zeek/src/script_opt/CPP/Exprs.cc

1239 lines
32 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include <errno.h>
#include <sys/stat.h>
#include <unistd.h>
#include "zeek/RE.h"
#include "zeek/script_opt/CPP/Compile.h"
#include "zeek/script_opt/ProfileFunc.h"
namespace zeek::detail
{
using namespace std;
string CPPCompile::GenExprs(const Expr* e)
{
string gen;
if ( e->Tag() == EXPR_LIST )
gen = GenListExpr(e, GEN_VAL_PTR, true);
else
gen = GenExpr(e, GEN_VAL_PTR);
return string("{ ") + gen + " }";
}
string CPPCompile::GenListExpr(const Expr* e, GenType gt, bool nested)
{
const auto& exprs = e->AsListExpr()->Exprs();
string gen;
int n = exprs.size();
for ( auto i = 0; i < n; ++i )
{
auto e_i = exprs[i];
auto gen_i = GenExpr(e_i, gt);
if ( nested && e_i->Tag() == EXPR_LIST )
// These are table or set indices.
gen_i = string("index_val__CPP({") + gen_i + "})";
gen += gen_i;
if ( i < n - 1 )
gen += ", ";
}
return gen;
}
string CPPCompile::GenExpr(const Expr* e, GenType gt, bool top_level)
{
string gen;
switch ( e->Tag() )
{
case EXPR_NAME:
return GenNameExpr(e->AsNameExpr(), gt);
case EXPR_CONST:
return GenConstExpr(e->AsConstExpr(), gt);
case EXPR_CLONE:
gen = GenExpr(e->GetOp1(), GEN_VAL_PTR) + "->Clone()";
return GenericValPtrToGT(gen, e->GetType(), gt);
case EXPR_INCR:
case EXPR_DECR:
return GenIncrExpr(e, gt, e->Tag() == EXPR_INCR, top_level);
case EXPR_NOT:
return GenUnary(e, gt, "!", "not");
case EXPR_COMPLEMENT:
return GenUnary(e, gt, "~", "comp");
case EXPR_POSITIVE:
return GenUnary(e, gt, "+", "pos");
case EXPR_NEGATE:
return GenUnary(e, gt, "-", "neg");
case EXPR_ADD:
return GenBinary(e, gt, "+", "add");
case EXPR_SUB:
return GenBinary(e, gt, "-", "sub");
case EXPR_REMOVE_FROM:
return GenBinary(e, gt, "-=");
case EXPR_TIMES:
return GenBinary(e, gt, "*", "mul");
case EXPR_DIVIDE:
return GenBinary(e, gt, "/", "div");
case EXPR_MOD:
return GenBinary(e, gt, "%", "mod");
case EXPR_AND:
return GenBinary(e, gt, "&", "and");
case EXPR_OR:
return GenBinary(e, gt, "|", "or");
case EXPR_XOR:
return GenBinary(e, gt, "^", "xor");
case EXPR_AND_AND:
return GenBinary(e, gt, "&&", "andand");
case EXPR_OR_OR:
return GenBinary(e, gt, "||", "oror");
case EXPR_LT:
return GenBinary(e, gt, "<", "lt");
case EXPR_LE:
return GenBinary(e, gt, "<=", "le");
case EXPR_GE:
return GenBinary(e, gt, ">=", "ge");
case EXPR_GT:
return GenBinary(e, gt, ">", "gt");
case EXPR_EQ:
return GenEQ(e, gt, "==", "eq");
case EXPR_NE:
return GenEQ(e, gt, "!=", "ne");
case EXPR_COND:
return GenCondExpr(e, gt);
case EXPR_CALL:
return GenCallExpr(e->AsCallExpr(), gt);
case EXPR_LIST:
return GenListExpr(e, gt, false);
case EXPR_IN:
return GenInExpr(e, gt);
case EXPR_FIELD:
return GenFieldExpr(e->AsFieldExpr(), gt);
case EXPR_HAS_FIELD:
return GenHasFieldExpr(e->AsHasFieldExpr(), gt);
case EXPR_INDEX:
return GenIndexExpr(e, gt);
case EXPR_ASSIGN:
return GenAssignExpr(e, gt, top_level);
case EXPR_ADD_TO:
return GenAddToExpr(e, gt, top_level);
case EXPR_REF:
return GenExpr(e->GetOp1(), gt);
case EXPR_SIZE:
return GenSizeExpr(e, gt);
case EXPR_SCHEDULE:
return GenScheduleExpr(e);
case EXPR_LAMBDA:
return GenLambdaExpr(e);
case EXPR_IS:
return GenIsExpr(e, gt);
case EXPR_ARITH_COERCE:
return GenArithCoerceExpr(e, gt);
case EXPR_RECORD_COERCE:
return GenRecordCoerceExpr(e);
case EXPR_TABLE_COERCE:
return GenTableCoerceExpr(e);
case EXPR_VECTOR_COERCE:
return GenVectorCoerceExpr(e);
case EXPR_RECORD_CONSTRUCTOR:
return GenRecordConstructorExpr(e);
case EXPR_SET_CONSTRUCTOR:
return GenSetConstructorExpr(e);
case EXPR_TABLE_CONSTRUCTOR:
return GenTableConstructorExpr(e);
case EXPR_VECTOR_CONSTRUCTOR:
return GenVectorConstructorExpr(e);
case EXPR_EVENT:
// These should not wind up being directly generated,
// but instead deconstructed in the context of either
// a "schedule" expression or an "event" statement.
