zeek/src/Val.cc
Robin Sommer bae60aee31 Merge remote-tracking branch 'origin/topic/jsiwek/fix-expire-func-leaks'
* origin/topic/jsiwek/fix-expire-func-leaks:
  Fix memory leaks in expire_func introduced by recent changes
2019-07-30 18:12:58 +00:00

3267 lines
67 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include "zeek-config.h"
#include <sys/types.h>
#include <sys/param.h>
#include <netinet/in.h>
#include <netdb.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include "Val.h"
#include "Net.h"
#include "File.h"
#include "Func.h"
#include "RE.h"
#include "Scope.h"
#include "NetVar.h"
#include "Expr.h"
#include "PrefixTable.h"
#include "Conn.h"
#include "Reporter.h"
#include "IPAddr.h"
#include "broker/Data.h"
#include "3rdparty/json.hpp"
#include "3rdparty/fifo_map.hpp"
// Define a class for use with the json library that orders the keys in the same order that
// they were inserted. By default, the json library orders them alphabetically and we don't
// want it like that.
template<class K, class V, class compare, class A>
using json_fifo_map = nlohmann::fifo_map<K, V, nlohmann::fifo_map_compare<K>, A>;
using ZeekJson = nlohmann::basic_json<json_fifo_map>;
Val::Val(Func* f)
{
val.func_val = f;
::Ref(val.func_val);
type = f->FType()->Ref();
#ifdef DEBUG
bound_id = 0;
#endif
}
Val::Val(BroFile* f)
{
static FileType* string_file_type = 0;
if ( ! string_file_type )
string_file_type = new FileType(base_type(TYPE_STRING));
val.file_val = f;
assert(f->FType()->Tag() == TYPE_STRING);
type = string_file_type->Ref();
#ifdef DEBUG
bound_id = 0;
#endif
}
Val::~Val()
{
if ( type->InternalType() == TYPE_INTERNAL_STRING )
delete val.string_val;
else if ( type->Tag() == TYPE_FUNC )
Unref(val.func_val);
else if ( type->Tag() == TYPE_FILE )
Unref(val.file_val);
Unref(type);
#ifdef DEBUG
delete [] bound_id;
#endif
}
Val* Val::Clone()
{
Val::CloneState state;
auto v = Clone(&state);
return v;
}
Val* Val::Clone(CloneState* state)
{
auto i = state->clones.find(this);
if ( i != state->clones.end() )
return i->second->Ref();
auto c = DoClone(state);
if ( ! c )
reporter->RuntimeError(GetLocationInfo(), "cannot clone value");
return c;
}
Val* Val::DoClone(CloneState* state)
{
switch ( type->InternalType() ) {
case TYPE_INTERNAL_INT:
case TYPE_INTERNAL_UNSIGNED:
case TYPE_INTERNAL_DOUBLE:
// Immutable.
return Ref();
case TYPE_INTERNAL_OTHER:
// Derived classes are responsible for this. Exception:
// Functions and files. There aren't any derived classes.
if ( type->Tag() == TYPE_FUNC )
return new Val(AsFunc()->DoClone());
if ( type->Tag() == TYPE_FILE )
{
// I think we can just ref the file here - it is unclear what else
// to do. In the case of cached files, I think this is equivalent
// to what happened before - serialization + unserialization just
// have you the same pointer that you already had. In the case of
// non-cached files, the behavior now is different; in the past,
// serialize + unserialize gave you a new file object because the
// old one was not in the list anymore. This object was
// automatically opened. This does not happen anymore - instead you
// get the non-cached pointer back which is brought back into the
// cache when written too.
return Ref();
}
// Fall-through.
default:
reporter->InternalError("cloning illegal base type");
}
reporter->InternalError("cannot be reached");
return nullptr;
}
int Val::IsZero() const
{
switch ( type->InternalType() ) {
case TYPE_INTERNAL_INT: return val.int_val == 0;
case TYPE_INTERNAL_UNSIGNED: return val.uint_val == 0;
case TYPE_INTERNAL_DOUBLE: return val.double_val == 0.0;
default: return 0;
}
}
int Val::IsOne() const
{
switch ( type->InternalType() ) {
case TYPE_INTERNAL_INT: return val.int_val == 1;
case TYPE_INTERNAL_UNSIGNED: return val.uint_val == 1;
case TYPE_INTERNAL_DOUBLE: return val.double_val == 1.0;
default: return 0;
}
}
bro_int_t Val::InternalInt() const
{
if ( type->InternalType() == TYPE_INTERNAL_INT )
return val.int_val;
else if ( type->InternalType() == TYPE_INTERNAL_UNSIGNED )
// ### should check here for overflow
return static_cast<bro_int_t>(val.uint_val);
else
InternalWarning("bad request for InternalInt");
return 0;
}
bro_uint_t Val::InternalUnsigned() const
{
if ( type->InternalType() == TYPE_INTERNAL_UNSIGNED )
return val.uint_val;
else
InternalWarning("bad request for InternalUnsigned");
return 0;
}
double Val::InternalDouble() const
{
if ( type->InternalType() == TYPE_INTERNAL_DOUBLE )
return val.double_val;
else
InternalWarning("bad request for InternalDouble");
return 0.0;
}
bro_int_t Val::CoerceToInt() const
{
if ( type->InternalType() == TYPE_INTERNAL_INT )
return val.int_val;
else if ( type->InternalType() == TYPE_INTERNAL_UNSIGNED )
return static_cast<bro_int_t>(val.uint_val);
else if ( type->InternalType() == TYPE_INTERNAL_DOUBLE )
return static_cast<bro_int_t>(val.double_val);
else
InternalWarning("bad request for CoerceToInt");
return 0;
}
bro_uint_t Val::CoerceToUnsigned() const
{
if ( type->InternalType() == TYPE_INTERNAL_UNSIGNED )
return val.uint_val;
else if ( type->InternalType() == TYPE_INTERNAL_INT )
return static_cast<bro_uint_t>(val.int_val);
else if ( type->InternalType() == TYPE_INTERNAL_DOUBLE )
return static_cast<bro_uint_t>(val.double_val);
else
InternalWarning("bad request for CoerceToUnsigned");
return 0;
}
double Val::CoerceToDouble() const
{
if ( type->InternalType() == TYPE_INTERNAL_DOUBLE )
return val.double_val;
else if ( type->InternalType() == TYPE_INTERNAL_INT )
return static_cast<double>(val.int_val);
else if ( type->InternalType() == TYPE_INTERNAL_UNSIGNED )
return static_cast<double>(val.uint_val);
else
InternalWarning("bad request for CoerceToDouble");
return 0.0;
}
Val* Val::SizeVal() const
{
switch ( type->InternalType() ) {
case TYPE_INTERNAL_INT:
// Return abs value. However abs() only works on ints and llabs
// doesn't work on Mac OS X 10.5. So we do it by hand
if ( val.int_val < 0 )
return val_mgr->GetCount(-val.int_val);
else
return val_mgr->GetCount(val.int_val);
case TYPE_INTERNAL_UNSIGNED:
return val_mgr->GetCount(val.uint_val);
case TYPE_INTERNAL_DOUBLE:
return new Val(fabs(val.double_val), TYPE_DOUBLE);
case TYPE_INTERNAL_OTHER:
if ( type->Tag() == TYPE_FUNC )
return val_mgr->GetCount(val.func_val->FType()->ArgTypes()->Types()->length());
if ( type->Tag() == TYPE_FILE )
return new Val(val.file_val->Size(), TYPE_DOUBLE);
break;
default:
break;
}
return val_mgr->GetCount(0);
}
unsigned int Val::MemoryAllocation() const
{
return padded_sizeof(*this);
}
int Val::AddTo(Val* v, int is_first_init) const
{
Error("+= initializer only applies to aggregate values");
return 0;
}
int Val::RemoveFrom(Val* v) const
{
Error("-= initializer only applies to aggregate values");
return 0;
}
void Val::Describe(ODesc* d) const
{
if ( d->IsBinary() || d->IsPortable() )
{
type->Describe(d);
d->SP();
}
ValDescribe(d);
}
void Val::DescribeReST(ODesc* d) const
{
ValDescribeReST(d);
}
void Val::ValDescribe(ODesc* d) const
{
if ( d->IsReadable() && type->Tag() == TYPE_BOOL )
{
d->Add(CoerceToInt() ? "T" : "F");
return;
}
switch ( type->InternalType() ) {
case TYPE_INTERNAL_INT: d->Add(val.int_val); break;
case TYPE_INTERNAL_UNSIGNED: d->Add(val.uint_val); break;
case TYPE_INTERNAL_DOUBLE: d->Add(val.double_val); break;
case TYPE_INTERNAL_STRING: d->AddBytes(val.string_val); break;
case TYPE_INTERNAL_ADDR: d->Add(val.addr_val->AsString().c_str()); break;
case TYPE_INTERNAL_SUBNET:
d->Add(val.subnet_val->AsString().c_str());
break;
case TYPE_INTERNAL_ERROR: d->AddCS("error"); break;
