zeek/src/script_opt/ZAM/ZInst.h
Vern Paxson 91cab9931d ZAM optimizations for record creation
includes reworking of managing "auxiliary" information for ZAM instructions
2024-01-25 20:49:12 +01:00

531 lines
18 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
// Operators and instructions used in ZAM execution.
#pragma once
#include "zeek/Desc.h"
#include "zeek/Func.h"
#include "zeek/script_opt/ZAM/BuiltInSupport.h"
#include "zeek/script_opt/ZAM/Support.h"
#include "zeek/script_opt/ZAM/ZOp.h"
namespace zeek::detail {
class Expr;
class ConstExpr;
class Attributes;
class Stmt;
using AttributesPtr = IntrusivePtr<Attributes>;
// Maps ZAM frame slots to associated identifiers.
using FrameMap = std::vector<const ID*>;
// Maps ZAM frame slots to information for sharing the slot across
// multiple script variables.
class FrameSharingInfo {
public:
// The variables sharing the slot. ID's need to be non-const so we
// can manipulate them, for example by changing their interpreter
// frame offset.
std::vector<const ID*> ids;
// A parallel vector, only used for fully compiled code, which
// gives the names of the identifiers. When in use, the above
// "ids" member variable may be empty.
std::vector<const char*> names;
// The ZAM instruction number where a given identifier starts its
// scope, parallel to "ids".
std::vector<zeek_uint_t> id_start;
// The current end of the frame slot's scope. Gets updated as
// new IDs are added to share the slot.
int scope_end = -1;
// Whether this is a managed slot.
bool is_managed = false;
};
using FrameReMap = std::vector<FrameSharingInfo>;
class ZInstAux;
// A ZAM instruction. This base class has all the information for
// execution, but omits information and methods only necessary for
// compiling.
class ZInst {
public:
ZInst(ZOp _op, ZAMOpType _op_type) {
op = _op;
op_type = _op_type;
}
// Create a stub instruction that will be populated later.
ZInst() = default;
virtual ~ZInst() = default;
// Methods for printing out the instruction for debugging/maintenance.
void Dump(zeek_uint_t inst_num, const FrameReMap* mappings) const;
void Dump(const std::string& id1, const std::string& id2, const std::string& id3, const std::string& id4) const;
// Returns the name to use in identifying one of the slots/integer
// values (designated by "n"). "inst_num" identifies the instruction
// by its number within a larger set. "mappings" provides the
// mappings used to translate raw slots to the corresponding
// script variable(s).
std::string VName(int n, zeek_uint_t inst_num, const FrameReMap* mappings) const;
// Number of slots that refer to a frame element. These always
// come first, if we use additional slots.
int NumFrameSlots() const;
// Total number of slots in use. >= NumFrameSlots()
int NumSlots() const;
// Returns nil if this instruction doesn't have an associated constant.
ValPtr ConstVal() const;
// Returns true if this instruction represents a form of advancing
// a loop iteration, false otherwise.
bool IsLoopIterationAdvancement() const;
// Returns a string describing the constant.
std::string ConstDump() const;
ZOp op = OP_NOP;
ZAMOpType op_type = OP_X;
// Usually indices into frame, though sometimes hold integer constants.
// When an instruction has both frame slots and integer constants,
// the former always come first, even if conceptually in the operation
// the constant is an "earlier" operand.
//
// Initialized here to keep Coverity happy.
int v1 = -1, v2 = -1, v3 = -1, v4 = -1;
ZVal c; // constant associated with instruction, if any
// Meta-data associated with the execution.
// Type, usually for interpreting the constant.
TypePtr t = nullptr;
TypePtr t2 = nullptr; // just a few ops need two types
const Expr* e = nullptr; // only needed for "when" expressions
Func* func = nullptr; // used for calls
EventHandler* event_handler = nullptr; // used for referring to events
AttributesPtr attrs = nullptr; // used for things like constructors
// Auxiliary information. We could in principle use this to
// consolidate a bunch of the above, though at the cost of
// slightly slower access. Most instructions don't need "aux",
// which is why we bundle these separately.
ZInstAux* aux = nullptr;
// Location associated with this instruction, for error reporting.
std::shared_ptr<Location> loc;
// Interpreter call expression associated with this instruction,
// for error reporting and stack backtraces.
