mirror of
https://github.com/zeek/zeek.git
synced 2025-10-02 14:48:21 +00:00

* 'master' of https://github.com/rdenniston/zeek: Add linux netfilter NFLOG capture functionality initial commit I made modifications: - Formatting / code style - More error handling and validity checks - The Type and Length value of TLVs is technically host order - Changed / fixed the Length value padding check: it's generally 32-bit alignment, not just aligning any TLV less than 8 bytes.
736 lines
15 KiB
C++
736 lines
15 KiB
C++
|
|
#include "Packet.h"
|
|
#include "Sessions.h"
|
|
#include "iosource/Manager.h"
|
|
|
|
extern "C" {
|
|
#ifdef HAVE_NET_ETHERNET_H
|
|
#include <net/ethernet.h>
|
|
#elif defined(HAVE_SYS_ETHERNET_H)
|
|
#include <sys/ethernet.h>
|
|
#elif defined(HAVE_NETINET_IF_ETHER_H)
|
|
#include <net/if_arp.h>
|
|
#include <netinet/if_ether.h>
|
|
#elif defined(HAVE_NET_ETHERTYPES_H)
|
|
#include <net/ethertypes.h>
|
|
#endif
|
|
}
|
|
|
|
void Packet::Init(int arg_link_type, pkt_timeval *arg_ts, uint32 arg_caplen,
|
|
uint32 arg_len, const u_char *arg_data, int arg_copy,
|
|
std::string arg_tag)
|
|
{
|
|
if ( data && copy )
|
|
delete [] data;
|
|
|
|
link_type = arg_link_type;
|
|
ts = *arg_ts;
|
|
cap_len = arg_caplen;
|
|
len = arg_len;
|
|
tag = arg_tag;
|
|
|
|
copy = arg_copy;
|
|
|
|
if ( arg_data && arg_copy )
|
|
{
|
|
data = new u_char[arg_caplen];
|
|
memcpy(const_cast<u_char *>(data), arg_data, arg_caplen);
|
|
}
|
|
else
|
|
data = arg_data;
|
|
|
|
time = ts.tv_sec + double(ts.tv_usec) / 1e6;
|
|
hdr_size = GetLinkHeaderSize(arg_link_type);
|
|
l3_proto = L3_UNKNOWN;
|
|
eth_type = 0;
|
|
vlan = 0;
|
|
inner_vlan = 0;
|
|
l2_src = 0;
|
|
l2_dst = 0;
|
|
|
|
l2_valid = false;
|
|
|
|
if ( data && cap_len < hdr_size )
|
|
{
|
|
Weird("truncated_link_header");
|
|
return;
|
|
}
|
|
|
|
if ( data )
|
|
ProcessLayer2();
|
|
}
|
|
|
|
void Packet::Weird(const char* name)
|
|
{
|
|
sessions->Weird(name, this);
|
|
l2_valid = false;
|
|
}
|
|
|
|
int Packet::GetLinkHeaderSize(int link_type)
|
|
{
|
|
switch ( link_type ) {
|
|
case DLT_NULL:
|
|
return 4;
|
|
|
|
case DLT_EN10MB:
|
|
return 14;
|
|
|
|
case DLT_FDDI:
|
|
return 13 + 8; // fddi_header + LLC
|
|
|
|
#ifdef DLT_LINUX_SLL
|
|
case DLT_LINUX_SLL:
|
|
return 16;
|
|
#endif
|
|
|
|
case DLT_PPP_SERIAL: // PPP_SERIAL
|
|
return 4;
|
|
|
|
case DLT_IEEE802_11: // 802.11 monitor
|
|
return 34;
|
|
|
|
case DLT_IEEE802_11_RADIO: // 802.11 plus RadioTap
|
|
return 59;
|
|
|
|
case DLT_NFLOG:
|
|
// Linux netlink NETLINK NFLOG socket log messages
|
|
// The actual header size is variable, but we return the minimum
|
|
// expected size here, which is 4 bytes for the main header plus at
|
|
// least 2 bytes each for the type and length values assoicated with
|
|
// the final TLV carrying the packet payload.
|
|
return 8;
|
|
|
|
case DLT_RAW:
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
void Packet::ProcessLayer2()
|
|
{
|
|
l2_valid = true;
|
|
|
|
// Unfortunately some packets on the link might have MPLS labels
|
|
// while others don't. That means we need to ask the link-layer if
|
|
// labels are in place.