case TYPE_INTERNAL_OTHER:
if ( type->Tag() == TYPE_FUNC )
AsFunc()->Describe(d);
else if ( type->Tag() == TYPE_FILE )
AsFile()->Describe(d);
else if ( type->Tag() == TYPE_TYPE )
d->Add(type->AsTypeType()->Type()->GetName());
else
d->Add("<no value description>");
break;
case TYPE_INTERNAL_VOID:
d->Add("<void value description>");
break;
default:
reporter->InternalWarning("Val description unavailable");
d->Add("<value description unavailable>");
break;
}
}
void Val::ValDescribeReST(ODesc* d) const
{
switch ( type->InternalType() ) {
case TYPE_INTERNAL_OTHER:
Describe(d);
break;
default:
d->Add("``");
ValDescribe(d);
d->Add("``");
}
}
bool Val::WouldOverflow(const BroType* from_type, const BroType* to_type, const Val* val)
{
if ( !to_type || !from_type )
return true;
else if ( same_type(to_type, from_type) )
return false;
if ( to_type->InternalType() == TYPE_INTERNAL_DOUBLE )
return false;
else if ( to_type->InternalType() == TYPE_INTERNAL_UNSIGNED )
{
if ( from_type->InternalType() == TYPE_INTERNAL_DOUBLE )
return (val->InternalDouble() < 0.0 || val->InternalDouble() > static_cast<double>(UINT64_MAX));
else if ( from_type->InternalType() == TYPE_INTERNAL_INT )
return (val->InternalInt() < 0);
}
else if ( to_type->InternalType() == TYPE_INTERNAL_INT )
{
if ( from_type->InternalType() == TYPE_INTERNAL_DOUBLE )
return (val->InternalDouble() < static_cast<double>(INT64_MIN) ||
val->InternalDouble() > static_cast<double>(INT64_MAX));
else if ( from_type->InternalType() == TYPE_INTERNAL_UNSIGNED )
return (val->InternalUnsigned() > INT64_MAX);
}
return false;
}
TableVal* Val::GetRecordFields()
{
TableVal* fields = new TableVal(internal_type("record_field_table")->AsTableType());
auto t = Type();
if ( t->Tag() != TYPE_RECORD && t->Tag() != TYPE_TYPE )
{
reporter->Error("non-record value/type passed to record_fields");
return fields;
}
RecordType* rt = nullptr;
RecordVal* rv = nullptr;
if ( t->Tag() == TYPE_RECORD )
{
rt = t->AsRecordType();
rv = AsRecordVal();
}
else
{
t = t->AsTypeType()->Type();
if ( t->Tag() != TYPE_RECORD )
{
reporter->Error("non-record value/type passed to record_fields");
return fields;
}
rt = t->AsRecordType();
}
for ( int i = 0; i < rt->NumFields(); ++i )
{
BroType* ft = rt->FieldType(i);
TypeDecl* fd = rt->FieldDecl(i);
Val* fv = nullptr;
if ( rv )
fv = rv->Lookup(i);
if ( fv )
::Ref(fv);
bool logged = (fd->attrs && fd->FindAttr(ATTR_LOG) != 0);
RecordVal* nr = new RecordVal(internal_type("record_field")->AsRecordType());
if ( ft->Tag() == TYPE_RECORD )
nr->Assign(0, new StringVal("record " + ft->GetName()));
else
nr->Assign(0, new StringVal(type_name(ft->Tag())));
nr->Assign(1, val_mgr->GetBool(logged));
nr->Assign(2, fv);
nr->Assign(3, rt->FieldDefault(i));
Val* field_name = new StringVal(rt->FieldName(i));
fields->Assign(field_name, nr);
Unref(field_name);
}
return fields;
}
// This is a static method in this file to avoid including json.hpp in Val.h since it's huge.
static ZeekJson BuildJSON(Val* val, bool only_loggable=false, RE_Matcher* re=new RE_Matcher("^_"))
{
ZeekJson j;
BroType* type = val->Type();
switch ( type->Tag() )
{
case TYPE_BOOL:
j = val->AsBool();
break;
case TYPE_INT:
j = val->AsInt();
break;
case TYPE_COUNT:
j = val->AsCount();
break;
case TYPE_COUNTER:
j = val->AsCounter();
break;
case TYPE_TIME:
j = val->AsTime();
break;
case TYPE_DOUBLE:
j = val->AsDouble();
break;
case TYPE_PORT:
{
auto* pval = val->AsPortVal();
j["port"] = pval->Port();
j["proto"] = pval->Protocol();
break;
}
case TYPE_PATTERN:
case TYPE_INTERVAL:
case TYPE_ADDR:
case TYPE_SUBNET:
{
ODesc d;
d.SetStyle(RAW_STYLE);
val->Describe(&d);
auto* bs = new BroString(1, d.TakeBytes(), d.Len());
j = string((char*)bs->Bytes(), bs->Len());
delete bs;
break;
}
case TYPE_FILE:
case TYPE_FUNC:
case TYPE_ENUM:
case TYPE_STRING:
{
ODesc d;
d.SetStyle(RAW_STYLE);
val->Describe(&d);
auto* bs = new BroString(1, d.TakeBytes(), d.Len());
j = json_escape_utf8(string((char*)bs->Bytes(), bs->Len()));
delete bs;
break;
}
case TYPE_TABLE:
{
auto* table = val->AsTable();
auto* tval = val->AsTableVal();
if ( tval->Type()->IsSet() )
j = ZeekJson::array();
else
j = ZeekJson::object();
HashKey* k;
auto c = table->InitForIteration();
while ( table->NextEntry(k, c) )
{
auto lv = tval->RecoverIndex(k);
delete k;
if ( tval->Type()->IsSet() )
{
auto* value = lv->Index(0)->Ref();
j.push_back(BuildJSON(value, only_loggable, re));
Unref(value);
}
else
{
ZeekJson key_json;
Val* entry_value;
if ( lv->Length() == 1 )
{
Val* entry_key = lv->Index(0)->Ref();
entry_value = tval->Lookup(entry_key, true);
key_json = BuildJSON(entry_key, only_loggable, re);
Unref(entry_key);
}
else
{
entry_value = tval->Lookup(lv, true);
key_json = BuildJSON(lv, only_loggable, re);
}
string key_string;
if ( key_json.is_string() )
key_string = key_json;
else
key_string = key_json.dump();
j[key_string] = BuildJSON(entry_value, only_loggable, re);
}
Unref(lv);
}
break;
}
case TYPE_RECORD:
{
j = ZeekJson::object();
auto* rval = val->AsRecordVal();
TableVal* fields = rval->GetRecordFields();
auto* field_indexes = fields->ConvertToPureList();
int num_indexes = field_indexes->Length();
for ( int i = 0; i < num_indexes; ++i )
{
Val* key = field_indexes->Index(i);
auto* key_field = fields->Lookup(key)->AsRecordVal();
auto* key_val = key->AsStringVal();
string key_string;
if ( re->MatchAnywhere(key_val->AsString()) != 0 )
{
StringVal blank("");
key_val = key_val->Substitute(re, &blank, 0)->AsStringVal();
key_string = key_val->ToStdString();
delete key_val;
}
else
key_string = key_val->ToStdString();
Val* value = key_field->Lookup("value", true);
if ( value && ( ! only_loggable || key_field->Lookup("log")->AsBool() ) )
j[key_string] = BuildJSON(value, only_loggable, re);
}
delete fields;
delete field_indexes;
break;
}
case TYPE_LIST:
{
j = ZeekJson::array();
auto* lval = val->AsListVal();
size_t size = lval->Length();
for (size_t i = 0; i < size; i++)
j.push_back(BuildJSON(lval->Index(i), only_loggable, re));
break;
}
case TYPE_VECTOR:
{
j = ZeekJson::array();
auto* vval = val->AsVectorVal();
size_t size = vval->SizeVal()->AsCount();
for (size_t i = 0; i < size; i++)
j.push_back(BuildJSON(vval->Lookup(i), only_loggable, re));
break;
}
case TYPE_OPAQUE:
{
j = ZeekJson::object();
auto* oval = val->AsOpaqueVal();
j["opaque_type"] = OpaqueMgr::mgr()->TypeID(oval);
break;
}
default: break;
}
return j;
}
StringVal* Val::ToJSON(bool only_loggable, RE_Matcher* re)
{
ZeekJson j = BuildJSON(this, only_loggable, re);
return new StringVal(j.dump());
}
IntervalVal::IntervalVal(double quantity, double units) :
Val(quantity * units, TYPE_INTERVAL)
{
}
void IntervalVal::ValDescribe(ODesc* d) const
{
double v = val.double_val;
if ( v == 0.0 )
{
d->Add("0 secs");
return;
}
int did_one = 0;
#define DO_UNIT(unit, name) \
if ( v >= unit || v <= -unit ) \
{ \
double num = double(int(v / unit)); \
if ( num != 0.0 ) \
{ \
if ( did_one++ ) \
d->SP(); \
d->Add(num); \
d->SP(); \
d->Add(name); \
if ( num != 1.0 && num != -1.0 ) \
d->Add("s"); \
v -= num * unit; \
} \
}
DO_UNIT(Days, "day")
DO_UNIT(Hours, "hr")
DO_UNIT(Minutes, "min")
DO_UNIT(Seconds, "sec")
DO_UNIT(Milliseconds, "msec")
DO_UNIT(Microseconds, "usec")
}
PortVal* PortManager::Get(uint32 port_num) const
{
return val_mgr->GetPort(port_num);
}
PortVal* PortManager::Get(uint32 port_num, TransportProto port_type) const
{
return val_mgr->GetPort(port_num, port_type);
}
uint32 PortVal::Mask(uint32 port_num, TransportProto port_type)
{
// Note, for ICMP one-way connections:
// src_port = icmp_type, dst_port = icmp_code.