ASSERT(0);
case EXPR_CAST:
gen = string("cast_value_to_type__CPP(") + GenExpr(e->GetOp1(), GEN_VAL_PTR) + ", " +
GenTypeName(e->GetType()) + ")";
return GenericValPtrToGT(gen, e->GetType(), gt);
case EXPR_TO_ANY_COERCE:
return GenExpr(e->GetOp1(), GEN_VAL_PTR);
case EXPR_FROM_ANY_COERCE:
gen = string("from_any__CPP(") + GenExpr(e->GetOp1(), GEN_VAL_PTR) + ", " +
GenTypeName(e->GetType()) + ")";
return GenericValPtrToGT(gen, e->GetType(), gt);
case EXPR_FROM_ANY_VEC_COERCE:
gen = string("from_any_vec__CPP(") + GenExpr(e->GetOp1(), GEN_VAL_PTR) + ", " +
GenTypeName(e->GetType()->Yield()) + ")";
return GenericValPtrToGT(gen, e->GetType(), gt);
case EXPR_FIELD_ASSIGN:
case EXPR_INDEX_SLICE_ASSIGN:
case EXPR_INLINE:
// These are only generated for reduced ASTs, which
// we shouldn't be compiling.
ASSERT(0);
default:
// Intended to catch errors in overlooking the possible
// expressions that might appear.
return string("EXPR");
}
}
string CPPCompile::GenNameExpr(const NameExpr* ne, GenType gt)
{
const auto& t = ne->GetType();
auto n = ne->Id();
bool is_global_var = global_vars.count(n) > 0;
if ( t->Tag() == TYPE_FUNC && ! is_global_var )
{
auto func = n->Name();
if ( globals.count(func) > 0 && pfs.BiFGlobals().count(n) == 0 )
return GenericValPtrToGT(IDNameStr(n), t, gt);
}
if ( is_global_var )
{
string gen;
if ( n->IsType() )
gen = string("make_intrusive<TypeVal>(") + globals[n->Name()] + "->GetType(), true)";
else
gen = globals[n->Name()] + "->GetVal()";
return GenericValPtrToGT(gen, t, gt);
}
return NativeToGT(IDNameStr(n), t, gt);
}
string CPPCompile::GenConstExpr(const ConstExpr* c, GenType gt)
{
const auto& t = c->GetType();
if ( ! IsNativeType(t) )
return NativeToGT(const_vals[c->Value()], t, gt);
return NativeToGT(GenVal(c->ValuePtr()), t, gt);
}
string CPPCompile::GenIncrExpr(const Expr* e, GenType gt, bool is_incr, bool top_level)
{
// For compound operands (table indexing, record fields),
// Zeek's interpreter will actually evaluate the operand
// twice, so easiest is to just transform this node
// into the expanded equivalent.
auto op = e->GetOp1();
auto one = e->GetType()->InternalType() == TYPE_INTERNAL_INT ? val_mgr->Int(1)
: val_mgr->Count(1);
auto one_e = make_intrusive<ConstExpr>(one);
ExprPtr rhs;
if ( is_incr )
rhs = make_intrusive<AddExpr>(op, one_e);
else
rhs = make_intrusive<SubExpr>(op, one_e);
auto assign = make_intrusive<AssignExpr>(op, rhs, false, nullptr, nullptr, false);
// Make sure any newly created types are known to
// the profiler.
(void)pfs.HashType(one_e->GetType());
(void)pfs.HashType(rhs->GetType());
(void)pfs.HashType(assign->GetType());
auto gen = GenExpr(assign, GEN_DONT_CARE, top_level);
if ( ! top_level )
gen = "(" + gen + ", " + GenExpr(op, gt) + ")";
return gen;
}
string CPPCompile::GenCondExpr(const Expr* e, GenType gt)
{
auto op1 = e->GetOp1();
auto op2 = e->GetOp2();
auto op3 = e->GetOp3();
auto gen1 = GenExpr(op1, GEN_NATIVE);
auto gen2 = GenExpr(op2, gt);
auto gen3 = GenExpr(op3, gt);
if ( op1->GetType()->Tag() == TYPE_VECTOR )
return string("vector_select__CPP(") + gen1 + ", " + gen2 + ", " + gen3 + ")";
return string("(") + gen1 + ") ? (" + gen2 + ") : (" + gen3 + ")";
}
string CPPCompile::GenCallExpr(const CallExpr* c, GenType gt)
{
const auto& t = c->GetType();
auto f = c->Func();
auto args_l = c->Args();
auto gen = GenExpr(f, GEN_DONT_CARE);
if ( f->Tag() == EXPR_NAME )
{
auto f_id = f->AsNameExpr()->Id();
const auto& params = f_id->GetType()->AsFuncType()->Params();
auto id_name = f_id->Name();
bool is_compiled = compiled_simple_funcs.count(id_name) > 0;
bool was_compiled = hashed_funcs.count(id_name) > 0;
if ( is_compiled || was_compiled )
{
string fname;
if ( was_compiled )
fname = hashed_funcs[id_name];
else
fname = compiled_simple_funcs[id_name];
if ( args_l->Exprs().length() > 0 )
gen = fname + "(" + GenArgs(params, args_l) + ", f__CPP)";
else
gen = fname + "(f__CPP)";
return NativeToGT(gen, t, gt);
}
// If the function isn't a BiF, then it will have been
// declared as a ValPtr (or a FuncValPtr, if a local),
// and we need to convert it to a Func*.
