zeek/src/Queue.h
2020-06-30 21:12:26 -07:00

205 lines
5.2 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#pragma once
#include <string.h>
#include <iterator>
// Queue.h --
// Interface for class Queue, current implementation is as an
// array of ent's. This implementation was chosen to optimize
// getting to the ent's rather than inserting and deleting.
// Also push's and pop's from the front or the end of the queue
// are very efficient. The only really expensive operation
// is resizing the list, which involves getting new space
// and moving the data. Resizing occurs automatically when inserting
// more elements than the list can currently hold. Automatic
// resizing is done one "chunk_size" of elements at a time and
// always increases the size of the list. Resizing to zero
// (or to less than the current value of num_entries)
// will decrease the size of the list to the current number of
// elements. Resize returns the new max_entries.
//
// Entries must be either a pointer to the data or nonzero data with
// sizeof(data) <= sizeof(void*).
namespace zeek {
template<typename T>
class Queue {
public:
explicit Queue(int size = 0)
{
const int DEFAULT_CHUNK_SIZE = 10;
chunk_size = DEFAULT_CHUNK_SIZE;
head = tail = num_entries = 0;
if ( size < 0 )
{
entries = new T[1];
max_entries = 0;
}
else
{
if ( (entries = new T[chunk_size+1]) )
max_entries = chunk_size;
else
{
entries = new T[1];
max_entries = 0;
}
}
}
~Queue() { delete[] entries; }
int length() const { return num_entries; }
int resize(int new_size = 0) // 0 => size to fit current number of entries
{
if ( new_size < num_entries )
new_size = num_entries; // do not lose any entries
if ( new_size != max_entries )
{
// Note, allocate extra space, so that we can always
// use the [max_entries] element.
// ### Yin, why not use realloc()?
T* new_entries = new T[new_size+1];
if ( new_entries )
{
if ( head <= tail )
memcpy( new_entries, entries + head,
sizeof(T) * num_entries );
else
{
int len = num_entries - tail;
memcpy( new_entries, entries + head,
sizeof(T) * len );
memcpy( new_entries + len, entries,
sizeof(T) * tail );
}
delete [] entries;
entries = new_entries;
max_entries = new_size;
head = 0;
tail = num_entries;
}
else
{ // out of memory
}
}
return max_entries;
}
// remove all entries without delete[] entry
void clear() { head = tail = num_entries = 0; }
// helper functions for iterating over queue
T& front() { return entries[head]; }
T& back() { return entries[tail]; }
const T& front() const { return entries[head]; }
const T& back() const { return entries[tail]; }
void push_front(const T& a) // add in front of queue
{
if ( num_entries == max_entries )
{
resize(max_entries+chunk_size); // make more room
chunk_size *= 2;
}
++num_entries;
if ( head )
entries[--head] = a;
else
{
head = max_entries;
entries[head] = a;
}
}
void push_back(const T& a) // add at end of queue
{
if ( num_entries == max_entries )
{
resize(max_entries+chunk_size); // make more room
chunk_size *= 2;
}
++num_entries;
if ( tail < max_entries )
entries[tail++] = a;
else
{
entries[tail] = a;
tail = 0;
}
}
void pop_front()
{
--num_entries;
if ( head < max_entries )
head++;
else
head = 0;
}
void pop_back()
{
--num_entries;
if ( tail )
--tail;
else
tail = max_entries;
}
// return nth *PHYSICAL* entry of queue (do not remove)
T& operator[](int i) const { return entries[i]; }
// Type traits needed for some of the std algorithms to work
using value_type = T;
using pointer = T*;
using const_pointer = const T*;
// Iterator support
using iterator = pointer;
using const_iterator = const_pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
iterator begin() { return entries; }
iterator end() { return entries + num_entries; }
const_iterator begin() const { return entries; }
const_iterator end() const { return entries + num_entries; }
const_iterator cbegin() const { return entries; }
const_iterator cend() const { return entries + num_entries; }
reverse_iterator rbegin() { return reverse_iterator{end()}; }
reverse_iterator rend() { return reverse_iterator{begin()}; }
const_reverse_iterator rbegin() const { return const_reverse_iterator{end()}; }
const_reverse_iterator rend() const { return const_reverse_iterator{begin()}; }
const_reverse_iterator crbegin() const { return rbegin(); }
const_reverse_iterator crend() const { return rend(); }
protected:
T* entries;
int chunk_size; // increase size by this amount when necessary
int max_entries; // entry's index range: 0 .. max_entries
int num_entries;
int head; // beginning of the queue in the ring
int tail; // just beyond the end of the queue in the ring
};
template<typename T>
using PQueue = Queue<T*>;
} // namespace zeek
template<typename T> using Queue [[deprecated("Remove in v4.1. Use zeek::Queue instead.")]] = zeek::Queue<T>;
template<typename T> using PQueue [[deprecated("Remove in v4.1. Use zeek::Queue instead.")]] = zeek::PQueue<T>;