if ( port_num >= 65536 )
{
reporter->Warning("bad port number %d", port_num);
port_num = 0;
}
switch ( port_type ) {
case TRANSPORT_TCP:
port_num |= TCP_PORT_MASK;
break;
case TRANSPORT_UDP:
port_num |= UDP_PORT_MASK;
break;
case TRANSPORT_ICMP:
port_num |= ICMP_PORT_MASK;
break;
default:
break; // "unknown/other"
}
return port_num;
}
PortVal::PortVal(uint32 p, TransportProto port_type) : Val(TYPE_PORT)
{
auto port_num = PortVal::Mask(p, port_type);
val.uint_val = static_cast<bro_uint_t>(port_num);
}
PortVal::PortVal(uint32 p, bool unused) : Val(TYPE_PORT)
{
val.uint_val = static_cast<bro_uint_t>(p);
}
PortVal::PortVal(uint32 p) : Val(TYPE_PORT)
{
if ( p >= 65536 * NUM_PORT_SPACES )
{
InternalWarning("bad port number");
p = 0;
}
val.uint_val = static_cast<bro_uint_t>(p);
}
uint32 PortVal::Port() const
{
uint32 p = static_cast<uint32>(val.uint_val);
return p & ~PORT_SPACE_MASK;
}
string PortVal::Protocol() const
{
if ( IsUDP() )
return "udp";
else if ( IsTCP() )
return "tcp";
else if ( IsICMP() )
return "icmp";
else
return "unknown";
}
int PortVal::IsTCP() const
{
return (val.uint_val & PORT_SPACE_MASK) == TCP_PORT_MASK;
}
int PortVal::IsUDP() const
{
return (val.uint_val & PORT_SPACE_MASK) == UDP_PORT_MASK;
}
int PortVal::IsICMP() const
{
return (val.uint_val & PORT_SPACE_MASK) == ICMP_PORT_MASK;
}
void PortVal::ValDescribe(ODesc* d) const
{
uint32 p = static_cast<uint32>(val.uint_val);
d->Add(p & ~PORT_SPACE_MASK);
d->Add("/");
d->Add(Protocol());
}
Val* PortVal::DoClone(CloneState* state)
{
// Immutable.
return Ref();
}
AddrVal::AddrVal(const char* text) : Val(TYPE_ADDR)
{
val.addr_val = new IPAddr(text);
}
AddrVal::AddrVal(const std::string& text) : Val(TYPE_ADDR)
{
val.addr_val = new IPAddr(text);
}
AddrVal::AddrVal(uint32 addr) : Val(TYPE_ADDR)
{
// ### perhaps do gethostbyaddr here?
val.addr_val = new IPAddr(IPv4, &addr, IPAddr::Network);
}
AddrVal::AddrVal(const uint32 addr[4]) : Val(TYPE_ADDR)
{
val.addr_val = new IPAddr(IPv6, addr, IPAddr::Network);
}
AddrVal::AddrVal(const IPAddr& addr) : Val(TYPE_ADDR)
{
val.addr_val = new IPAddr(addr);
}
AddrVal::~AddrVal()
{
delete val.addr_val;
}
unsigned int AddrVal::MemoryAllocation() const
{
return padded_sizeof(*this) + val.addr_val->MemoryAllocation();
}
Val* AddrVal::SizeVal() const
{
if ( val.addr_val->GetFamily() == IPv4 )
return val_mgr->GetCount(32);
else
return val_mgr->GetCount(128);
}
Val* AddrVal::DoClone(CloneState* state)
{
// Immutable.
return Ref();
}
SubNetVal::SubNetVal(const char* text) : Val(TYPE_SUBNET)
{
string s(text);
size_t slash_loc = s.find('/');
if ( slash_loc == string::npos )
{
reporter->Error("Bad string in SubNetVal ctor: %s", text);
val.subnet_val = new IPPrefix();
}
else
{
val.subnet_val = new IPPrefix(s.substr(0, slash_loc),
atoi(s.substr(slash_loc + 1).c_str()));
}
}
SubNetVal::SubNetVal(const char* text, int width) : Val(TYPE_SUBNET)
{
val.subnet_val = new IPPrefix(text, width);
}
SubNetVal::SubNetVal(uint32 addr, int width) : Val(TYPE_SUBNET)
{
IPAddr a(IPv4, &addr, IPAddr::Network);
val.subnet_val = new IPPrefix(a, width);
}
SubNetVal::SubNetVal(const uint32* addr, int width) : Val(TYPE_SUBNET)
{
IPAddr a(IPv6, addr, IPAddr::Network);
val.subnet_val = new IPPrefix(a, width);
}
SubNetVal::SubNetVal(const IPAddr& addr, int width) : Val(TYPE_SUBNET)
{
val.subnet_val = new IPPrefix(addr, width);
}
SubNetVal::SubNetVal(const IPPrefix& prefix) : Val(TYPE_SUBNET)
{
val.subnet_val = new IPPrefix(prefix);
}
SubNetVal::~SubNetVal()
{
delete val.subnet_val;
}
const IPAddr& SubNetVal::Prefix() const
{
return val.subnet_val->Prefix();
}
int SubNetVal::Width() const
{
return val.subnet_val->Length();
}
unsigned int SubNetVal::MemoryAllocation() const
{
return padded_sizeof(*this) + val.subnet_val->MemoryAllocation();
}
Val* SubNetVal::SizeVal() const
{
int retained = 128 - val.subnet_val->LengthIPv6();
return new Val(pow(2.0, double(retained)), TYPE_DOUBLE);
}
void SubNetVal::ValDescribe(ODesc* d) const
{
d->Add(string(*val.subnet_val).c_str());
}
IPAddr SubNetVal::Mask() const
{
if ( val.subnet_val->Length() == 0 )
{
// We need to special-case a mask width of zero, since
// the compiler doesn't guarantee that 1 << 32 yields 0.
uint32 m[4];
for ( unsigned int i = 0; i < 4; ++i )
m[i] = 0;
IPAddr rval(IPv6, m, IPAddr::Host);
return rval;
}
uint32 m[4];
uint32* mp = m;
uint32 w;
for ( w = val.subnet_val->Length(); w >= 32; w -= 32 )
*(mp++) = 0xffffffff;
*mp = ~((1 << (32 - w)) - 1);
while ( ++mp < m + 4 )
*mp = 0;
IPAddr rval(IPv6, m, IPAddr::Host);
return rval;
}
bool SubNetVal::Contains(const IPAddr& addr) const
{
IPAddr a(addr);
return val.subnet_val->Contains(a);
}
Val* SubNetVal::DoClone(CloneState* state)
{
// Immutable.
return Ref();
}
StringVal::StringVal(BroString* s) : Val(TYPE_STRING)
{
val.string_val = s;
}
StringVal::StringVal(int length, const char* s) : Val(TYPE_STRING)
{
// The following adds a NUL at the end.
val.string_val = new BroString((const u_char*) s, length, 1);
}
StringVal::StringVal(const char* s) : Val(TYPE_STRING)
{
val.string_val = new BroString(s);
}
StringVal::StringVal(const string& s) : Val(TYPE_STRING)
{
val.string_val = new BroString(reinterpret_cast<const u_char*>(s.data()), s.length(), 1);
}
string StringVal::ToStdString() const
{
auto* bs = AsString();
return string((char*)bs->Bytes(), bs->Len());
}
StringVal* StringVal::ToUpper()
{
val.string_val->ToUpper();
return this;
}
void StringVal::ValDescribe(ODesc* d) const
{
// Should reintroduce escapes ? ###
if ( d->WantQuotes() )
d->Add("\"");
d->AddBytes(val.string_val);
if ( d->WantQuotes() )
d->Add("\"");
}
unsigned int StringVal::MemoryAllocation() const
{
return padded_sizeof(*this) + val.string_val->MemoryAllocation();
}
Val* StringVal::Substitute(RE_Matcher* re, StringVal* repl, bool do_all)
{
const u_char* s = Bytes();
int offset = 0;
int n = Len();
// cut_points is a set of pairs of indices in str that should
// be removed/replaced. A pair <x,y> means "delete starting
// at offset x, up to but not including offset y".
vector<std::pair<int, int>> cut_points;
int size = 0; // size of result
while ( n > 0 )
{
// Find next match offset.
int end_of_match;
while ( n > 0 &&
(end_of_match = re->MatchPrefix(&s[offset], n)) <= 0 )
{
// This character is going to be copied to the result.