//
// If it is a BiF *that's also a global variable*, then
// we need to look up the BiF version of the global.
if ( pfs.BiFGlobals().count(f_id) == 0 )
gen += +"->AsFunc()";
else if ( pfs.Globals().count(f_id) > 0 )
// The BiF version has an extra "_", per
// AddBiF(..., true).
gen = globals[string(id_name) + "_"];
}
else
// Indirect call.
gen = string("(") + gen + ")->AsFunc()";
auto args_list = string(", {") + GenExpr(args_l, GEN_VAL_PTR) + "}";
auto invoker = string("invoke__CPP(") + gen + args_list + ", f__CPP)";
if ( IsNativeType(t) && gt != GEN_VAL_PTR )
return invoker + NativeAccessor(t);
return GenericValPtrToGT(invoker, t, gt);
}
string CPPCompile::GenInExpr(const Expr* e, GenType gt)
{
auto op1 = e->GetOp1();
auto op2 = e->GetOp2();
auto t1 = op1->GetType();
auto t2 = op2->GetType();
string gen;
if ( t1->Tag() == TYPE_PATTERN )
gen = string("(") + GenExpr(op1, GEN_DONT_CARE) + ")->MatchAnywhere(" +
GenExpr(op2, GEN_DONT_CARE) + "->AsString())";
else if ( t2->Tag() == TYPE_STRING )
gen = string("str_in__CPP(") + GenExpr(op1, GEN_DONT_CARE) + "->AsString(), " +
GenExpr(op2, GEN_DONT_CARE) + "->AsString())";
else if ( t1->Tag() == TYPE_ADDR && t2->Tag() == TYPE_SUBNET )
gen = string("(") + GenExpr(op2, GEN_DONT_CARE) + ")->Contains(" +
GenExpr(op1, GEN_VAL_PTR) + "->Get())";
else if ( t2->Tag() == TYPE_VECTOR )
gen = GenExpr(op2, GEN_DONT_CARE) + "->Has(" + GenExpr(op1, GEN_NATIVE) + ")";
else
gen = string("(") + GenExpr(op2, GEN_DONT_CARE) + "->Find(index_val__CPP({" +
GenExpr(op1, GEN_VAL_PTR) + "})) ? true : false)";
return NativeToGT(gen, e->GetType(), gt);
}
string CPPCompile::GenFieldExpr(const FieldExpr* fe, GenType gt)
{
auto r = fe->GetOp1();
auto f = fe->Field();
auto f_s = GenField(r, f);
auto gen = string("field_access__CPP(") + GenExpr(r, GEN_VAL_PTR) + ", " + f_s + ")";
return GenericValPtrToGT(gen, fe->GetType(), gt);
}
string CPPCompile::GenHasFieldExpr(const HasFieldExpr* hfe, GenType gt)
{
auto r = hfe->GetOp1();
auto f = hfe->Field();
auto f_s = GenField(r, f);
// Need to use accessors for native types.
auto gen = string("(") + GenExpr(r, GEN_DONT_CARE) + "->GetField(" + f_s + ") != nullptr)";
return NativeToGT(gen, hfe->GetType(), gt);
}
string CPPCompile::GenIndexExpr(const Expr* e, GenType gt)
{
auto aggr = e->GetOp1();
const auto& aggr_t = aggr->GetType();
string gen;
if ( aggr_t->Tag() == TYPE_TABLE )
gen = string("index_table__CPP(") + GenExpr(aggr, GEN_NATIVE) + ", {" +
GenExpr(e->GetOp2(), GEN_VAL_PTR) + "})";
else if ( aggr_t->Tag() == TYPE_VECTOR )
{
const auto& op2 = e->GetOp2();
const auto& t2 = op2->GetType();
ASSERT(t2->Tag() == TYPE_LIST);
if ( t2->Tag() == TYPE_LIST && t2->AsTypeList()->GetTypes().size() == 2 )
{
auto& inds = op2->AsListExpr()->Exprs();
auto first = inds[0];
auto last = inds[1];
gen = string("index_slice(") + GenExpr(aggr, GEN_VAL_PTR) + ".get(), " +
GenExpr(first, GEN_NATIVE) + ", " + GenExpr(last, GEN_NATIVE) + ")";
}
else
gen = string("index_vec__CPP(") + GenExpr(aggr, GEN_NATIVE) + ", " +
GenExpr(e->GetOp2(), GEN_NATIVE) + ")";
}
else if ( aggr_t->Tag() == TYPE_STRING )
gen = string("index_string__CPP(") + GenExpr(aggr, GEN_NATIVE) + ", {" +
GenExpr(e->GetOp2(), GEN_VAL_PTR) + "})";
return GenericValPtrToGT(gen, e->GetType(), gt);
}
string CPPCompile::GenAssignExpr(const Expr* e, GenType gt, bool top_level)
{
auto op1 = e->GetOp1()->AsRefExprPtr()->GetOp1();
auto op2 = e->GetOp2();
const auto& t1 = op1->GetType();
const auto& t2 = op2->GetType();
auto rhs_native = GenExpr(op2, GEN_NATIVE);
auto rhs_val_ptr = GenExpr(op2, GEN_VAL_PTR);
auto lhs_is_any = t1->Tag() == TYPE_ANY;
auto rhs_is_any = t2->Tag() == TYPE_ANY;
if ( lhs_is_any && ! rhs_is_any )
rhs_native = rhs_val_ptr;
if ( rhs_is_any && ! lhs_is_any && t1->Tag() != TYPE_LIST )
rhs_native = rhs_val_ptr = GenericValPtrToGT(rhs_val_ptr, t1, GEN_NATIVE);
return GenAssign(op1, op2, rhs_native, rhs_val_ptr, gt, top_level);
}
string CPPCompile::GenAddToExpr(const Expr* e, GenType gt, bool top_level)
{
const auto& t = e->GetType();
if ( t->Tag() == TYPE_VECTOR )
{
auto gen = string("vector_append__CPP(") + GenExpr(e->GetOp1(), GEN_VAL_PTR) + ", " +
GenExpr(e->GetOp2(), GEN_VAL_PTR) + ")";
return GenericValPtrToGT(gen, t, gt);
}
// Second GetOp1 is because for non-vectors, LHS will be a RefExpr.