CallExprPtr call_expr = nullptr;
// Whether v1 represents a frame slot type for which we
// explicitly manage the memory.
bool is_managed = false;
};
// A intermediary ZAM instruction, one that includes information/methods
// needed for compiling. Intermediate instructions use pointers to other
// such instructions for branches, rather than concrete instruction
// numbers. This allows the AM optimizer to easily prune instructions.
class ZInstI : public ZInst {
public:
// These constructors can be used directly, but often instead
// they'll be generated via the use of Inst-Gen methods.
ZInstI(ZOp _op) : ZInst(_op, OP_X) {
op = _op;
op_type = OP_X;
}
ZInstI(ZOp _op, int _v1) : ZInst(_op, OP_V) { v1 = _v1; }
ZInstI(ZOp _op, int _v1, int _v2) : ZInst(_op, OP_VV) {
v1 = _v1;
v2 = _v2;
}
ZInstI(ZOp _op, int _v1, int _v2, int _v3) : ZInst(_op, OP_VVV) {
v1 = _v1;
v2 = _v2;
v3 = _v3;
}
ZInstI(ZOp _op, int _v1, int _v2, int _v3, int _v4) : ZInst(_op, OP_VVVV) {
v1 = _v1;
v2 = _v2;
v3 = _v3;
v4 = _v4;
}
ZInstI(ZOp _op, const ConstExpr* ce) : ZInst(_op, OP_C) { InitConst(ce); }
ZInstI(ZOp _op, int _v1, const ConstExpr* ce) : ZInst(_op, OP_VC) {
v1 = _v1;
InitConst(ce);
}
ZInstI(ZOp _op, int _v1, int _v2, const ConstExpr* ce) : ZInst(_op, OP_VVC) {
v1 = _v1;
v2 = _v2;
InitConst(ce);
}
ZInstI(ZOp _op, int _v1, int _v2, int _v3, const ConstExpr* ce) : ZInst(_op, OP_VVVC) {
v1 = _v1;
v2 = _v2;
v3 = _v3;
InitConst(ce);
}
// Constructor used when we're going to just copy in another ZInstI.
ZInstI() {}
// If "remappings" is non-nil, then it is used instead of frame_ids.
void Dump(const FrameMap* frame_ids, const FrameReMap* remappings) const;
// Note that this is *not* an override of the base class's VName
// but instead a method with similar functionality but somewhat
// different behavior (namely, being cognizant of frame_ids).
std::string VName(int n, const FrameMap* frame_ids, const FrameReMap* remappings) const;
// True if this instruction definitely won't proceed to the one
// after it.
bool DoesNotContinue() const;
// True if this instruction always branches elsewhere. Different
// from DoesNotContinue() in that returns & hook breaks do not
// continue, but they are not branches.
bool IsUnconditionalBranch() const { return op == OP_GOTO_V; }
// True if this instruction is of the form "v1 = v2".
bool IsDirectAssignment() const;
// True if this instruction includes captures in its aux slots.
bool HasCaptures() const;
// True if this instruction has side effects when executed, so
// should not be pruned even if it has a dead assignment.
bool HasSideEffects() const;
// True if the given instruction assigns to the frame location
// given by slot 1 (v1).
bool AssignsToSlot1() const;
// True if the given instruction assigns to the frame location
// corresponding to the given slot.
bool AssignsToSlot(int slot) const;
// True if the given instruction uses the value in the given frame
// slot. (Assigning to the slot does not constitute using the value.)
bool UsesSlot(int slot) const;
// Returns the slots used (not assigned to). Any slot not used
// is set to -1. Returns true if at least one slot was used.
bool UsesSlots(int& s1, int& s2, int& s3, int& s4) const;
// Updates used (not assigned) slots per the given mapping.
void UpdateSlots(std::vector<int>& slot_mapping);
// True if the instruction corresponds to loading a global into
// the ZAM frame.
bool IsGlobalLoad() const;
// True if the instruction corresponds to loading a capture into
// the ZAM frame.
bool IsCaptureLoad() const;
// True if the instruction does not correspond to a load from the
// ZAM frame.
bool IsNonLocalLoad() const { return IsGlobalLoad() || IsCaptureLoad(); }
// True if the instruction corresponds to some sort of load,
// either from the interpreter frame or of a global/capture.