++size;
// Move on to next character.
++offset;
--n;
}
if ( n <= 0 )
break;
// s[offset .. offset+end_of_match-1] matches re.
cut_points.push_back({offset, offset + end_of_match});
offset += end_of_match;
n -= end_of_match;
if ( ! do_all )
{
// We've now done the first substitution - finished.
// Include the remainder of the string in the result.
size += n;
break;
}
}
// size now reflects amount of space copied. Factor in amount
// of space for replacement text.
size += cut_points.size() * repl->Len();
// And a final NUL for good health.
++size;
byte_vec result = new u_char[size];
byte_vec r = result;
// Copy it all over.
int start_offset = 0;
for ( const auto& point : cut_points )
{
int num_to_copy = point.first - start_offset;
memcpy(r, s + start_offset, num_to_copy);
r += num_to_copy;
start_offset = point.second;
// Now add in replacement text.
memcpy(r, repl->Bytes(), repl->Len());
r += repl->Len();
}
// Copy final trailing characters.
int num_to_copy = Len() - start_offset;
memcpy(r, s + start_offset, num_to_copy);
r += num_to_copy;
// Final NUL. No need to increment r, since the length
// computed from it in the next statement does not include
// the NUL.
r[0] = '\0';
return new StringVal(new BroString(1, result, r - result));
}
Val* StringVal::DoClone(CloneState* state)
{
// We could likely treat this type as immutable and return a reference
// instead of creating a new copy, but we first need to be careful and
// audit whether anything internal actually does mutate it.
return state->NewClone(this, new StringVal(
new BroString((u_char*) val.string_val->Bytes(),
val.string_val->Len(), 1)));
}
PatternVal::PatternVal(RE_Matcher* re) : Val(base_type(TYPE_PATTERN))
{
val.re_val = re;
}
PatternVal::~PatternVal()
{
delete AsPattern();
Unref(type); // base_type() ref'd it, so did our base constructor
}
int PatternVal::AddTo(Val* v, int /* is_first_init */) const
{
if ( v->Type()->Tag() != TYPE_PATTERN )
{
v->Error("not a pattern");
return 0;
}
PatternVal* pv = v->AsPatternVal();
RE_Matcher* re = new RE_Matcher(AsPattern()->PatternText());
re->AddPat(pv->AsPattern()->PatternText());
re->Compile();
pv->SetMatcher(re);
return 1;
}
void PatternVal::SetMatcher(RE_Matcher* re)
{
delete AsPattern();
val.re_val = re;
}
void PatternVal::ValDescribe(ODesc* d) const
{
d->Add("/");
d->Add(AsPattern()->PatternText());
d->Add("/");
}
unsigned int PatternVal::MemoryAllocation() const
{
return padded_sizeof(*this) + val.re_val->MemoryAllocation();
}
Val* PatternVal::DoClone(CloneState* state)
{
// We could likely treat this type as immutable and return a reference
// instead of creating a new copy, but we first need to be careful and
// audit whether anything internal actually does mutate it.
auto re = new RE_Matcher(val.re_val->PatternText(),
val.re_val->AnywherePatternText());
re->Compile();
return state->NewClone(this, new PatternVal(re));
}
ListVal::ListVal(TypeTag t)
: Val(new TypeList(t == TYPE_ANY ? 0 : base_type_no_ref(t)))
{
tag = t;
}
ListVal::~ListVal()
{
for ( const auto& val : vals )
Unref(val);
Unref(type);
}
RE_Matcher* ListVal::BuildRE() const
{
if ( tag != TYPE_STRING )
Internal("non-string list in ListVal::IncludedInString");
RE_Matcher* re = new RE_Matcher();
for ( const auto& val : vals )
{
const char* vs = (const char*) (val->AsString()->Bytes());
re->AddPat(vs);
}
return re;
}
void ListVal::Append(Val* v)
{
if ( type->AsTypeList()->IsPure() )
{
if ( v->Type()->Tag() != tag )
Internal("heterogeneous list in ListVal::Append");
}
vals.push_back(v);
type->AsTypeList()->Append(v->Type()->Ref());
}
TableVal* ListVal::ConvertToSet() const
{
if ( tag == TYPE_ANY )
Internal("conversion of heterogeneous list to set");
TypeList* set_index = new TypeList(type->AsTypeList()->PureType());
set_index->Append(base_type(tag));
SetType* s = new SetType(set_index, 0);
TableVal* t = new TableVal(s);
for ( const auto& val : vals )
t->Assign(val, 0);
Unref(s);
return t;
}
void ListVal::Describe(ODesc* d) const
{
if ( d->IsBinary() || d->IsPortable() )
{
type->Describe(d);
d->SP();
d->Add(vals.length());
d->SP();
}
loop_over_list(vals, i)
{
if ( i > 0 )
{
if ( d->IsReadable() || d->IsPortable() )
{
d->Add(",");
d->SP();
}
}
vals[i]->Describe(d);
}
}
Val* ListVal::DoClone(CloneState* state)
{
auto lv = new ListVal(tag);
lv->vals.resize(vals.length());
state->NewClone(this, lv);
for ( const auto& val : vals )
lv->Append(val->Clone(state));
return lv;
}
unsigned int ListVal::MemoryAllocation() const
{
unsigned int size = 0;
for ( const auto& val : vals )
size += val->MemoryAllocation();
return size + padded_sizeof(*this) + vals.MemoryAllocation() - padded_sizeof(vals)
+ type->MemoryAllocation();
}
TableValTimer::TableValTimer(TableVal* val, double t) : Timer(t, TIMER_TABLE_VAL)
{
table = val;
}
TableValTimer::~TableValTimer()
{
table->ClearTimer(this);
}
void TableValTimer::Dispatch(double t, int is_expire)
{
if ( ! is_expire )
{
table->ClearTimer(this);
table->DoExpire(t);
}
}
static void table_entry_val_delete_func(void* val)
{
TableEntryVal* tv = (TableEntryVal*) val;
tv->Unref();
delete tv;
}
TableVal::TableVal(TableType* t, Attributes* a) : Val(t)
{
Init(t);
SetAttrs(a);
}
void TableVal::Init(TableType* t)
{
::Ref(t);
table_type = t;
expire_func = 0;
expire_time = 0;
expire_cookie = 0;
timer = 0;
def_val = 0;
if ( t->IsSubNetIndex() )
subnets = new PrefixTable;
else
subnets = 0;
table_hash = new CompositeHash(table_type->Indices());
val.table_val = new PDict<TableEntryVal>;
val.table_val->SetDeleteFunc(table_entry_val_delete_func);
}
TableVal::~TableVal()
{
if ( timer )
timer_mgr->Cancel(timer);
Unref(table_type);
delete table_hash;
delete AsTable();
delete subnets;
Unref(attrs);
Unref(def_val);
Unref(expire_func);
Unref(expire_time);
}
void TableVal::RemoveAll()
{
// Here we take the brute force approach.