auto lhs = e->GetOp1()->GetOp1();
if ( t->Tag() == TYPE_STRING )
{
auto rhs_native = GenBinaryString(e, GEN_NATIVE, "+=");
auto rhs_val_ptr = GenBinaryString(e, GEN_VAL_PTR, "+=");
return GenAssign(lhs, nullptr, rhs_native, rhs_val_ptr, gt, top_level);
}
if ( lhs->Tag() != EXPR_NAME || lhs->AsNameExpr()->Id()->IsGlobal() )
{
// LHS is a compound, or a global (and thus doesn't
// equate to a C++ variable); expand x += y to x = x + y
auto rhs = make_intrusive<AddExpr>(lhs, e->GetOp2());
auto assign = make_intrusive<AssignExpr>(lhs, rhs, false, nullptr, nullptr, false);
// Make sure any newly created types are known to
// the profiler.
(void)pfs.HashType(rhs->GetType());
(void)pfs.HashType(assign->GetType());
return GenExpr(assign, gt, top_level);
}
return GenBinary(e, gt, "+=");
}
string CPPCompile::GenSizeExpr(const Expr* e, GenType gt)
{
const auto& t = e->GetType();
const auto& t1 = e->GetOp1()->GetType();
auto it = t1->InternalType();
auto gen = GenExpr(e->GetOp1(), GEN_NATIVE);
if ( t1->Tag() == TYPE_BOOL )
gen = string("((") + gen + ") ? 1 : 0)";
else if ( it == TYPE_INTERNAL_UNSIGNED )
// no-op
;
else if ( it == TYPE_INTERNAL_INT )
gen = string("iabs__CPP(") + gen + ")";
else if ( it == TYPE_INTERNAL_DOUBLE )
gen = string("fabs__CPP(") + gen + ")";
else
return GenericValPtrToGT(gen + "->SizeVal()", t, gt);
return NativeToGT(gen, t, gt);
}
string CPPCompile::GenScheduleExpr(const Expr* e)
{
auto s = static_cast<const ScheduleExpr*>(e);
auto when = s->When();
auto event = s->Event();
string event_name(event->Handler()->Name());
RegisterEvent(event_name);
string when_s = GenExpr(when, GEN_NATIVE);
if ( when->GetType()->Tag() == TYPE_INTERVAL )
when_s += " + run_state::network_time";
return string("schedule__CPP(") + when_s + ", " + globals[event_name] + "_ev, { " +
GenExpr(event->Args(), GEN_VAL_PTR) + " })";
}
string CPPCompile::GenLambdaExpr(const Expr* e)
{
auto l = static_cast<const LambdaExpr*>(e);
auto name = Canonicalize(l->Name().c_str()) + "_lb_cl";
auto cl_args = string("\"") + name + "\"";
if ( l->OuterIDs().size() > 0 )
cl_args = cl_args + GenLambdaClone(l, false);
auto body = string("make_intrusive<") + name + ">(" + cl_args + ")";
auto func = string("make_intrusive<CPPLambdaFunc>(\"") + l->Name() +
"\", cast_intrusive<FuncType>(" + GenTypeName(l->GetType()) + "), " + body + ")";
return string("make_intrusive<FuncVal>(") + func + ")";
}
string CPPCompile::GenIsExpr(const Expr* e, GenType gt)
{
auto ie = static_cast<const IsExpr*>(e);
auto gen = string("can_cast_value_to_type(") + GenExpr(ie->GetOp1(), GEN_VAL_PTR) + ".get(), " +
GenTypeName(ie->TestType()) + ".get())";
return NativeToGT(gen, ie->GetType(), gt);
}
string CPPCompile::GenArithCoerceExpr(const Expr* e, GenType gt)
{
const auto& t = e->GetType();
auto op = e->GetOp1();
if ( same_type(t, op->GetType()) )
return GenExpr(op, gt);
bool is_vec = t->Tag() == TYPE_VECTOR;
auto coerce_t = is_vec ? t->Yield() : t;
string cast_name;
switch ( coerce_t->InternalType() )
{
case TYPE_INTERNAL_INT:
cast_name = "bro_int_t";
break;
case TYPE_INTERNAL_UNSIGNED:
cast_name = "bro_uint_t";
break;
case TYPE_INTERNAL_DOUBLE:
cast_name = "double";
break;
default:
reporter->InternalError("bad type in arithmetic coercion");
}
if ( is_vec )
return string("vec_coerce_") + cast_name + "__CPP(" + GenExpr(op, GEN_NATIVE) + ", " +
GenTypeName(t) + ")";
return NativeToGT(cast_name + "(" + GenExpr(op, GEN_NATIVE) + ")", t, gt);
}
string CPPCompile::GenRecordCoerceExpr(const Expr* e)
{
auto rc = static_cast<const RecordCoerceExpr*>(e);
auto op1 = rc->GetOp1();
const auto& from_type = op1->GetType();
const auto& to_type = rc->GetType();
if ( same_type(from_type, to_type) )
// Elide coercion.