|
|
bool have_mpls = false;
|
|
|
|
const u_char* pdata = data;
|
|
const u_char* end_of_data = data + cap_len;
|
|
|
|
switch ( link_type ) {
|
|
case DLT_NULL:
|
|
{
|
|
int protocol = (pdata[3] << 24) + (pdata[2] << 16) + (pdata[1] << 8) + pdata[0];
|
|
pdata += GetLinkHeaderSize(link_type);
|
|
|
|
// From the Wireshark Wiki: "AF_INET6, unfortunately, has
|
|
// different values in {NetBSD,OpenBSD,BSD/OS},
|
|
// {FreeBSD,DragonFlyBSD}, and {Darwin/Mac OS X}, so an IPv6
|
|
// packet might have a link-layer header with 24, 28, or 30
|
|
// as the AF_ value." As we may be reading traces captured on
|
|
// platforms other than what we're running on, we accept them
|
|
// all here.
|
|
|
|
if ( protocol == AF_INET )
|
|
l3_proto = L3_IPV4;
|
|
else if ( protocol == 24 || protocol == 28 || protocol == 30 )
|
|
l3_proto = L3_IPV6;
|
|
else
|
|
{
|
|
Weird("non_ip_packet_in_null_transport");
|
|
return;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case DLT_EN10MB:
|
|
{
|
|
// Skip past Cisco FabricPath to encapsulated ethernet frame.
|
|
if ( pdata[12] == 0x89 && pdata[13] == 0x03 )
|
|
{
|
|
auto constexpr cfplen = 16;
|
|
|
|
if ( pdata + cfplen + GetLinkHeaderSize(link_type) >= end_of_data )
|
|
{
|
|
Weird("truncated_link_header_cfp");
|
|
return;
|
|
}
|
|
|
|
pdata += cfplen;
|
|
}
|
|
|
|
// Get protocol being carried from the ethernet frame.
|
|
int protocol = (pdata[12] << 8) + pdata[13];
|
|
|
|
eth_type = protocol;
|
|
l2_dst = pdata;
|
|
l2_src = pdata + 6;
|
|
|
|
pdata += GetLinkHeaderSize(link_type);
|
|
|
|
bool saw_vlan = false;
|
|
|
|
while ( protocol == 0x8100 || protocol == 0x9100 ||
|
|
protocol == 0x8864 )
|
|
{
|
|
switch ( protocol )
|
|
{
|
|
// VLAN carried over the ethernet frame.
|
|
// 802.1q / 802.1ad
|
|
case 0x8100:
|
|
case 0x9100:
|
|
{
|
|
if ( pdata + 4 >= end_of_data )
|
|
{
|
|
Weird("truncated_link_header");
|
|
return;
|
|
}
|
|
|
|
auto& vlan_ref = saw_vlan ? inner_vlan : vlan;
|
|
vlan_ref = ((pdata[0] << 8) + pdata[1]) & 0xfff;
|
|
protocol = ((pdata[2] << 8) + pdata[3]);
|
|
pdata += 4; // Skip the vlan header
|
|
saw_vlan = true;
|
|
eth_type = protocol;
|
|
}
|
|
break;
|
|
|
|
// PPPoE carried over the ethernet frame.
|
|
case 0x8864:
|
|
{
|
|
if ( pdata + 8 >= end_of_data )
|
|
{
|
|
Weird("truncated_link_header");
|
|
return;
|
|
}
|
|
|
|
protocol = (pdata[6] << 8) + pdata[7];
|
|
pdata += 8; // Skip the PPPoE session and PPP header
|
|
|
|
if ( protocol == 0x0021 )
|
|
l3_proto = L3_IPV4;
|
|
else if ( protocol == 0x0057 )
|
|
l3_proto = L3_IPV6;
|
|
else
|
|
{
|
|
// Neither IPv4 nor IPv6.
|
|
Weird("non_ip_packet_in_pppoe_encapsulation");
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check for MPLS in VLAN.
|
|
if ( protocol == 0x8847 )
|
|
have_mpls = true;
|
|
|
|
// Normal path to determine Layer 3 protocol.