delete AsTable();
val.table_val = new PDict<TableEntryVal>;
val.table_val->SetDeleteFunc(table_entry_val_delete_func);
}
int TableVal::RecursiveSize() const
{
int n = AsTable()->Length();
if ( Type()->IsSet() ||
const_cast<TableType*>(Type()->AsTableType())->YieldType()->Tag()
!= TYPE_TABLE )
return n;
PDict<TableEntryVal>* v = val.table_val;
IterCookie* c = v->InitForIteration();
TableEntryVal* tv;
while ( (tv = v->NextEntry(c)) )
{
if ( tv->Value() )
n += tv->Value()->AsTableVal()->RecursiveSize();
}
return n;
}
void TableVal::SetAttrs(Attributes* a)
{
attrs = a;
if ( ! a )
return;
::Ref(attrs);
CheckExpireAttr(ATTR_EXPIRE_READ);
CheckExpireAttr(ATTR_EXPIRE_WRITE);
CheckExpireAttr(ATTR_EXPIRE_CREATE);
Attr* ef = attrs->FindAttr(ATTR_EXPIRE_FUNC);
if ( ef )
{
expire_func = ef->AttrExpr();
expire_func->Ref();
}
}
void TableVal::CheckExpireAttr(attr_tag at)
{
Attr* a = attrs->FindAttr(at);
if ( a )
{
expire_time = a->AttrExpr();
expire_time->Ref();
if ( expire_time->Type()->Tag() != TYPE_INTERVAL )
{
if ( ! expire_time->IsError() )
expire_time->SetError("expiration interval has wrong type");
return;
}
if ( timer )
timer_mgr->Cancel(timer);
// As network_time is not necessarily initialized yet,
// we set a timer which fires immediately.
timer = new TableValTimer(this, 1);
timer_mgr->Add(timer);
}
}
int TableVal::Assign(Val* index, Val* new_val)
{
HashKey* k = ComputeHash(index);
if ( ! k )
{
Unref(new_val);
index->Error("index type doesn't match table", table_type->Indices());
return 0;
}
return Assign(index, k, new_val);
}
int TableVal::Assign(Val* index, HashKey* k, Val* new_val)
{
int is_set = table_type->IsSet();
if ( (is_set && new_val) || (! is_set && ! new_val) )
InternalWarning("bad set/table in TableVal::Assign");
TableEntryVal* new_entry_val = new TableEntryVal(new_val);
HashKey k_copy(k->Key(), k->Size(), k->Hash());
TableEntryVal* old_entry_val = AsNonConstTable()->Insert(k, new_entry_val);
// If the dictionary index already existed, the insert may free up the
// memory allocated to the key bytes, so have to assume k is invalid
// from here on out.
delete k;
k = 0;
if ( subnets )
{
if ( ! index )
{
Val* v = RecoverIndex(&k_copy);
subnets->Insert(v, new_entry_val);
Unref(v);
}
else
subnets->Insert(index, new_entry_val);
}
// Keep old expiration time if necessary.
if ( old_entry_val && attrs && attrs->FindAttr(ATTR_EXPIRE_CREATE) )
new_entry_val->SetExpireAccess(old_entry_val->ExpireAccessTime());
if ( old_entry_val )
{
old_entry_val->Unref();
delete old_entry_val;
}
Modified();
return 1;
}
int TableVal::AddTo(Val* val, int is_first_init) const
{
return AddTo(val, is_first_init, true);
}
int TableVal::AddTo(Val* val, int is_first_init, bool propagate_ops) const
{
if ( val->Type()->Tag() != TYPE_TABLE )
{
val->Error("not a table");
return 0;
}
TableVal* t = val->AsTableVal();
if ( ! same_type(type, t->Type()) )
{
type->Error("table type clash", t->Type());
return 0;
}
const PDict<TableEntryVal>* tbl = AsTable();
IterCookie* c = tbl->InitForIteration();
HashKey* k;
TableEntryVal* v;
while ( (v = tbl->NextEntry(k, c)) )
{
if ( is_first_init && t->AsTable()->Lookup(k) )
{
Val* key = table_hash->RecoverVals(k);
// ### Shouldn't complain if their values are equal.
key->Warn("multiple initializations for index");
Unref(key);
continue;
}
if ( type->IsSet() )
{
if ( ! t->Assign(v->Value(), k, 0) )
return 0;
}
else
{
v->Ref();
if ( ! t->Assign(0, k, v->Value()) )
return 0;
}
}
return 1;
}
int TableVal::RemoveFrom(Val* val) const
{
if ( val->Type()->Tag() != TYPE_TABLE )
{
val->Error("not a table");
return 0;
}
TableVal* t = val->AsTableVal();
if ( ! same_type(type, t->Type()) )
{
type->Error("table type clash", t->Type());
return 0;
}
const PDict<TableEntryVal>* tbl = AsTable();
IterCookie* c = tbl->InitForIteration();
HashKey* k;
while ( tbl->NextEntry(k, c) )
{
// Not sure that this is 100% sound, since the HashKey
// comes from one table but is being used in another.
// OTOH, they are both the same type, so as long as
// we don't have hash keys that are keyed per dictionary,
// it should work ...
Unref(t->Delete(k));
delete k;
}
return 1;
}
TableVal* TableVal::Intersect(const TableVal* tv) const
{
TableVal* result = new TableVal(table_type);
const PDict<TableEntryVal>* t0 = AsTable();
const PDict<TableEntryVal>* t1 = tv->AsTable();
PDict<TableEntryVal>* t2 = result->AsNonConstTable();
// Figure out which is smaller; assign it to t1.
if ( t1->Length() > t0->Length() )
{ // Swap.
const PDict<TableEntryVal>* tmp = t1;
t1 = t0;
t0 = tmp;
}
IterCookie* c = t1->InitForIteration();
HashKey* k;
while ( t1->NextEntry(k, c) )
{
// Here we leverage the same assumption about consistent
// hashes as in TableVal::RemoveFrom above.
if ( t0->Lookup(k) )
t2->Insert(k, new TableEntryVal(0));
delete k;
}
return result;
}
bool TableVal::EqualTo(const TableVal* tv) const
{
const PDict<TableEntryVal>* t0 = AsTable();
const PDict<TableEntryVal>* t1 = tv->AsTable();
if ( t0->Length() != t1->Length() )
return false;
IterCookie* c = t0->InitForIteration();
HashKey* k;
while ( t0->NextEntry(k, c) )
{
// Here we leverage the same assumption about consistent
// hashes as in TableVal::RemoveFrom above.
if ( ! t1->Lookup(k) )
{
delete k;
t0->StopIteration(c);
return false;
}
delete k;
}
return true;
}
bool TableVal::IsSubsetOf(const TableVal* tv) const
{
const PDict<TableEntryVal>* t0 = AsTable();
const PDict<TableEntryVal>* t1 = tv->AsTable();
if ( t0->Length() > t1->Length() )
return false;
IterCookie* c = t0->InitForIteration();
HashKey* k;
while ( t0->NextEntry(k, c) )
{
// Here we leverage the same assumption about consistent
// hashes as in TableVal::RemoveFrom above.
if ( ! t1->Lookup(k) )
{
delete k;
t0->StopIteration(c);
return false;
}
delete k;
}
return true;
}
int TableVal::ExpandAndInit(Val* index, Val* new_val)
{
BroType* index_type = index->Type();
if ( index_type->IsSet() )
{
Val* new_index = index->AsTableVal()->ConvertToList();
Unref(index);
return ExpandAndInit(new_index, new_val);
}
if ( index_type->Tag() != TYPE_LIST )
// Nothing to expand.
return CheckAndAssign(index, new_val);
ListVal* iv = index->AsListVal();
if ( iv->BaseTag() != TYPE_ANY )
{
if ( table_type->Indices()->Types()->length() != 1 )
reporter->InternalError("bad singleton list index");
for ( int i = 0; i < iv->Length(); ++i )
if ( ! ExpandAndInit(iv->Index(i), new_val ? new_val->Ref() : 0) )
return 0;
Unref(new_val);
return 1;
}
else
{ // Compound table.
val_list* vl = iv->Vals();
loop_over_list(*vl, i)
{
// ### if CompositeHash::ComputeHash did flattening
// of 1-element lists (like ComputeSingletonHash does),
// then we could optimize here.