return GenExpr(op1, GEN_VAL_PTR);
const auto& map = rc->Map();
auto type_var = GenTypeName(to_type);
return string("coerce_to_record(cast_intrusive<RecordType>(") + type_var + "), " +
GenExpr(op1, GEN_VAL_PTR) + ".get(), " + GenIntVector(map) + ")";
}
string CPPCompile::GenTableCoerceExpr(const Expr* e)
{
auto tc = static_cast<const TableCoerceExpr*>(e);
const auto& t = tc->GetType();
auto op1 = tc->GetOp1();
return string("table_coerce__CPP(") + GenExpr(op1, GEN_VAL_PTR) + ", " + GenTypeName(t) + ")";
}
string CPPCompile::GenVectorCoerceExpr(const Expr* e)
{
auto vc = static_cast<const VectorCoerceExpr*>(e);
const auto& op = vc->GetOp1();
const auto& t = vc->GetType<VectorType>();
return string("vector_coerce__CPP(" + GenExpr(op, GEN_VAL_PTR) + ", " + GenTypeName(t) + ")");
}
string CPPCompile::GenRecordConstructorExpr(const Expr* e)
{
auto rc = static_cast<const RecordConstructorExpr*>(e);
const auto& t = rc->GetType();
const auto& exprs = rc->Op()->AsListExpr()->Exprs();
auto n = exprs.length();
string vals;
for ( auto i = 0; i < n; ++i )
{
const auto& expr = exprs[i];
ASSERT(expr->Tag() == EXPR_FIELD_ASSIGN);
vals += GenExpr(expr->GetOp1(), GEN_VAL_PTR);
if ( i < n - 1 )
vals += ", ";
}
return string("record_constructor__CPP({") + vals + "}, " + "cast_intrusive<RecordType>(" +
GenTypeName(t) + "))";
}
string CPPCompile::GenSetConstructorExpr(const Expr* e)
{
auto sc = static_cast<const SetConstructorExpr*>(e);
const auto& t = sc->GetType();
const auto& attrs = sc->GetAttrs();
string attr_tags;
string attr_vals;
BuildAttrs(attrs, attr_tags, attr_vals);
return string("set_constructor__CPP(") + GenExprs(sc->GetOp1().get()) + ", " +
"cast_intrusive<TableType>(" + GenTypeName(t) + "), " + attr_tags + ", " + attr_vals +
")";
}
string CPPCompile::GenTableConstructorExpr(const Expr* e)
{
auto tc = static_cast<const TableConstructorExpr*>(e);
const auto& t = tc->GetType();
const auto& attrs = tc->GetAttrs();
string attr_tags;
string attr_vals;
BuildAttrs(attrs, attr_tags, attr_vals);
string indices;
string vals;
const auto& exprs = tc->GetOp1()->AsListExpr()->Exprs();
auto n = exprs.length();
for ( auto i = 0; i < n; ++i )
{
const auto& expr = exprs[i];
ASSERT(expr->Tag() == EXPR_ASSIGN);
auto index = expr->GetOp1();
auto v = expr->GetOp2();
if ( index->Tag() == EXPR_LIST )
// Multiple indices.