|
|
if ( ! have_mpls && l3_proto == L3_UNKNOWN )
|
|
{
|
|
if ( protocol == 0x800 )
|
|
l3_proto = L3_IPV4;
|
|
else if ( protocol == 0x86dd )
|
|
l3_proto = L3_IPV6;
|
|
else if ( protocol == 0x0806 || protocol == 0x8035 )
|
|
l3_proto = L3_ARP;
|
|
else
|
|
{
|
|
// Neither IPv4 nor IPv6.
|
|
Weird("non_ip_packet_in_ethernet");
|
|
return;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case DLT_PPP_SERIAL:
|
|
{
|
|
// Get PPP protocol.
|
|
int protocol = (pdata[2] << 8) + pdata[3];
|
|
pdata += GetLinkHeaderSize(link_type);
|
|
|
|
if ( protocol == 0x0281 )
|
|
{
|
|
// MPLS Unicast. Remove the pdata link layer and
|
|
// denote a header size of zero before the IP header.
|
|
have_mpls = true;
|
|
}
|
|
else if ( protocol == 0x0021 )
|
|
l3_proto = L3_IPV4;
|
|
else if ( protocol == 0x0057 )
|
|
l3_proto = L3_IPV6;
|
|
else
|
|
{
|
|
// Neither IPv4 nor IPv6.
|
|
Weird("non_ip_packet_in_ppp_encapsulation");
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DLT_IEEE802_11_RADIO:
|
|
{
|
|
if ( pdata + 3 >= end_of_data )
|
|
{
|
|
Weird("truncated_radiotap_header");
|
|
return;
|
|
}
|
|
|
|
// Skip over the RadioTap header
|
|
int rtheader_len = (pdata[3] << 8) + pdata[2];
|
|
|
|
if ( pdata + rtheader_len >= end_of_data )
|
|
{
|
|
Weird("truncated_radiotap_header");
|
|
return;
|
|
}
|
|
|
|
pdata += rtheader_len;
|
|
// fallthrough
|
|
}
|
|
|
|
case DLT_IEEE802_11:
|
|
{
|
|
u_char len_80211 = 24; // minimal length of data frames
|
|
|
|
if ( pdata + len_80211 >= end_of_data )
|
|
{
|
|
Weird("truncated_802_11_header");
|
|
return;
|
|
}
|
|
|
|
u_char fc_80211 = pdata[0]; // Frame Control field
|
|
|
|
// Skip non-data frame types (management & control).
|
|
if ( ! ((fc_80211 >> 2) & 0x02) )
|
|
return;
|
|
|
|
// Skip subtypes without data.
|
|
if ( (fc_80211 >> 4) & 0x04 )
|
|
return;
|
|
|
|
// 'To DS' and 'From DS' flags set indicate use of the 4th
|
|
// address field.
|
|
if ( (pdata[1] & 0x03) == 0x03 )
|
|
len_80211 += l2_addr_len;
|
|
|
|
// Look for the QoS indicator bit.
|
|
if ( (fc_80211 >> 4) & 0x08 )
|
|
{
|
|
// Skip in case of A-MSDU subframes indicated by QoS
|
|
// control field.
|
|
if ( pdata[len_80211] & 0x80)
|
|
return;
|
|
|
|
len_80211 += 2;
|
|
}
|
|
|
|
if ( pdata + len_80211 >= end_of_data )
|
|
{
|
|
Weird("truncated_802_11_header");
|
|
return;
|
|
}
|
|
|
|
// Determine link-layer addresses based
|
|
// on 'To DS' and 'From DS' flags
|
|
switch ( pdata[1] & 0x03 ) {
|
|
case 0x00:
|
|
l2_src = pdata + 10;
|
|
l2_dst = pdata + 4;
|
|
break;
|
|
|
|
case 0x01:
|
|
l2_src = pdata + 10;
|
|
l2_dst = pdata + 16;
|
|
break;
|
|
|
|
case 0x02:
|
|
l2_src = pdata + 16;
|
|
l2_dst = pdata + 4;
|
|
break;
|
|
|
|
case 0x03:
|
|
l2_src = pdata + 24;
|
|
l2_dst = pdata + 16;
|
|
break;
|
|
}
|
|
|
|
// skip 802.11 data header
|
|
pdata += len_80211;
|
|
|
|
if ( pdata + 8 >= end_of_data )
|
|
{
|
|
Weird("truncated_802_11_header");
|
|
return;
|
|
}
|
|
// Check that the DSAP and SSAP are both SNAP and that the control
|
|
// field indicates that this is an unnumbered frame.