BroType* t = (*vl)[i]->Type();
if ( t->IsSet() || t->Tag() == TYPE_LIST )
break;
}
if ( i >= vl->length() )
// Nothing to expand.
return CheckAndAssign(index, new_val);
else
{
int result = ExpandCompoundAndInit(vl, i, new_val);
Unref(new_val);
return result;
}
}
}
Val* TableVal::Default(Val* index)
{
Attr* def_attr = FindAttr(ATTR_DEFAULT);
if ( ! def_attr )
return 0;
if ( ! def_val )
{
BroType* ytype = Type()->YieldType();
BroType* dtype = def_attr->AttrExpr()->Type();
if ( dtype->Tag() == TYPE_RECORD && ytype->Tag() == TYPE_RECORD &&
! same_type(dtype, ytype) &&
record_promotion_compatible(dtype->AsRecordType(),
ytype->AsRecordType()) )
{
Expr* coerce = new RecordCoerceExpr(def_attr->AttrExpr()->Ref(),
ytype->AsRecordType());
def_val = coerce->Eval(0);
Unref(coerce);
}
else
def_val = def_attr->AttrExpr()->Eval(0);
}
if ( ! def_val )
{
Error("non-constant default attribute");
return 0;
}
if ( def_val->Type()->Tag() != TYPE_FUNC ||
same_type(def_val->Type(), Type()->YieldType()) )
{
if ( def_attr->AttrExpr()->IsConst() )
return def_val->Ref();
try
{
return def_val->Clone();
}
catch ( InterpreterException& e )
{ /* Already reported. */ }
Error("&default value for table is not clone-able");
return 0;
}
const Func* f = def_val->AsFunc();
val_list vl;
if ( index->Type()->Tag() == TYPE_LIST )
{
const val_list* vl0 = index->AsListVal()->Vals();
vl = val_list(vl0->length());
for ( const auto& v : *vl0 )
vl.push_back(v->Ref());
}
else
{
vl = val_list{index->Ref()};
}
Val* result = 0;
try
{
result = f->Call(&vl);
}
catch ( InterpreterException& e )
{ /* Already reported. */ }
if ( ! result )
{
Error("no value returned from &default function");
return 0;
}
return result;
}
Val* TableVal::Lookup(Val* index, bool use_default_val)
{
static Val* last_default = 0;
if ( last_default )
{
Unref(last_default);
last_default = 0;
}
if ( subnets )
{
TableEntryVal* v = (TableEntryVal*) subnets->Lookup(index);
if ( v )
{
if ( attrs && attrs->FindAttr(ATTR_EXPIRE_READ) )
v->SetExpireAccess(network_time);
return v->Value() ? v->Value() : this;
}
if ( ! use_default_val )
return 0;
Val* def = Default(index);
last_default = def;
return def;
}
const PDict<TableEntryVal>* tbl = AsTable();
if ( tbl->Length() > 0 )
{
HashKey* k = ComputeHash(index);
if ( k )
{
TableEntryVal* v = AsTable()->Lookup(k);
delete k;
if ( v )
{
if ( attrs && attrs->FindAttr(ATTR_EXPIRE_READ) )
v->SetExpireAccess(network_time);
return v->Value() ? v->Value() : this;
}
}
}
if ( ! use_default_val )
return 0;
Val* def = Default(index);
last_default = def;
return def;
}
VectorVal* TableVal::LookupSubnets(const SubNetVal* search)
{
if ( ! subnets )
reporter->InternalError("LookupSubnets called on wrong table type");
VectorVal* result = new VectorVal(internal_type("subnet_vec")->AsVectorType());
auto matches = subnets->FindAll(search);
for ( auto element : matches )
{
SubNetVal* s = new SubNetVal(get<0>(element));
result->Assign(result->Size(), s);
}
return result;
}
TableVal* TableVal::LookupSubnetValues(const SubNetVal* search)
{
if ( ! subnets )
reporter->InternalError("LookupSubnetValues called on wrong table type");
TableVal* nt = new TableVal(this->Type()->Ref()->AsTableType());
auto matches = subnets->FindAll(search);
for ( auto element : matches )
{
SubNetVal* s = new SubNetVal(get<0>(element));
TableEntryVal* entry = reinterpret_cast<TableEntryVal*>(get<1>(element));
if ( entry && entry->Value() )
nt->Assign(s, entry->Value()->Ref());
else
nt->Assign(s, 0); // set
if ( entry )
{
if ( attrs && attrs->FindAttr(ATTR_EXPIRE_READ) )
entry->SetExpireAccess(network_time);
}
Unref(s); // assign does not consume index
}
return nt;
}
bool TableVal::UpdateTimestamp(Val* index)
{
TableEntryVal* v;
if ( subnets )
v = (TableEntryVal*) subnets->Lookup(index);
else
{
HashKey* k = ComputeHash(index);
if ( ! k )
return false;
v = AsTable()->Lookup(k);
delete k;
}
if ( ! v )
return false;
v->SetExpireAccess(network_time);
return true;
}
ListVal* TableVal::RecoverIndex(const HashKey* k) const
{
return table_hash->RecoverVals(k);
}
Val* TableVal::Delete(const Val* index)
{
HashKey* k = ComputeHash(index);
TableEntryVal* v = k ? AsNonConstTable()->RemoveEntry(k) : 0;
Val* va = v ? (v->Value() ? v->Value() : this->Ref()) : 0;
if ( subnets && ! subnets->Remove(index) )
reporter->InternalWarning("index not in prefix table");
delete k;
delete v;
Modified();
return va;
}
Val* TableVal::Delete(const HashKey* k)
{
TableEntryVal* v = AsNonConstTable()->RemoveEntry(k);
Val* va = v ? (v->Value() ? v->Value() : this->Ref()) : 0;
if ( subnets )
{
Val* index = table_hash->RecoverVals(k);
if ( ! subnets->Remove(index) )
reporter->InternalWarning("index not in prefix table");
Unref(index);
}
delete v;
Modified();
return va;
}
ListVal* TableVal::ConvertToList(TypeTag t) const
{
ListVal* l = new ListVal(t);
const PDict<TableEntryVal>* tbl = AsTable();
IterCookie* c = tbl->InitForIteration();
HashKey* k;
while ( tbl->NextEntry(k, c) )
{
ListVal* index = table_hash->RecoverVals(k);
if ( t == TYPE_ANY )
l->Append(index);
else
{
// We're expecting a pure list, flatten the
// ListVal.
if ( index->Length() != 1 )
InternalWarning("bad index in TableVal::ConvertToList");
Val* flat_v = index->Index(0)->Ref();
Unref(index);
l->Append(flat_v);
}
delete k;
}
return l;
}
ListVal* TableVal::ConvertToPureList() const
{
type_list* tl = table_type->Indices()->Types();
if ( tl->length() != 1 )
{
InternalWarning("bad index type in TableVal::ConvertToPureList");
return 0;
}
return ConvertToList((*tl)[0]->Tag());
}
void TableVal::Describe(ODesc* d) const
{
const PDict<TableEntryVal>* tbl = AsTable();
int n = tbl->Length();
if ( d->IsBinary() || d->IsPortable() )
{
table_type->Describe(d);
d->SP();
d->Add(n);
d->SP();
}
if ( d->IsPortable() || d->IsReadable() )
{
d->Add("{");
d->PushIndent();
}
IterCookie* c = tbl->InitForIteration();
for ( int i = 0; i < n; ++i )
{
HashKey* k;
TableEntryVal* v = tbl->NextEntry(k, c);
if ( ! v )
reporter->InternalError("hash table underflow in TableVal::Describe");
ListVal* vl = table_hash->RecoverVals(k);
int dim = vl->Length();
if ( i > 0 )
{
if ( ! d->IsBinary() )
d->Add(",");
d->NL();
}
if ( d->IsReadable() )
{
if ( dim != 1 || ! table_type->IsSet() )
d->Add("[");
}
else
{
d->Add(dim);
d->SP();
}
vl->Describe(d);
delete k;
Unref(vl);
if ( table_type->IsSet() )
{ // We're a set, not a table.
if ( d->IsReadable() )
if ( dim != 1 )
d->AddSP("]");
}
else
{
if ( d->IsReadable() )
d->AddSP("] =");
if ( v->Value() )
v->Value()->Describe(d);
}
if ( d->IsReadable() && ! d->IsShort() && d->IncludeStats() )
{
d->Add(" @");
d->Add(fmt_access_time(v->ExpireAccessTime()));
}
}
if ( tbl->NextEntry(c) )
reporter->InternalError("hash table overflow in TableVal::Describe");
if ( d->IsPortable() || d->IsReadable() )
{
d->PopIndent();
d->Add("}");
}
}
int TableVal::ExpandCompoundAndInit(val_list* vl, int k, Val* new_val)
{
Val* ind_k_v = (*vl)[k];
ListVal* ind_k = ind_k_v->Type()->IsSet() ?
ind_k_v->AsTableVal()->ConvertToList() :
ind_k_v->Ref()->AsListVal();
for ( int i = 0; i < ind_k->Length(); ++i )
{
Val* ind_k_i = ind_k->Index(i);
ListVal* expd = new ListVal(TYPE_ANY);
loop_over_list(*vl, j)
{
if ( j == k )
expd->Append(ind_k_i->Ref());
else
expd->Append((*vl)[j]->Ref());
}
int success = ExpandAndInit(expd, new_val ? new_val->Ref() : 0);
Unref(expd);
if ( ! success )
{
Unref(ind_k);
return 0;
}
}
Unref(ind_k);
return 1;
}
int TableVal::CheckAndAssign(Val* index, Val* new_val)
{
Val* v = 0;
if ( subnets )
// We need an exact match here.