indices += "index_val__CPP({" + GenExpr(index, GEN_VAL_PTR) + "})";
else
indices += GenExpr(index, GEN_VAL_PTR);
vals += GenExpr(v, GEN_VAL_PTR);
if ( i < n - 1 )
{
indices += ", ";
vals += ", ";
}
}
return string("table_constructor__CPP({") + indices + "}, {" + vals + "}, " +
"cast_intrusive<TableType>(" + GenTypeName(t) + "), " + attr_tags + ", " + attr_vals +
")";
}
string CPPCompile::GenVectorConstructorExpr(const Expr* e)
{
auto vc = static_cast<const VectorConstructorExpr*>(e);
const auto& t = vc->GetType();
return string("vector_constructor__CPP({") + GenExpr(vc->GetOp1(), GEN_VAL_PTR) + "}, " +
"cast_intrusive<VectorType>(" + GenTypeName(t) + "))";
}
string CPPCompile::GenVal(const ValPtr& v)
{
const auto& t = v->GetType();
auto tag = t->Tag();
auto it = t->InternalType();
if ( tag == TYPE_BOOL )
return string(v->IsZero() ? "false" : "true");
if ( tag == TYPE_ENUM )
return GenEnum(t, v);
if ( tag == TYPE_PORT )
return Fmt(int(v->AsCount()));
if ( it == TYPE_INTERNAL_DOUBLE )
return Fmt(v->AsDouble());
ODesc d;
d.SetQuotes(true);
v->Describe(&d);
return d.Description();
}
string CPPCompile::GenUnary(const Expr* e, GenType gt, const char* op, const char* vec_op)
{
if ( e->GetType()->Tag() == TYPE_VECTOR )
return GenVectorOp(e, GenExpr(e->GetOp1(), GEN_NATIVE), vec_op);
return NativeToGT(string(op) + "(" + GenExpr(e->GetOp1(), GEN_NATIVE) + ")", e->GetType(), gt);
}
string CPPCompile::GenBinary(const Expr* e, GenType gt, const char* op, const char* vec_op)
{
const auto& op1 = e->GetOp1();
const auto& op2 = e->GetOp2();
auto t = op1->GetType();
if ( e->GetType()->Tag() == TYPE_VECTOR )
{
auto gen1 = GenExpr(op1, GEN_NATIVE);
auto gen2 = GenExpr(op2, GEN_NATIVE);
if ( t->Tag() == TYPE_VECTOR && t->Yield()->Tag() == TYPE_STRING &&
op2->GetType()->Tag() == TYPE_VECTOR )
return string("vec_str_op_") + vec_op + "__CPP(" + gen1 + ", " + gen2 + ")";
return GenVectorOp(e, gen1, gen2, vec_op);
}
if ( t->IsSet() )
return GenBinarySet(e, gt, op);
// The following is only used for internal int/uint/double
// operations. For those, it holds the prefix we use to
// distinguish different instances of inlined functions
// employed to support an operation.
string flavor;
switch ( t->InternalType() )
{
case TYPE_INTERNAL_INT:
flavor = "i";
break;
case TYPE_INTERNAL_UNSIGNED:
flavor = "u";
break;
case TYPE_INTERNAL_DOUBLE:
flavor = "f";
break;
case TYPE_INTERNAL_STRING:
return GenBinaryString(e, gt, op);
case TYPE_INTERNAL_ADDR:
return GenBinaryAddr(e, gt, op);
case TYPE_INTERNAL_SUBNET:
return GenBinarySubNet(e, gt, op);
default:
if ( t->Tag() == TYPE_PATTERN )
return GenBinaryPattern(e, gt, op);
break;
}
auto g1 = GenExpr(e->GetOp1(), GEN_NATIVE);
auto g2 = GenExpr(e->GetOp2(), GEN_NATIVE);
string gen;
if ( e->Tag() == EXPR_DIVIDE )
gen = flavor + "div__CPP(" + g1 + ", " + g2 + ")";
else if ( e->Tag() == EXPR_MOD )
gen = flavor + "mod__CPP(" + g1 + ", " + g2 + ")";
else
gen = string("(") + g1 + ")" + op + "(" + g2 + ")";
return NativeToGT(gen, e->GetType(), gt);
}
string CPPCompile::GenBinarySet(const Expr* e, GenType gt, const char* op)
{
auto v1 = GenExpr(e->GetOp1(), GEN_DONT_CARE) + "->AsTableVal()";
auto v2 = GenExpr(e->GetOp2(), GEN_DONT_CARE) + "->AsTableVal()";
string res;
switch ( e->Tag() )
{
case EXPR_AND:
res = v1 + "->Intersection(*" + v2 + ")";
break;
case EXPR_OR:
res = v1 + "->Union(" + v2 + ")";
break;
case EXPR_SUB:
res = v1 + "->TakeOut(" + v2 + ")";
break;
case EXPR_EQ:
res = v1 + "->EqualTo(*" + v2 + ")";
break;
case EXPR_NE:
res = string("! ") + v1 + "->EqualTo(*" + v2 + ")";
break;
case EXPR_LE:
res = v1 + "->IsSubsetOf(*" + v2 + ")";
break;
case EXPR_LT:
res = string("(") + v1 + "->IsSubsetOf(*" + v2 + ") &&" + v1 + "->Size() < " + v2 +
"->Size())";
break;
default:
reporter->InternalError("bad type in CPPCompile::GenBinarySet");
}
return NativeToGT(res, e->GetType(), gt);
}
string CPPCompile::GenBinaryString(const Expr* e, GenType gt, const char* op)
{
auto v1 = GenExpr(e->GetOp1(), GEN_DONT_CARE) + "->AsString()";
auto v2 = GenExpr(e->GetOp2(), GEN_DONT_CARE) + "->AsString()";
string res;
if ( e->Tag() == EXPR_ADD || e->Tag() == EXPR_ADD_TO )
res = string("str_concat__CPP(") + v1 + ", " + v2 + ")";
else