|
|
// The organization code (24bits) needs to also be zero to
|
|
// indicate that this is encapsulated ethernet.
|
|
if ( pdata[0] == 0xAA && pdata[1] == 0xAA && pdata[2] == 0x03 &&
|
|
pdata[3] == 0 && pdata[4] == 0 && pdata[5] == 0 )
|
|
{
|
|
pdata += 6;
|
|
}
|
|
else
|
|
{
|
|
// If this is a logical link control frame without the
|
|
// possibility of having a protocol we care about, we'll
|
|
// just skip it for now.
|
|
return;
|
|
}
|
|
|
|
int protocol = (pdata[0] << 8) + pdata[1];
|
|
if ( protocol == 0x0800 )
|
|
l3_proto = L3_IPV4;
|
|
else if ( protocol == 0x86DD )
|
|
l3_proto = L3_IPV6;
|
|
else if ( protocol == 0x0806 || protocol == 0x8035 )
|
|
l3_proto = L3_ARP;
|
|
else
|
|
{
|
|
Weird("non_ip_packet_in_ieee802_11");
|
|
return;
|
|
}
|
|
pdata += 2;
|
|
|
|
break;
|
|
}
|
|
|
|
case DLT_NFLOG:
|
|
{
|
|
// See https://www.tcpdump.org/linktypes/LINKTYPE_NFLOG.html
|
|
|
|
uint8 protocol = pdata[0];
|
|
|
|
if ( protocol == AF_INET )
|
|
l3_proto = L3_IPV4;
|
|
else if ( protocol == AF_INET6 )
|
|
l3_proto = L3_IPV6;
|
|
else
|
|
{
|
|
Weird("non_ip_in_nflog");
|
|
return;
|
|
}
|
|
|
|
uint8 version = pdata[1];
|
|
|
|
if ( version != 0 )
|
|
{
|
|
Weird("unknown_nflog_version");
|
|
return;
|
|
}
|
|
|
|
// Skip to TLVs.
|
|
pdata += 4;
|
|
|
|
uint16 tlv_len;
|
|
uint16 tlv_type;
|
|
|
|
while ( true )
|
|
{
|
|
if ( pdata + 4 >= end_of_data )
|
|
{
|
|
Weird("nflog_no_pcap_payload");
|
|
return;
|
|
}
|
|
|
|
// TLV Type and Length values are specified in host byte order
|
|
// (libpcap should have done any needed byteswapping already).
|
|
|
|
tlv_len = *(reinterpret_cast<const uint16*>(pdata));
|
|
tlv_type = *(reinterpret_cast<const uint16*>(pdata + 2));
|
|
|
|
auto constexpr nflog_type_payload = 9;
|
|
|
|
if ( tlv_type == nflog_type_payload )
|
|
{
|
|
// The raw packet payload follows this TLV.
|
|
pdata += 4;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
// The Length value includes the 4 octets for the Type and
|
|
// Length values, but TLVs are also implicitly padded to
|
|
// 32-bit alignments (that padding may not be included in
|
|
// the Length value).
|
|
|
|
if ( tlv_len < 4 )
|
|
{
|
|
Weird("nflog_bad_tlv_len");
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
auto rem = tlv_len % 4;
|
|
|
|
if ( rem != 0 )
|
|
tlv_len += 4 - rem;
|
|
}
|
|
|
|
pdata += tlv_len;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
// Assume we're pointing at IP. Just figure out which version.
|
|
pdata += GetLinkHeaderSize(link_type);
|
|
if ( pdata + sizeof(struct ip) >= end_of_data )
|
|
{
|
|
Weird("truncated_link_header");
|
|
return;
|
|
}
|
|
|
|
const struct ip* ip = (const struct ip *)pdata;
|
|
|
|
if ( ip->ip_v == 4 )
|
|
l3_proto = L3_IPV4;
|
|
else if ( ip->ip_v == 6 )
|
|
l3_proto = L3_IPV6;
|
|
else
|
|
{
|
|
// Neither IPv4 nor IPv6.
|
|
Weird("non_ip_packet");
|
|
return;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( have_mpls )
|
|
{
|
|
// Skip the MPLS label stack.