v = (Val*) subnets->Lookup(index, true);
else
v = Lookup(index, false);
if ( v )
index->Warn("multiple initializations for index");
return Assign(index, new_val);
}
void TableVal::InitDefaultFunc(Frame* f)
{
// Value aready initialized.
if ( def_val )
return;
Attr* def_attr = FindAttr(ATTR_DEFAULT);
if ( ! def_attr )
return;
BroType* ytype = Type()->YieldType();
BroType* dtype = def_attr->AttrExpr()->Type();
if ( dtype->Tag() == TYPE_RECORD && ytype->Tag() == TYPE_RECORD &&
! same_type(dtype, ytype) &&
record_promotion_compatible(dtype->AsRecordType(),
ytype->AsRecordType()) )
return; // TableVal::Default will handle this.
def_val = def_attr->AttrExpr()->Eval(f);
}
void TableVal::InitTimer(double delay)
{
timer = new TableValTimer(this, network_time + delay);
timer_mgr->Add(timer);
}
void TableVal::DoExpire(double t)
{
if ( ! type )
return; // FIX ME ###
PDict<TableEntryVal>* tbl = AsNonConstTable();
double timeout = GetExpireTime();
if ( timeout < 0 )
// Skip in case of unset/invalid expiration value. If it's an
// error, it has been reported already.
return;
if ( ! expire_cookie )
{
expire_cookie = tbl->InitForIteration();
tbl->MakeRobustCookie(expire_cookie);
}
HashKey* k = 0;
TableEntryVal* v = 0;
TableEntryVal* v_saved = 0;
bool modified = false;
for ( int i = 0; i < table_incremental_step &&
(v = tbl->NextEntry(k, expire_cookie)); ++i )
{
if ( v->ExpireAccessTime() == 0 )
{
// This happens when we insert val while network_time
// hasn't been initialized yet (e.g. in zeek_init()), and
// also when bro_start_network_time hasn't been initialized
// (e.g. before first packet). The expire_access_time is
// correct, so we just need to wait.
}
else if ( v->ExpireAccessTime() + timeout < t )
{
if ( expire_func )
{
Val* idx = RecoverIndex(k);
double secs = CallExpireFunc(idx);
// It's possible that the user-provided
// function modified or deleted the table
// value, so look it up again.
v_saved = v;
v = tbl->Lookup(k);
if ( ! v )
{ // user-provided function deleted it
v = v_saved;
delete k;
continue;
}
if ( secs > 0 )
{
// User doesn't want us to expire
// this now.
v->SetExpireAccess(network_time - timeout + secs);
delete k;
continue;
}
}
if ( subnets )
{
Val* index = RecoverIndex(k);
if ( ! subnets->Remove(index) )
reporter->InternalWarning("index not in prefix table");
Unref(index);
}
tbl->RemoveEntry(k);
Unref(v->Value());
delete v;
modified = true;
}
delete k;
}
if ( modified )
Modified();
if ( ! v )
{
expire_cookie = 0;
InitTimer(table_expire_interval);
}
else
InitTimer(table_expire_delay);
}
double TableVal::GetExpireTime()
{
if ( ! expire_time )
return -1;
double interval;
try
{
Val* timeout = expire_time->Eval(0);
interval = (timeout ? timeout->AsInterval() : -1);
Unref(timeout);
}
catch ( InterpreterException& e )
{
interval = -1;
}
if ( interval >= 0 )
return interval;
expire_time = 0;
if ( timer )
timer_mgr->Cancel(timer);
return -1;
}
double TableVal::CallExpireFunc(Val* idx)
{
if ( ! expire_func )
{
Unref(idx);
return 0;
}
double secs = 0;
try
{
Val* vf = expire_func->Eval(0);
if ( ! vf )
{
// Will have been reported already.
Unref(idx);
return 0;
}
if ( vf->Type()->Tag() != TYPE_FUNC )
{
vf->Error("not a function");
Unref(vf);
Unref(idx);
return 0;
}
const Func* f = vf->AsFunc();
val_list vl { Ref() };
const auto func_args = f->FType()->ArgTypes()->Types();
// backwards compatibility with idx: any idiom
bool any_idiom = func_args->length() == 2 && func_args->back()->Tag() == TYPE_ANY;
if ( idx->Type()->Tag() == TYPE_LIST )
{
if ( ! any_idiom )
{
for ( const auto& v : *idx->AsListVal()->Vals() )
vl.append(v->Ref());
Unref(idx);
}
else
{
ListVal* idx_list = idx->AsListVal();
// Flatten if only one element
if ( idx_list->Length() == 1 )
{
Val* old = idx;
idx = idx_list->Index(0)->Ref();
Unref(old);
}
vl.append(idx);
}
}
else
vl.append(idx);
Val* result = 0;
result = f->Call(&vl);
if ( result )
{
secs = result->AsInterval();
Unref(result);
}
Unref(vf);
}
catch ( InterpreterException& e )
{
}
return secs;
}
Val* TableVal::DoClone(CloneState* state)
{
auto tv = new TableVal(table_type);
state->NewClone(this, tv);
const PDict<TableEntryVal>* tbl = AsTable();
IterCookie* cookie = tbl->InitForIteration();
HashKey* key;
TableEntryVal* val;
while ( (val = tbl->NextEntry(key, cookie)) )
{
TableEntryVal* nval = val->Clone(state);
tv->AsNonConstTable()->Insert(key, nval);
if ( subnets )
{
Val* idx = RecoverIndex(key);
tv->subnets->Insert(idx, nval);
Unref(idx);
}
delete key;
}
if ( attrs )
{
::Ref(attrs);
tv->attrs = attrs;
}
if ( expire_time )
{
tv->expire_time = expire_time->Ref();
// As network_time is not necessarily initialized yet, we set
// a timer which fires immediately.
timer = new TableValTimer(this, 1);
timer_mgr->Add(timer);
}
if ( expire_func )
tv->expire_func = expire_func->Ref();
if ( def_val )
tv->def_val = def_val->Clone();
return tv;
}
unsigned int TableVal::MemoryAllocation() const
{
unsigned int size = 0;
PDict<TableEntryVal>* v = val.table_val;
IterCookie* c = v->InitForIteration();
TableEntryVal* tv;
while ( (tv = v->NextEntry(c)) )
{
if ( tv->Value() )
size += tv->Value()->MemoryAllocation();
size += padded_sizeof(TableEntryVal);
}
return size + padded_sizeof(*this) + val.table_val->MemoryAllocation()
+ table_hash->MemoryAllocation();
}
vector<RecordVal*> RecordVal::parse_time_records;
RecordVal::RecordVal(RecordType* t, bool init_fields) : Val(t)
{
origin = nullptr;
int n = t->NumFields();
val_list* vl = val.val_list_val = new val_list(n);
if ( is_parsing )
{
parse_time_records.emplace_back(this);
Ref();
}
if ( ! init_fields )
return;
// Initialize to default values from RecordType (which are nil
// by default).
for ( int i = 0; i < n; ++i )
{
Attributes* a = t->FieldDecl(i)->attrs;
Attr* def_attr = a ? a->FindAttr(ATTR_DEFAULT) : 0;
Val* def = def_attr ? def_attr->AttrExpr()->Eval(0) : 0;
BroType* type = t->FieldDecl(i)->type;
if ( def && type->Tag() == TYPE_RECORD &&
def->Type()->Tag() == TYPE_RECORD &&
! same_type(def->Type(), type) )
{
Val* tmp = def->AsRecordVal()->CoerceTo(type->AsRecordType());
if ( tmp )
{
Unref(def);
def = tmp;
}
}
if ( ! def && ! (a && a->FindAttr(ATTR_OPTIONAL)) )
{
TypeTag tag = type->Tag();
if ( tag == TYPE_RECORD )
def = new RecordVal(type->AsRecordType());
else if ( tag == TYPE_TABLE )
def = new TableVal(type->AsTableType(), a);
else if ( tag == TYPE_VECTOR )
def = new VectorVal(type->AsVectorType());
}
vl->push_back(def ? def->Ref() : 0);
Unref(def);
}
}
RecordVal::~RecordVal()
{
delete_vals(AsNonConstRecord());
}
void RecordVal::Assign(int field, Val* new_val)
{
Val* old_val = AsNonConstRecord()->replace(field, new_val);
Unref(old_val);
Modified();
}
Val* RecordVal::Lookup(int field) const
{
return (*AsRecord())[field];
}
Val* RecordVal::LookupWithDefault(int field) const
{
Val* val = (*AsRecord())[field];
if ( val )
return val->Ref();
return Type()->AsRecordType()->FieldDefault(field);
}
void RecordVal::ResizeParseTimeRecords()
{
for ( auto& rv : parse_time_records )
{
auto vs = rv->val.val_list_val;
auto rt = rv->Type()->AsRecordType();
auto current_length = vs->length();
auto required_length = rt->NumFields();
if ( required_length > current_length )
{
vs->resize(required_length);
for ( auto i = current_length; i < required_length; ++i )
vs->replace(i, nullptr);
}
Unref(rv);
}
parse_time_records.clear();
}
Val* RecordVal::Lookup(const char* field, bool with_default) const
{
int idx = Type()->AsRecordType()->FieldOffset(field);
if ( idx < 0 )
reporter->InternalError("missing record field: %s", field);
return with_default ? LookupWithDefault(idx) : Lookup(idx);
}
RecordVal* RecordVal::CoerceTo(const RecordType* t, Val* aggr, bool allow_orphaning) const
{
if ( ! record_promotion_compatible(t->AsRecordType(), Type()->AsRecordType()) )
return 0;
if ( ! aggr )
aggr = new RecordVal(const_cast<RecordType*>(t->AsRecordType()));
RecordVal* ar = aggr->AsRecordVal();
RecordType* ar_t = aggr->Type()->AsRecordType();
const RecordType* rv_t = Type()->AsRecordType();
int i;
for ( i = 0; i < rv_t->NumFields(); ++i )
{
int t_i = ar_t->FieldOffset(rv_t->FieldName(i));
if ( t_i < 0 )
{
if ( allow_orphaning )
continue;
char buf[512];
safe_snprintf(buf, sizeof(buf),
"orphan field \"%s\" in initialization",
rv_t->FieldName(i));
Error(buf);
break;
}
Val* v = Lookup(i);
if ( ! v )
// Check for allowable optional fields is outside the loop, below.
