zeek/src/threading/Queue.h

245 lines
6.3 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#pragma once
#include <sys/time.h>
#include <condition_variable>
#include <cstdint>
#include <mutex>
#include <queue>
#include "zeek/Reporter.h"
#include "zeek/threading/BasicThread.h"
#undef Queue // Defined elsewhere unfortunately.
namespace zeek::threading {
/**
* A thread-safe single-reader single-writer queue.
*
* The implementation uses multiple queues and reads/writes in rotary fashion
* in an attempt to limit contention.
*
* All Queue instances must be instantiated by Zeek's main thread.
*
* TODO: Unclear how critical performance is for this queue. We could likely
* optimize it further if helpful.
*/
template<typename T>
class Queue {
public:
/**
* Constructor.
*
* reader, writer: The corresponding threads. This is for checking
* whether they have terminated so that we can abort I/O operations.
* Can be left null for the main thread.
*/
Queue(BasicThread* arg_reader, BasicThread* arg_writer);
/**
* Destructor.
*/
~Queue();
/**
* Retrieves one element. This may block for a little while of no
* input is available and eventually return with a null element if
* nothing shows up.
*/
T Get();
/**
* Queues one element.
*/
void Put(T data);
/**
* Returns true if the next Get() operation will succeed.
*/
bool Ready();
/**
* Returns true if the next Get() operation might succeed. This
* function may occasionally return a value not indicating the actual
* state, but won't do so very often. Note that this means that it can
* consistently return false even if there is something in the Queue.
* You have to check real queue status from time to time to be sure that
* it is empty. In other words, this method helps to avoid locking the queue
* frequently, but doesn't allow you to forgo it completely.
*/
bool MaybeReady() { return (num_reads != num_writes); }
/**
* Wake up the reader if it's currently blocked for input. This is
* primarily to give it a chance to check termination quickly.
*/
void WakeUp();
/**
* Returns the number of queued items not yet retrieved.
*/
uint64_t Size();
/**
* Statistics about inter-thread communication.
*/
struct Stats {
uint64_t num_reads; //! Number of messages read from the queue.
uint64_t num_writes; //! Number of messages written to the queue.
};
/**
* Returns statistics about the queue's usage.
*
* @param stats A pointer to a structure that will be filled with
* current numbers.
*/
void GetStats(Stats* stats);
private:
static const int NUM_QUEUES = 8;
std::vector<std::unique_lock<std::mutex>> LocksForAllQueues();
std::mutex mutex[NUM_QUEUES]; // Mutex protected shared accesses.
std::condition_variable has_data[NUM_QUEUES]; // Signals when data becomes available
std::queue<T> messages[NUM_QUEUES]; // Actually holds the queued messages
int read_ptr; // Where the next operation will read from
int write_ptr; // Where the next operation will write to
BasicThread* reader;
BasicThread* writer;
// Statistics.
uint64_t num_reads;
uint64_t num_writes;
};
inline static std::unique_lock<std::mutex> acquire_lock(std::mutex& m) {
try {
return std::unique_lock<std::mutex>(m);
} catch ( const std::system_error& e ) {
reporter->FatalErrorWithCore("cannot lock mutex: %s", e.what());
// Never gets here.
throw std::exception();
}
}
template<typename T>
inline Queue<T>::Queue(BasicThread* arg_reader, BasicThread* arg_writer) {
read_ptr = 0;
write_ptr = 0;
num_reads = num_writes = 0;
reader = arg_reader;
writer = arg_writer;
}
template<typename T>
inline Queue<T>::~Queue() {}
template<typename T>
inline T Queue<T>::Get() {
auto lock = acquire_lock(mutex[read_ptr]);
int old_read_ptr = read_ptr;
if ( messages[read_ptr].empty() && ! ((reader && reader->Killed()) || (writer && writer->Killed())) ) {
if ( has_data[read_ptr].wait_for(lock, std::chrono::seconds(5)) == std::cv_status::timeout )
return nullptr;
}
if ( messages[read_ptr].empty() )
return nullptr;
T data = messages[read_ptr].front();
messages[read_ptr].pop();
read_ptr = (read_ptr + 1) % NUM_QUEUES;
++num_reads;
return data;
}
template<typename T>
inline void Queue<T>::Put(T data) {
auto lock = acquire_lock(mutex[write_ptr]);
int old_write_ptr = write_ptr;
bool need_signal = messages[write_ptr].empty();
messages[write_ptr].push(data);
write_ptr = (write_ptr + 1) % NUM_QUEUES;
++num_writes;
if ( need_signal ) {
lock.unlock();
has_data[old_write_ptr].notify_one();
}
}
template<typename T>
inline bool Queue<T>::Ready() {
auto lock = acquire_lock(mutex[read_ptr]);
bool ret = (messages[read_ptr].size());
return ret;
}
template<typename T>
inline std::vector<std::unique_lock<std::mutex>> Queue<T>::LocksForAllQueues() {
std::vector<std::unique_lock<std::mutex>> locks;
try {
// NOLINTNEXTLINE(modernize-loop-convert)
for ( int i = 0; i < NUM_QUEUES; i++ )
locks.emplace_back(std::unique_lock<std::mutex>(mutex[i]));
}
catch ( const std::system_error& e ) {
reporter->FatalErrorWithCore("cannot lock all mutexes: %s", e.what());
// Never gets here.
throw std::exception();
}
return locks;
}
template<typename T>
inline uint64_t Queue<T>::Size() {
// Need to lock all queues.
auto locks = LocksForAllQueues();
uint64_t size = 0;
// NOLINTNEXTLINE(modernize-loop-convert)
for ( int i = 0; i < NUM_QUEUES; i++ )
size += messages[i].size();
return size;
}
template<typename T>
inline void Queue<T>::GetStats(Stats* stats) {
// To be safe, we look all queues. That's probably unnecessary, but
// doesn't really hurt.
auto locks = LocksForAllQueues();
stats->num_reads = num_reads;
stats->num_writes = num_writes;
}
template<typename T>
inline void Queue<T>::WakeUp() {
for ( int i = 0; i < NUM_QUEUES; i++ ) {
auto lock = acquire_lock(mutex[i]);
has_data[i].notify_all();
}
}
} // namespace zeek::threading