|
|
bool end_of_stack = false;
|
|
|
|
while ( ! end_of_stack )
|
|
{
|
|
if ( pdata + 4 >= end_of_data )
|
|
{
|
|
Weird("truncated_link_header");
|
|
return;
|
|
}
|
|
|
|
end_of_stack = *(pdata + 2) & 0x01;
|
|
pdata += 4;
|
|
}
|
|
|
|
// We assume that what remains is IP
|
|
if ( pdata + sizeof(struct ip) >= end_of_data )
|
|
{
|
|
Weird("no_ip_in_mpls_payload");
|
|
return;
|
|
}
|
|
|
|
const struct ip* ip = (const struct ip *)pdata;
|
|
|
|
if ( ip->ip_v == 4 )
|
|
l3_proto = L3_IPV4;
|
|
else if ( ip->ip_v == 6 )
|
|
l3_proto = L3_IPV6;
|
|
else
|
|
{
|
|
// Neither IPv4 nor IPv6.
|
|
Weird("no_ip_in_mpls_payload");
|
|
return;
|
|
}
|
|
}
|
|
|
|
else if ( encap_hdr_size )
|
|
{
|
|
// Blanket encapsulation. We assume that what remains is IP.
|
|
if ( pdata + encap_hdr_size + sizeof(struct ip) >= end_of_data )
|
|
{
|
|
Weird("no_ip_left_after_encap");
|
|
return;
|
|
}
|
|
|
|
pdata += encap_hdr_size;
|
|
|
|
const struct ip* ip = (const struct ip *)pdata;
|
|
|
|
if ( ip->ip_v == 4 )
|
|
l3_proto = L3_IPV4;
|
|
else if ( ip->ip_v == 6 )
|
|
l3_proto = L3_IPV6;
|
|
else
|
|
{
|
|
// Neither IPv4 nor IPv6.
|
|
Weird("no_ip_in_encap");
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
// We've now determined (a) L3_IPV4 vs (b) L3_IPV6 vs (c) L3_ARP vs
|
|
// (d) L3_UNKNOWN.
|
|
|
|
// Calculate how much header we've used up.
|
|
hdr_size = (pdata - data);
|
|
}
|
|
|
|
RecordVal* Packet::BuildPktHdrVal() const
|
|
{
|
|
RecordVal* pkt_hdr = new RecordVal(raw_pkt_hdr_type);
|
|
RecordVal* l2_hdr = new RecordVal(l2_hdr_type);
|
|
|
|
int is_ethernet = (link_type == DLT_EN10MB) ? 1 : 0;
|
|
|
|
int l3 = BifEnum::L3_UNKNOWN;
|
|
|
|
if ( l3_proto == L3_IPV4 )
|
|
l3 = BifEnum::L3_IPV4;
|
|
|
|
else if ( l3_proto == L3_IPV6 )
|
|
l3 = BifEnum::L3_IPV6;
|
|
|
|
else if ( l3_proto == L3_ARP )
|
|
l3 = BifEnum::L3_ARP;
|
|
|
|
// l2_hdr layout:
|
|
// encap: link_encap; ##< L2 link encapsulation
|
|
// len: count; ##< Total frame length on wire
|
|
// cap_len: count; ##< Captured length
|
|
// src: string &optional; ##< L2 source (if ethernet)
|
|
// dst: string &optional; ##< L2 destination (if ethernet)
|
|
// vlan: count &optional; ##< VLAN tag if any (and ethernet)
|
|
// inner_vlan: count &optional; ##< Inner VLAN tag if any (and ethernet)
|
|
// ethertype: count &optional; ##< If ethernet
|
|
// proto: layer3_proto; ##< L3 proto
|
|
|
|
if ( is_ethernet )
|
|
{
|
|
// Ethernet header layout is:
|
|
// dst[6bytes] src[6bytes] ethertype[2bytes]...
