::move(rval)};
}
case TYPE_PATTERN: {
const RE_Matcher* p = v->AsPattern();
broker::vector rval = {p->PatternText(), p->AnywherePatternText()};
return {std::move(rval)};
}
case TYPE_OPAQUE: {
auto c = v->AsOpaqueVal()->SerializeData();
if ( ! c ) {
reporter->Error("unsupported opaque type for serialization");
break;
}
return {zeek::detail::BrokerDataAccess::Unbox(std::move(*c))};
}
default: reporter->Error("unsupported Broker::Data type: %s", type_name(v->GetType()->Tag())); break;
}
return std::nullopt;
}
RecordValPtr make_data_val(Val* v) {
auto rval = make_intrusive<RecordVal>(BifType::Record::Broker::Data);
auto data = val_to_data(v);
if ( data )
rval->Assign(0, make_intrusive<DataVal>(std::move(*data)));
else
reporter->Warning("did not get a value from val_to_data");
return rval;
}
RecordValPtr make_data_val(broker::data d) {
auto rval = make_intrusive<RecordVal>(BifType::Record::Broker::Data);
rval->Assign(0, make_intrusive<DataVal>(std::move(d)));
return rval;
}
struct data_type_getter {
using result_type = EnumValPtr;
result_type operator()(broker::none) { return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::NONE); }
result_type operator()(bool) { return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::BOOL); }
result_type operator()(uint64_t) { return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::COUNT); }
result_type operator()(int64_t) { return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::INT); }
result_type operator()(double) { return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::DOUBLE); }
result_type operator()(const std::string&) {
return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::STRING);
}
result_type operator()(const broker::address&) {
return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::ADDR);
}
result_type operator()(const broker::subnet&) {
return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::SUBNET);
}
result_type operator()(const broker::port&) {
return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::PORT);
}
result_type operator()(const broker::timestamp&) {
return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::TIME);
}
result_type operator()(const broker::timespan&) {
return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::INTERVAL);
}
result_type operator()(const broker::enum_value&) {
return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::ENUM);
}
result_type operator()(const broker::set&) {
return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::SET);
}
result_type operator()(const broker::table&) {
return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::TABLE);
}
result_type operator()(const broker::vector&) {
// Note that Broker uses vectors to store record data, so there's
// no actual way to tell if this data was originally associated
// with a Zeek record.
return BifType::Enum::Broker::DataType->GetEnumVal(BifEnum::Broker::VECTOR);
}
};
EnumValPtr get_data_type(RecordVal* v, zeek::detail::Frame* frame) {
return visit(data_type_getter{}, opaque_field_to_data(v, frame));
}
broker::data& opaque_field_to_data(RecordVal* v, zeek::detail::Frame* f) {
const auto& d = v->GetField(0);
if ( ! d )
reporter->RuntimeError(f->GetCallLocation(), "Broker::Data's opaque field is not set");
// RuntimeError throws an exception which causes this line to never execute.
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn)
return static_cast<DataVal*>(d.get())->data;
}
void DataVal::ValDescribe(ODesc* d) const {
d->Add("broker::data{");
d->Add(broker::to_string(data));
d->Add("}");
}
bool DataVal::canCastTo(zeek::Type* t) const { return data_type_check(data, t); }
ValPtr DataVal::castTo(zeek::Type* t) { return data_to_val(data, t); }
const TypePtr& DataVal::ScriptDataType() {
static auto script_data_type = id::find_type("Broker::Data");
return script_data_type;
}
IMPLEMENT_OPAQUE_VALUE(zeek::Broker::detail::DataVal)
std::optional<BrokerData> DataVal::DoSerializeData() const { return BrokerData{data}; }
bool DataVal::DoUnserializeData(BrokerDataView dv) {
data = std::move(*dv.value_);
return true;
}
IMPLEMENT_OPAQUE_VALUE(zeek::Broker::detail::SetIterator)
std::optional<BrokerData> SetIterator::DoSerializeData() const {
return BrokerData{broker::data{broker::vector{dat, *it}}};
}
bool SetIterator::DoUnserializeData(BrokerDataView data) {
auto v = get_if<broker::vector>(data.value_);
if ( ! (v && v->size() == 2) )
return false;
auto x = get_if<broker::set>(&(*v)[0]);
// We set the iterator by finding the element it used to point to.
// This is not perfect, as there's no guarantee that the restored
// container will list the elements in the same order. But it's as
// good as we can do, and it should generally work out.
if ( x->find((*v)[1]) == x->end() )
return false;
dat = *x;
it = dat.find((*v)[1]);
return true;
}
IMPLEMENT_OPAQUE_VALUE(zeek::Broker::detail::TableIterator)
std::optional<BrokerData> TableIterator::DoSerializeData() const {
return BrokerData{broker::data{broker::vector{dat, it->first}}};
}
bool TableIterator::DoUnserializeData(BrokerDataView data) {
auto v = get_if<broker::vector>(data.value_);
if ( ! (v && v->size() == 2) )
return false;
auto x = get_if<broker::table>(&(*v)[0]);
// We set the iterator by finding the element it used to point to.
