zeek/src/Frag.cc

393 lines
9.3 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include "zeek/zeek-config.h"
#include "zeek/Frag.h"
#include "zeek/Hash.h"
#include "zeek/IP.h"
#include "zeek/NetVar.h"
#include "zeek/Sessions.h"
#include "zeek/Reporter.h"
#include "zeek/RunState.h"
constexpr uint32_t MIN_ACCEPTABLE_FRAG_SIZE = 64;
constexpr uint32_t MAX_ACCEPTABLE_FRAG_SIZE = 64000;
namespace zeek::detail {
FragTimer::~FragTimer()
{
if ( f )
f->ClearTimer();
}
void FragTimer::Dispatch(double t, bool /* is_expire */)
{
if ( f )
f->Expire(t);
else
reporter->InternalWarning("fragment timer dispatched w/o reassembler");
}
FragReassembler::FragReassembler(NetSessions* arg_s,
const std::unique_ptr<IP_Hdr>& ip, const u_char* pkt,
const FragReassemblerKey& k, double t)
: Reassembler(0, REASSEM_FRAG)
{
s = arg_s;
key = k;
const struct ip* ip4 = ip->IP4_Hdr();
if ( ip4 )
{
proto_hdr_len = ip->HdrLen();
proto_hdr = new u_char[64]; // max IP header + slop
// Don't do a structure copy - need to pick up options, too.
memcpy((void*) proto_hdr, (const void*) ip4, proto_hdr_len);
}
else
{
proto_hdr_len = ip->HdrLen() - 8; // minus length of fragment header
proto_hdr = new u_char[proto_hdr_len];
memcpy(proto_hdr, ip->IP6_Hdr(), proto_hdr_len);
}
reassembled_pkt = nullptr;
frag_size = 0; // flag meaning "not known"
next_proto = ip->NextProto();
if ( frag_timeout != 0.0 )
{
expire_timer = new FragTimer(this, t + frag_timeout);
timer_mgr->Add(expire_timer);
}
else
expire_timer = nullptr;
AddFragment(t, ip, pkt);
}
FragReassembler::~FragReassembler()
{
DeleteTimer();
delete [] proto_hdr;
}
void FragReassembler::AddFragment(double t, const std::unique_ptr<IP_Hdr>& ip,
const u_char* pkt)
{
const struct ip* ip4 = ip->IP4_Hdr();
if ( ip4 )
{
if ( ip4->ip_p != ((const struct ip*)proto_hdr)->ip_p ||
ip4->ip_hl != ((const struct ip*)proto_hdr)->ip_hl )
// || ip4->ip_tos != proto_hdr->ip_tos
// don't check TOS, there's at least one stack that actually
// uses different values, and it's hard to see an associated
// attack.
s->Weird("fragment_protocol_inconsistency", ip.get());
}
else
{
if ( ip->NextProto() != next_proto ||
ip->HdrLen() - 8 != proto_hdr_len )
s->Weird("fragment_protocol_inconsistency", ip.get());
// TODO: more detailed unfrag header consistency checks?
}
if ( ip->DF() )
// Linux MTU discovery for UDP can do this, for example.
s->Weird("fragment_with_DF", ip.get());
uint16_t offset = ip->FragOffset();
uint32_t len = ip->TotalLen();
uint16_t hdr_len = ip->HdrLen();
if ( len < hdr_len )
{
s->Weird("fragment_protocol_inconsistency", ip.get());
return;
}
uint64_t upper_seq = offset + len - hdr_len;
if ( ! offset )
// Make sure to use the first fragment header's next field.
next_proto = ip->NextProto();
if ( ! ip->MF() )
{
// Last fragment.
if ( frag_size == 0 )
frag_size = upper_seq;
else if ( upper_seq != frag_size )
{
s->Weird("fragment_size_inconsistency", ip.get());
if ( upper_seq > frag_size )
frag_size = upper_seq;
}
}
else if ( len < MIN_ACCEPTABLE_FRAG_SIZE )
s->Weird("excessively_small_fragment", ip.get());
if ( upper_seq > MAX_ACCEPTABLE_FRAG_SIZE )
s->Weird("excessively_large_fragment", ip.get());
if ( frag_size && upper_seq > frag_size )
{
// This can happen if we receive a fragment that's *not*
// the last fragment, but still imputes a size that's
// larger than the size we derived from a previously-seen
// "last fragment".
s->Weird("fragment_size_inconsistency", ip.get());
frag_size = upper_seq;
}
// Do we need to check for consistent options? That's tricky
// for things like LSRR that get modified in route.