|
|
l2_hdr->Assign(0, BifType::Enum::link_encap->GetVal(BifEnum::LINK_ETHERNET));
|
|
l2_hdr->Assign(3, FmtEUI48(data + 6)); // src
|
|
l2_hdr->Assign(4, FmtEUI48(data)); // dst
|
|
|
|
if ( vlan )
|
|
l2_hdr->Assign(5, val_mgr->GetCount(vlan));
|
|
|
|
if ( inner_vlan )
|
|
l2_hdr->Assign(6, val_mgr->GetCount(inner_vlan));
|
|
|
|
l2_hdr->Assign(7, val_mgr->GetCount(eth_type));
|
|
|
|
if ( eth_type == ETHERTYPE_ARP || eth_type == ETHERTYPE_REVARP )
|
|
// We also identify ARP for L3 over ethernet
|
|
l3 = BifEnum::L3_ARP;
|
|
}
|
|
else
|
|
l2_hdr->Assign(0, BifType::Enum::link_encap->GetVal(BifEnum::LINK_UNKNOWN));
|
|
|
|
l2_hdr->Assign(1, val_mgr->GetCount(len));
|
|
l2_hdr->Assign(2, val_mgr->GetCount(cap_len));
|
|
|
|
l2_hdr->Assign(8, BifType::Enum::layer3_proto->GetVal(l3));
|
|
|
|
pkt_hdr->Assign(0, l2_hdr);
|
|
|
|
if ( l3_proto == L3_IPV4 )
|
|
{
|
|
IP_Hdr ip_hdr((const struct ip*)(data + hdr_size), false);
|
|
return ip_hdr.BuildPktHdrVal(pkt_hdr, 1);
|
|
}
|
|
|
|
else if ( l3_proto == L3_IPV6 )
|
|
{
|
|
IP_Hdr ip6_hdr((const struct ip6_hdr*)(data + hdr_size), false, cap_len);
|
|
return ip6_hdr.BuildPktHdrVal(pkt_hdr, 1);
|
|
}
|
|
|
|
else
|
|
return pkt_hdr;
|
|
}
|
|
|
|
Val *Packet::FmtEUI48(const u_char *mac) const
|
|
{
|
|
char buf[20];
|
|
snprintf(buf, sizeof buf, "%02x:%02x:%02x:%02x:%02x:%02x",
|
|
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
|
|
return new StringVal(buf);
|
|
}
|
|
|
|
void Packet::Describe(ODesc* d) const
|
|
{
|
|
const IP_Hdr ip = IP();
|
|
d->Add(ip.SrcAddr());
|
|
d->Add("->");
|
|
d->Add(ip.DstAddr());
|
|
}
|
|
|
|
bool Packet::Serialize(SerialInfo* info) const
|
|
{
|
|
return SERIALIZE(uint32(ts.tv_sec)) &&
|
|
SERIALIZE(uint32(ts.tv_usec)) &&
|
|
SERIALIZE(uint32(len)) &&
|
|
SERIALIZE(link_type) &&
|
|
info->s->Write(tag.c_str(), tag.length(), "tag") &&
|
|
info->s->Write((const char*)data, cap_len, "data");
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static iosource::PktDumper* dump = 0;
|
|
#endif
|
|
|
|
Packet* Packet::Unserialize(UnserialInfo* info)
|
|
{
|
|
pkt_timeval ts;
|
|
uint32 len, link_type;
|
|
|
|
if ( ! (UNSERIALIZE((uint32 *)&ts.tv_sec) &&
|
|
UNSERIALIZE((uint32 *)&ts.tv_usec) &&
|
|
UNSERIALIZE(&len) &&
|
|
UNSERIALIZE(&link_type)) )
|
|
return 0;
|
|
|
|
char* tag;
|
|
if ( ! info->s->Read((char**) &tag, 0, "tag") )
|
|
return 0;
|
|
|
|
const u_char* pkt;
|
|
int caplen;
|
|
if ( ! info->s->Read((char**) &pkt, &caplen, "data") )
|
|
{
|
|
delete [] tag;
|
|
return 0;
|
|
}
|
|
|
|
Packet *p = new Packet(link_type, &ts, caplen, len, pkt, true,
|
|
std::string(tag));
|
|
delete [] tag;
|
|
|
|
// For the global timer manager, we take the global network_time as the
|
|
// packet's timestamp for feeding it into our packet loop.
|
|
if ( p->tag == "" )
|
|
p->time = timer_mgr->Time();
|
|
else
|
|
p->time = p->ts.tv_sec + double(p->ts.tv_usec) / 1e6;
|
|
|
|
#ifdef DEBUG
|
|
if ( debug_logger.IsEnabled(DBG_TM) )
|
|
{
|
|
if ( ! dump )
|
|
dump = iosource_mgr->OpenPktDumper("tm.pcap", true);
|
|
|
|
if ( dump )
|
|
{
|
|
dump->Dump(p);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return p;
|
|
}
|