// This is not perfect, as there's no guarantee that the restored
// container will list the elements in the same order. But it's as
// good as we can do, and it should generally work out.
if ( x->find((*v)[1]) == x->end() )
return false;
dat = *x;
it = dat.find((*v)[1]);
return true;
}
IMPLEMENT_OPAQUE_VALUE(zeek::Broker::detail::VectorIterator)
std::optional<BrokerData> VectorIterator::DoSerializeData() const {
broker::integer difference = it - dat.begin();
return BrokerData{broker::data{broker::vector{dat, difference}}};
}
bool VectorIterator::DoUnserializeData(BrokerDataView data) {
auto v = get_if<broker::vector>(data.value_);
if ( ! (v && v->size() == 2) )
return false;
auto x = get_if<broker::vector>(&(*v)[0]);
auto y = get_if<broker::integer>(&(*v)[1]);
if ( ! (x && y) )
return false;
dat = *x;
it = dat.begin() + *y;
return true;
}
IMPLEMENT_OPAQUE_VALUE(zeek::Broker::detail::RecordIterator)
std::optional<BrokerData> RecordIterator::DoSerializeData() const {
auto difference = static_cast<broker::integer>(it - dat.begin());
return BrokerData{broker::data{broker::vector{dat, difference}}};
}
bool RecordIterator::DoUnserializeData(BrokerDataView data) {
auto v = get_if<broker::vector>(data.value_);
if ( ! (v && v->size() == 2) )
return false;
auto x = get_if<broker::vector>(&(*v)[0]);
auto y = get_if<broker::integer>(&(*v)[1]);
if ( ! (x && y) )
return false;
dat = *x;
it = dat.begin() + *y;
return true;
}
broker::data threading_field_to_data(const threading::Field* f) {
auto name = f->name;
auto type = static_cast<uint64_t>(f->type);
auto subtype = static_cast<uint64_t>(f->subtype);
auto optional = f->optional;
broker::data secondary = broker::nil;
if ( f->secondary_name )
secondary = {f->secondary_name};
return broker::vector({name, secondary, type, subtype, optional});
}
threading::Field* data_to_threading_field(const broker::data& d) {
if ( ! holds_alternative<broker::vector>(d) )
return nullptr;
auto& v = get<broker::vector>(d);
if ( v.size() < 5 )
return nullptr;
auto name = get_if<std::string>(&v[0]);
const auto& secondary = v[1];
auto type = get_if<broker::count>(&v[2]);
auto subtype = get_if<broker::count>(&v[3]);
auto optional = get_if<broker::boolean>(&v[4]);
if ( ! (name && type && subtype && optional) )
return nullptr;
if ( secondary != broker::nil && ! holds_alternative<std::string>(secondary) )
return nullptr;
return new threading::Field(name->c_str(), secondary != broker::nil ? get<std::string>(secondary).c_str() : nullptr,
static_cast<TypeTag>(*type), static_cast<TypeTag>(*subtype), *optional);
}
} // namespace zeek::Broker::detail
namespace zeek {
BrokerListView BrokerDataView::ToList() noexcept {
return BrokerListView{std::addressof(broker::get<broker::vector>(*value_))};
}
ValPtr BrokerDataView::ToVal(Type* type) {
auto cpy = *value_;
return zeek::Broker::detail::data_to_val(cpy, type);
}
bool BrokerData::Convert(const Val* value) {
if ( auto res = zeek::Broker::detail::val_to_data(value) ) {
value_ = std::move(*res);
return true;
}
return false;
}
RecordValPtr BrokerData::ToRecordVal() && {
auto rval = make_intrusive<RecordVal>(BifType::Record::Broker::Data);
rval->Assign(0, make_intrusive<zeek::Broker::detail::DataVal>(std::move(value_)));
return rval;
}
RecordValPtr BrokerData::ToRecordVal(const Val* v) {
auto rval = make_intrusive<RecordVal>(BifType::Record::Broker::Data);
BrokerData tmp;
if ( tmp.Convert(v) )
rval->Assign(0, make_intrusive<zeek::Broker::detail::DataVal>(std::move(tmp.value_)));
else
reporter->Warning("did not get a value from val_to_data");
return rval;
}
bool BrokerListBuilder::Add(const Val* value) {
if ( auto res = zeek::Broker::detail::val_to_data(value) ) {
values_.emplace_back(std::move(*res));
return true;
}
return false;
}
} // namespace zeek