// Remove header.
pkt += hdr_len;
len -= hdr_len;
NewBlock(run_state::network_time, offset, len, pkt);
}
void FragReassembler::Weird(const char* name) const
{
unsigned int version = ((const ip*)proto_hdr)->ip_v;
if ( version == 4 )
{
IP_Hdr hdr((const ip*)proto_hdr, false);
s->Weird(name, &hdr);
}
else if ( version == 6 )
{
IP_Hdr hdr((const ip6_hdr*)proto_hdr, false, proto_hdr_len);
s->Weird(name, &hdr);
}
else
{
reporter->InternalWarning("Unexpected IP version in FragReassembler");
reporter->Weird(name);
}
}
void FragReassembler::Overlap(const u_char* b1, const u_char* b2, uint64_t n)
{
if ( memcmp((const void*) b1, (const void*) b2, n) )
Weird("fragment_inconsistency");
else
Weird("fragment_overlap");
}
void FragReassembler::BlockInserted(DataBlockMap::const_iterator /* it */)
{
auto it = block_list.Begin();
if ( it->second.seq > 0 || ! frag_size )
// For sure don't have it all yet.
return;
auto next = std::next(it);
// We might have it all - look for contiguous all the way.
while ( next != block_list.End() )
{
if ( it->second.upper != next->second.seq )
break;
++it;
++next;
}
const auto& last = block_list.LastBlock();
if ( next != block_list.End() )
{
// We have a hole.
if ( it->second.upper >= frag_size )
{
// We're stuck. The point where we stopped is
// contiguous up through the expected end of
// the fragment, but there's more stuff still
// beyond it, which is not contiguous. This
// can happen for benign reasons when we're
// intermingling parts of two fragmented packets.
Weird("fragment_size_inconsistency");
// We decide to analyze the contiguous portion now.
// Extend the fragment up through the end of what
// we have.
frag_size = it->second.upper;
}
else
return;
}
else if ( last.upper > frag_size )
{
Weird("fragment_size_inconsistency");
frag_size = last.upper;
}
else if ( last.upper < frag_size )
// Missing the tail.
return;
// We have it all. Compute the expected size of the fragment.
uint64_t n = proto_hdr_len + frag_size;
// It's possible that we have blocks associated with this fragment
// that exceed this size, if we saw MF fragments (which don't lead
// to us setting frag_size) that went beyond the size indicated by
// the final, non-MF fragment. This can happen for benign reasons
// due to intermingling of fragments from an older datagram with those
// for a more recent one.
u_char* pkt = new u_char[n];
memcpy((void*) pkt, (const void*) proto_hdr, proto_hdr_len);
u_char* pkt_start = pkt;
pkt += proto_hdr_len;
for ( it = block_list.Begin(); it != block_list.End(); ++it )
{
const auto& b = it->second;
if ( it != block_list.Begin() )
{
const auto& prev = std::prev(it)->second;
// If we're above a hole, stop. This can happen because
// the logic above regarding a hole that's above the
// expected fragment size.
if ( prev.upper < b.seq )
break;
}
if ( b.upper > n )
{
reporter->InternalWarning("bad fragment reassembly");
DeleteTimer();
Expire(run_state::network_time);
delete [] pkt_start;
return;
}
memcpy(&pkt[b.seq], b.block, b.upper - b.seq);
}
reassembled_pkt.reset();
unsigned int version = ((const struct ip*)pkt_start)->ip_v;
if ( version == 4 )
{
struct ip* reassem4 = (struct ip*) pkt_start;
reassem4->ip_len = htons(frag_size + proto_hdr_len);
reassembled_pkt = std::make_unique<IP_Hdr>(reassem4, true);
reassembled_pkt->reassembled = true;
DeleteTimer();
}
else if ( version == 6 )
{
struct ip6_hdr* reassem6 = (struct ip6_hdr*) pkt_start;
reassem6->ip6_plen = htons(frag_size + proto_hdr_len - 40);
const IPv6_Hdr_Chain* chain = new IPv6_Hdr_Chain(reassem6, next_proto, n);
reassembled_pkt = std::make_unique<IP_Hdr>(reassem6, true, n, chain);
reassembled_pkt->reassembled = true;
DeleteTimer();
}
else
{
reporter->InternalWarning("bad IP version in fragment reassembly: %d",
version);
delete [] pkt_start;
}
}
void FragReassembler::Expire(double t)
{
block_list.Clear();
expire_timer->ClearReassembler();
expire_timer = nullptr; // timer manager will delete it
fragment_mgr->Remove(this);
}
void FragReassembler::DeleteTimer()
{
if ( expire_timer )
{
expire_timer->ClearReassembler();
timer_mgr->Cancel(expire_timer);
expire_timer = nullptr; // timer manager will delete it
}
}
FragmentManager::~FragmentManager()
{
Clear();
}
FragReassembler* FragmentManager::NextFragment(double t, const std::unique_ptr<IP_Hdr>& ip,
const u_char* pkt)
{
uint32_t frag_id = ip->ID();
FragReassemblerKey key = std::make_tuple(ip->SrcAddr(), ip->DstAddr(), frag_id);
FragReassembler* f = nullptr;
auto it = fragments.find(key);
if ( it != fragments.end() )
f = it->second;
if ( ! f )
{
f = new FragReassembler(sessions, ip, pkt, key, t);
fragments[key] = f;
if ( fragments.size() > max_fragments )
max_fragments = fragments.size();
return f;
}
f->AddFragment(t, ip, pkt);
return f;
}
void FragmentManager::Clear()
{
for ( const auto& entry : fragments )
Unref(entry.second);
fragments.clear();
}
void FragmentManager::Remove(detail::FragReassembler* f)
{
if ( ! f )
return;
if ( fragments.erase(f->Key()) == 0 )
reporter->InternalWarning("fragment reassembler not in dict");
Unref(f);
}
uint32_t FragmentManager::MemoryAllocation() const
{
return fragments.size() * (sizeof(FragmentMap::key_type) + sizeof(FragmentMap::value_type));
}
} // namespace zeek::detail