bool IsLoad() const { return op_type == OP_VV_FRAME || IsNonLocalLoad(); }
// True if the instruction corresponds to storing a global.
bool IsGlobalStore() const { return op == OP_STORE_GLOBAL_V; }
void CheckIfManaged(const TypePtr& t) {
if ( ZVal::IsManagedType(t) )
is_managed = true;
}
void SetType(TypePtr _t) {
t = std::move(_t);
if ( t )
CheckIfManaged(t);
}
// Whether the instruction should be included in final code
// generation.
bool live = true;
// Whether the instruction is the beginning of a loop, meaning
// it's the target of backward control flow.
bool loop_start = false;
// How deep the instruction is within loop bodies (for all
// instructions in a loop, not just their beginnings). For
// example, a value of 2 means the instruction is inside a
// loop that itself is inside one more loop.
int loop_depth = 0;
// Branch target, prior to concretizing into PC target.
ZInstI* target = nullptr;
int target_slot = 0; // which of v1/v2/v3 should hold the target
// The final PC location of the statement. -1 indicates not
// yet assigned.
int inst_num = -1;
// Number of associated label(s) (indicating the statement is
// a branch target).
int num_labels = 0;
// Used for debugging. Transformed into the ZInst "loc" field.
StmtPtr stmt = curr_stmt;
private:
// Initialize 'c' from the given ConstExpr.
void InitConst(const ConstExpr* ce);
};
// Class for tracking one element of auxiliary information. This can be an
// integer, often specifying a frame slot, or a Val representing a constant.
// The class also tracks any associated type and caches whether it's "managed".
class AuxElem {
public:
AuxElem() {}
// Different ways of setting the specifics of the element.
void SetInt(int _i) { i = _i; }
void SetInt(int _i, TypePtr _t) {
i = _i;
SetType(_t);
}
void SetSlot(int slot) { i = slot; }
void SetConstant(ValPtr _c) {
c = std::move(_c);
// c might be null in some contexts.
if ( c ) {
SetType(c->GetType());
zc = ZVal(c, t);
}
}
// Returns the element as a Val object.
ValPtr ToVal(const ZVal* frame) const {
if ( c )
return c;
else
return frame[i].ToVal(t);
}
// Returns the element as a ZVal object.
ZVal ToZVal(const ZVal* frame) const {
ZVal zv = c ? zc : frame[i];
if ( is_managed )
Ref(zv.ManagedVal());
return zv;
}
int Slot() const { return i; }
int IntVal() const { return i; }
const ValPtr& Constant() const { return c; }
ZVal ZConstant() const { return zc; }
const TypePtr& GetType() const { return t; }
bool IsManaged() const { return is_managed; }
private:
void SetType(TypePtr _t) {
t = std::move(_t);
is_managed = t ? ZVal::IsManagedType(t) : false;
}
int i = -1; // -1 = "not a slot"
ValPtr c;
ZVal zc;
TypePtr t;
bool is_managed = false;
};
// Auxiliary information, used when the fixed ZInst layout lacks
// sufficient expressiveness to represent all of the elements that
// an instruction needs.
class ZInstAux {
public:
// if n is positive then it gives the size of parallel arrays
// tracking slots, constants, and types.
ZInstAux(int _n) {
n = _n;
if ( n > 0 )
elems = new AuxElem[n];
}
~ZInstAux() {
delete[] elems;
delete[] cat_args;
}
// Returns the i'th element of the elements as a ValPtr.
ValPtr ToVal(const ZVal* frame, int i) const { return elems[i].ToVal(frame); }
ZVal ToZVal(const ZVal* frame, int i) const { return elems[i].ToZVal(frame); }
// Returns the elements as a ListValPtr.
ListValPtr ToListVal(const ZVal* frame) const {
auto lv = make_intrusive<ListVal>(TYPE_ANY);
for ( auto i = 0; i < n; ++i )
lv->Append(elems[i].ToVal(frame));
return lv;
}
// Converts the elements to a ListValPtr suitable for use as indices
// for indexing a table or set. "offset" specifies which index we're
// looking for (there can be a bunch for constructors), and "width"
// the number of elements in a single index.