res = string("(Bstr_cmp(") + v1 + ", " + v2 + ") " + op + " 0)";
return NativeToGT(res, e->GetType(), gt);
}
string CPPCompile::GenBinaryPattern(const Expr* e, GenType gt, const char* op)
{
auto v1 = GenExpr(e->GetOp1(), GEN_DONT_CARE) + "->AsPattern()";
auto v2 = GenExpr(e->GetOp2(), GEN_DONT_CARE) + "->AsPattern()";
auto func = e->Tag() == EXPR_AND ? "RE_Matcher_conjunction" : "RE_Matcher_disjunction";
return NativeToGT(string("make_intrusive<PatternVal>(") + func + "(" + v1 + ", " + v2 + "))",
e->GetType(), gt);
}
string CPPCompile::GenBinaryAddr(const Expr* e, GenType gt, const char* op)
{
auto v1 = GenExpr(e->GetOp1(), GEN_DONT_CARE) + "->AsAddr()";
if ( e->Tag() == EXPR_DIVIDE )
{
auto gen = string("addr_mask__CPP(") + v1 + ", " + GenExpr(e->GetOp2(), GEN_NATIVE) + ")";
return NativeToGT(gen, e->GetType(), gt);
}
auto v2 = GenExpr(e->GetOp2(), GEN_DONT_CARE) + "->AsAddr()";
return NativeToGT(v1 + op + v2, e->GetType(), gt);
}
string CPPCompile::GenBinarySubNet(const Expr* e, GenType gt, const char* op)
{
auto v1 = GenExpr(e->GetOp1(), GEN_DONT_CARE) + "->AsSubNet()";
auto v2 = GenExpr(e->GetOp2(), GEN_DONT_CARE) + "->AsSubNet()";
return NativeToGT(v1 + op + v2, e->GetType(), gt);
}
string CPPCompile::GenEQ(const Expr* e, GenType gt, const char* op, const char* vec_op)
{
auto op1 = e->GetOp1();
auto op2 = e->GetOp2();
if ( e->GetType()->Tag() == TYPE_VECTOR )
{
auto gen1 = GenExpr(op1, GEN_NATIVE);
auto gen2 = GenExpr(op2, GEN_NATIVE);
return GenVectorOp(e, gen1, gen2, vec_op);
}
auto tag = op1->GetType()->Tag();
string negated(e->Tag() == EXPR_EQ ? "" : "! ");
if ( tag == TYPE_PATTERN )
return NativeToGT(negated + GenExpr(op1, GEN_DONT_CARE) + "->MatchExactly(" +
GenExpr(op2, GEN_DONT_CARE) + "->AsString())",
e->GetType(), gt);
if ( tag == TYPE_FUNC )
{
auto gen_f1 = GenExpr(op1, GEN_DONT_CARE);
auto gen_f2 = GenExpr(op2, GEN_DONT_CARE);
gen_f1 += "->AsFunc()";
gen_f2 += "->AsFunc()";
auto gen = string("(") + gen_f1 + "==" + gen_f2 + ")";
return NativeToGT(negated + gen, e->GetType(), gt);
}
return GenBinary(e, gt, op, vec_op);
}
string CPPCompile::GenAssign(const ExprPtr& lhs, const ExprPtr& rhs, const string& rhs_native,
const string& rhs_val_ptr, GenType gt, bool top_level)
{
switch ( lhs->Tag() )
{
case EXPR_NAME:
return GenDirectAssign(lhs, rhs_native, rhs_val_ptr, gt, top_level);
case EXPR_INDEX:
return GenIndexAssign(lhs, rhs, rhs_val_ptr, gt, top_level);
case EXPR_FIELD:
return GenFieldAssign(lhs, rhs, rhs_val_ptr, gt, top_level);
case EXPR_LIST:
return GenListAssign(lhs, rhs);
default:
reporter->InternalError("bad assigment node in CPPCompile::GenExpr");
return "XXX";
}
}
string CPPCompile::GenDirectAssign(const ExprPtr& lhs, const string& rhs_native,
const string& rhs_val_ptr, GenType gt, bool top_level)
{
auto n = lhs->AsNameExpr()->Id();
auto name = IDNameStr(n);
string gen;
if ( n->IsGlobal() )
{
const auto& t = n->GetType();
auto gn = globals[n->Name()];
if ( t->Tag() == TYPE_FUNC && t->AsFuncType()->Flavor() == FUNC_FLAVOR_EVENT )
{
gen = string("set_event__CPP(") + gn + ", " + rhs_val_ptr + ", " + gn + "_ev)";
if ( ! top_level )
gen = GenericValPtrToGT(gen, n->GetType(), gt);
}
else if ( top_level )
gen = gn + "->SetVal(" + rhs_val_ptr + ")";
else
{
gen = string("set_global__CPP(") + gn + ", " + rhs_val_ptr + ")";
gen = GenericValPtrToGT(gen, n->GetType(), gt);
}
}
else
gen = name + " = " + rhs_native;
return gen;
}
string CPPCompile::GenIndexAssign(const ExprPtr& lhs, const ExprPtr& rhs, const string& rhs_val_ptr,
GenType gt, bool top_level)
{
auto gen = string("assign_to_index__CPP(");
gen += GenExpr(lhs->GetOp1(), GEN_VAL_PTR) + ", " + "index_val__CPP({" +
GenExpr(lhs->GetOp2(), GEN_VAL_PTR) + "}), " + rhs_val_ptr + ")";
if ( ! top_level )
gen = GenericValPtrToGT(gen, rhs->GetType(), gt);
return gen;
}
string CPPCompile::GenFieldAssign(const ExprPtr& lhs, const ExprPtr& rhs, const string& rhs_val_ptr,
GenType gt, bool top_level)
{
auto rec = lhs->GetOp1();
auto rec_gen = GenExpr(rec, GEN_VAL_PTR);
auto field = GenField(rec, lhs->AsFieldExpr()->Field());
if ( top_level )
return rec_gen + "->Assign(" + field + ", " + rhs_val_ptr + ")";
else
{
auto gen = string("assign_field__CPP(") + rec_gen + ", " + field + ", " + rhs_val_ptr + ")";
return GenericValPtrToGT(gen, rhs->GetType(), gt);
}
}
string CPPCompile::GenListAssign(const ExprPtr& lhs, const ExprPtr& rhs)
{
if ( rhs->Tag() != EXPR_NAME )
reporter->InternalError("compound RHS expression in multi-assignment");
string gen;
const auto& vars = lhs->AsListExpr()->Exprs();
auto n = vars.length();
for ( auto i = 0; i < n; ++i )
{
const auto& var_i = vars[i];
if ( var_i->Tag() != EXPR_NAME )
reporter->InternalError("compound LHS expression in multi-assignment");
const auto& t_i = var_i->GetType();
auto var = var_i->AsNameExpr();
auto rhs_i_base = GenExpr(rhs, GEN_DONT_CARE);
rhs_i_base += "->AsListVal()->Idx(" + Fmt(i) + ")";
auto rhs_i = GenericValPtrToGT(rhs_i_base, t_i, GEN_NATIVE);
gen += IDNameStr(var->Id()) + " = " + rhs_i;
if ( i < n - 1 )
gen += ", ";
}
return "(" + gen + ")";
}
string CPPCompile::GenVectorOp(const Expr* e, string op, const char* vec_op)
{
auto gen = string("vec_op_") + vec_op + "__CPP(" + op + ")";
if ( ! IsArithmetic(e->GetType()->Yield()->Tag()) )
gen = string("vector_coerce_to__CPP(") + gen + ", " + GenTypeName(e->GetType()) + ")";
return gen;
}
string CPPCompile::GenVectorOp(const Expr* e, string op1, string op2, const char* vec_op)
{
auto invoke = string(vec_op) + "__CPP(" + op1 + ", " + op2 + ")";
if ( e->GetOp1()->GetType()->Yield()->Tag() == TYPE_STRING )
return string("str_vec_op_") + invoke;
auto gen = string("vec_op_") + invoke;
auto yt = e->GetType()->Yield()->Tag();
if ( ! IsArithmetic(yt) && yt != TYPE_STRING )
gen = string("vector_coerce_to__CPP(") + gen + ", " + GenTypeName(e->GetType()) + ")";
return gen;
}
string CPPCompile::GenLambdaClone(const LambdaExpr* l, bool all_deep)
{
auto& ids = l->OuterIDs();
const auto& captures = l->GetType<FuncType>()->GetCaptures();
string cl_args;
for ( const auto& id : ids )
{
const auto& id_t = id->GetType();
auto arg = LocalName(id);
if ( captures && ! IsNativeType(id_t) )
{
for ( const auto& c : *captures )
if ( id == c.id && (c.deep_copy || all_deep) )
arg = string("cast_intrusive<") + TypeName(id_t) + ">(" + arg + "->Clone())";
}
cl_args = cl_args + ", " + arg;
}
return cl_args;
}
string CPPCompile::GenIntVector(const vector<int>& vec)
{
string res("{ ");
for ( auto i = 0u; i < vec.size(); ++i )
{
res += Fmt(vec[i]);
if ( i < vec.size() - 1 )
res += ", ";
}
return res + " }";
}
string CPPCompile::GenField(const ExprPtr& rec, int field)
{
auto t = TypeRep(rec->GetType());
auto rt = t->AsRecordType();
if ( field < rt->NumOrigFields() )
// Can use direct access.
return Fmt(field);
// Need to dynamically map the field.
int mapping_slot;
if ( record_field_mappings.count(rt) > 0 && record_field_mappings[rt].count(field) > 0 )
// We're already tracking this field.
mapping_slot = record_field_mappings[rt][field];
else
{
// New mapping.
mapping_slot = num_rf_mappings++;
string field_name = rt->FieldName(field);
field_decls.emplace_back(pair(rt, rt->FieldDecl(field)));
if ( record_field_mappings.count(rt) > 0 )
// We're already tracking this record.
record_field_mappings[rt][field] = mapping_slot;
else
{
// Need to start tracking this record.
unordered_map<int, int> rt_mapping;
rt_mapping[field] = mapping_slot;
record_field_mappings[rt] = rt_mapping;
}
}
return string("field_mapping[") + Fmt(mapping_slot) + "]";
}
string CPPCompile::GenEnum(const TypePtr& t, const ValPtr& ev)
{
auto et = TypeRep(t)->AsEnumType();
auto v = ev->AsEnum();
if ( ! et->HasRedefs() )
// Can use direct access.
return Fmt(v);
// Need to dynamically map the access.
int mapping_slot;
if ( enum_val_mappings.count(et) > 0 && enum_val_mappings[et].count(v) > 0 )
// We're already tracking this value.
mapping_slot = enum_val_mappings[et][v];
else
{
// New mapping.
mapping_slot = num_ev_mappings++;
string enum_name = et->Lookup(v);
enum_names.emplace_back(pair(et, move(enum_name)));
if ( enum_val_mappings.count(et) > 0 )
{
// We're already tracking this enum.
enum_val_mappings[et][v] = mapping_slot;
}
else
{
// Need to start tracking this enum.
unordered_map<int, int> et_mapping;
et_mapping[v] = mapping_slot;
enum_val_mappings[et] = et_mapping;
}
}
return string("enum_mapping[") + Fmt(mapping_slot) + "]";
}
} // zeek::detail