ListValPtr ToIndices(const ZVal* frame, int offset, int width) const {
auto lv = make_intrusive<ListVal>(TYPE_ANY);
for ( auto i = 0; i < 0 + width; ++i )
lv->Append(elems[offset + i].ToVal(frame));
return lv;
}
// Returns the elements converted to a vector of ValPtr's.
const ValVec& ToValVec(const ZVal* frame) {
vv.clear();
FillValVec(vv, frame);
return vv;
}
// Populates the given vector of ValPtr's with the conversion
// of the elements.
void FillValVec(ValVec& vec, const ZVal* frame) const {
for ( auto i = 0; i < n; ++i )
vec.push_back(elems[i].ToVal(frame));
}
// Returns the elements converted to a vector of ZVal's.
const auto& ToZValVec(const ZVal* frame) {
for ( auto i = 0; i < n; ++i )
zvec[i] = elems[i].ToZVal(frame);
return zvec;
}
// Same, but using the "map" to determine where to place the values.
// Returns a non-const value because in this situation other updates
// may be coming to the vector, too.
auto& ToZValVecWithMap(const ZVal* frame) {
for ( auto i = 0; i < n; ++i )
zvec[map[i]] = elems[i].ToZVal(frame);
return zvec;
}
// When building up a ZInstAux, sets one element to a given frame slot
// and type.
void Add(int i, int slot, TypePtr t) { elems[i].SetInt(slot, t); }
// Same, but for non-slot integers.
void Add(int i, int v_i) { elems[i].SetInt(v_i); }
// Same but for constants.
void Add(int i, ValPtr c) { elems[i].SetConstant(c); }
// Member variables. We could add accessors for manipulating
// these (and make the variables private), but for convenience we
// make them directly available.
int n; // size of elements
AuxElem* elems = nullptr;
bool elems_has_slots = true;
// Ingredients associated with lambdas ...
ScriptFuncPtr primary_func;
// ... and its name.
std::string lambda_name;
// For "when" statements.
std::shared_ptr<WhenInfo> wi;
// A parallel array for the cat() built-in replacement.
std::unique_ptr<CatArg>* cat_args = nullptr;
// Used for accessing function names.
IDPtr id_val = nullptr;
// Whether the instruction can lead to globals/captures changing.
// Currently only needed by the optimizer, but convenient to
// store here.
bool can_change_non_locals = false;
// The following is used for constructing records, to map elements in
// slots/constants/types to record field offsets.
std::vector<int> map;
///// The following four apply to looping over the elements of tables.
// Frame slots of iteration variables, such as "[v1, v2, v3] in aggr".
// A negative value means "skip assignment".
std::vector<int> loop_vars;
// Their types and whether they're managed.
std::vector<TypePtr> loop_var_types;
std::vector<bool> lvt_is_managed;
// Type associated with the "value" entry, for "k, value in aggr"
// iteration.
TypePtr value_var_type;
// This is only used to return values stored elsewhere in this
// object - it's not set directly.
//
// If we cared about memory penny-pinching, we could make this
// a pointer and only instantiate as needed.
ValVec vv;
// Similar, but for ZVal's (used when constructing RecordVal's).
std::vector<std::optional<ZVal>> zvec;
// If non-nil, used for constructing records. Each pair gives the index
// into the final record and the associated field initializer.
std::unique_ptr<std::vector<std::pair<int, std::shared_ptr<detail::FieldInit>>>> field_inits;
};
// Returns a human-readable version of the given ZAM op-code.
extern const char* ZOP_name(ZOp op);
// Maps a generic operation to a specific one associated with the given type.
// The third argument governs what to do if the given type has no assignment
// flavor. If true, this leads to an assertion failure. If false, and
// if there's no flavor for the type, then OP_NOP is returned.
extern ZOp AssignmentFlavor(ZOp orig, TypeTag tag, bool strict = true);
// The following all use initializations produced by Gen-ZAM.
// Maps first operands, and then type tags, to operands.
extern std::unordered_map<ZOp, std::unordered_map<TypeTag, ZOp>> assignment_flavor;
// Maps flavorful assignments to their non-assignment counterpart.
// Used for optimization when we determine that the assigned-to
// value is superfluous.
extern std::unordered_map<ZOp, ZOp> assignmentless_op;
// Maps flavorful assignments to what op-type their non-assignment
// counterpart uses.
extern std::unordered_map<ZOp, ZAMOpType> assignmentless_op_type;
} // namespace zeek::detail