continue;
if ( ar_t->FieldType(t_i)->Tag() == TYPE_RECORD
&& ! same_type(ar_t->FieldType(t_i), v->Type()) )
{
Expr* rhs = new ConstExpr(v->Ref());
Expr* e = new RecordCoerceExpr(rhs, ar_t->FieldType(t_i)->AsRecordType());
ar->Assign(t_i, e->Eval(0));
continue;
}
ar->Assign(t_i, v->Ref());
}
for ( i = 0; i < ar_t->NumFields(); ++i )
if ( ! ar->Lookup(i) &&
! ar_t->FieldDecl(i)->FindAttr(ATTR_OPTIONAL) )
{
char buf[512];
safe_snprintf(buf, sizeof(buf),
"non-optional field \"%s\" missing in initialization", ar_t->FieldName(i));
Error(buf);
}
return ar;
}
RecordVal* RecordVal::CoerceTo(RecordType* t, bool allow_orphaning)
{
if ( same_type(Type(), t) )
{
this->Ref();
return this;
}
return CoerceTo(t, 0, allow_orphaning);
}
void RecordVal::Describe(ODesc* d) const
{
const val_list* vl = AsRecord();
int n = vl->length();
auto record_type = Type()->AsRecordType();
if ( d->IsBinary() || d->IsPortable() )
{
record_type->Describe(d);
d->SP();
d->Add(n);
d->SP();
}
else
d->Add("[");
loop_over_list(*vl, i)
{
if ( ! d->IsBinary() && i > 0 )
d->Add(", ");
d->Add(record_type->FieldName(i));
if ( ! d->IsBinary() )
d->Add("=");
Val* v = (*vl)[i];
if ( v )
v->Describe(d);
else
d->Add("<uninitialized>");
}
if ( d->IsReadable() )
d->Add("]");
}
void RecordVal::DescribeReST(ODesc* d) const
{
const val_list* vl = AsRecord();
int n = vl->length();
auto record_type = Type()->AsRecordType();
d->Add("{");
d->PushIndent();
loop_over_list(*vl, i)
{
if ( i > 0 )
d->NL();
d->Add(record_type->FieldName(i));
d->Add("=");
Val* v = (*vl)[i];
if ( v )
v->Describe(d);
else
d->Add("<uninitialized>");
}
d->PopIndent();
d->Add("}");
}
Val* RecordVal::DoClone(CloneState* state)
{
// We set origin to 0 here. Origin only seems to be used for exactly one
// purpose - to find the connection record that is associated with a
// record. As we cannot guarantee that it will ber zeroed out at the
// approproate time (as it seems to be guaranteed for the original record)
// we don't touch it.
auto rv = new RecordVal(Type()->AsRecordType(), false);
rv->origin = nullptr;
state->NewClone(this, rv);
for ( const auto& vlv : *val.val_list_val )
{
Val* v = vlv ? vlv->Clone(state) : nullptr;
rv->val.val_list_val->push_back(v);
}
return rv;
}
unsigned int RecordVal::MemoryAllocation() const
{
unsigned int size = 0;
const val_list* vl = AsRecord();
for ( const auto& v : *vl )
{
if ( v )
size += v->MemoryAllocation();
}
return size + padded_sizeof(*this) + val.val_list_val->MemoryAllocation();
}
void EnumVal::ValDescribe(ODesc* d) const
{
const char* ename = type->AsEnumType()->Lookup(val.int_val);
if ( ! ename )
ename = "<undefined>";
d->Add(ename);
}
Val* EnumVal::DoClone(CloneState* state)
{
// Immutable.
return Ref();
}
VectorVal::VectorVal(VectorType* t) : Val(t)
{
vector_type = t->Ref()->AsVectorType();
val.vector_val = new vector<Val*>();
}
VectorVal::~VectorVal()
{
for ( unsigned int i = 0; i < val.vector_val->size(); ++i )
Unref((*val.vector_val)[i]);
Unref(vector_type);
delete val.vector_val;
}
bool VectorVal::Assign(unsigned int index, Val* element)
{
if ( element &&
! same_type(element->Type(), vector_type->YieldType(), 0) )
{
Unref(element);
return false;
}
Val* val_at_index = 0;
if ( index < val.vector_val->size() )
val_at_index = (*val.vector_val)[index];
else
val.vector_val->resize(index + 1);
Unref(val_at_index);
// Note: we do *not* Ref() the element, if any, at this point.
// AssignExpr::Eval() already does this; other callers must remember
// to do it similarly.
(*val.vector_val)[index] = element;
Modified();
return true;
}
bool VectorVal::AssignRepeat(unsigned int index, unsigned int how_many,
Val* element)
{
ResizeAtLeast(index + how_many);
for ( unsigned int i = index; i < index + how_many; ++i )
if ( ! Assign(i, element->Ref() ) )
return false;
return true;
}
bool VectorVal::Insert(unsigned int index, Val* element)
{
if ( element &&
! same_type(element->Type(), vector_type->YieldType(), 0) )
{
Unref(element);
return false;
}
vector<Val*>::iterator it;
if ( index < val.vector_val->size() )
it = std::next(val.vector_val->begin(), index);
else
it = val.vector_val->end();
// Note: we do *not* Ref() the element, if any, at this point.
// AssignExpr::Eval() already does this; other callers must remember
// to do it similarly.
val.vector_val->insert(it, element);
Modified();
return true;
}
bool VectorVal::Remove(unsigned int index)
{
if ( index >= val.vector_val->size() )
return false;
Val* val_at_index = (*val.vector_val)[index];
auto it = std::next(val.vector_val->begin(), index);
val.vector_val->erase(it);
Unref(val_at_index);
Modified();
return true;
}
int VectorVal::AddTo(Val* val, int /* is_first_init */) const
{
if ( val->Type()->Tag() != TYPE_VECTOR )
{
val->Error("not a vector");
return 0;
}
VectorVal* v = val->AsVectorVal();
if ( ! same_type(type, v->Type()) )
{
type->Error("vector type clash", v->Type());
return 0;
}
auto last_idx = v->Size();
for ( auto i = 0u; i < Size(); ++i )
v->Assign(last_idx++, Lookup(i)->Ref());
return 1;
}
Val* VectorVal::Lookup(unsigned int index) const
{
if ( index >= val.vector_val->size() )
return 0;
return (*val.vector_val)[index];
}
unsigned int VectorVal::Resize(unsigned int new_num_elements)
{
unsigned int oldsize = val.vector_val->size();
val.vector_val->reserve(new_num_elements);
val.vector_val->resize(new_num_elements);
return oldsize;
}
unsigned int VectorVal::ResizeAtLeast(unsigned int new_num_elements)
{
unsigned int old_size = val.vector_val->size();
if ( new_num_elements <= old_size )
return old_size;
return Resize(new_num_elements);
}
Val* VectorVal::DoClone(CloneState* state)
{
auto vv = new VectorVal(vector_type);
vv->val.vector_val->reserve(val.vector_val->size());
state->NewClone(this, vv);
for ( unsigned int i = 0; i < val.vector_val->size(); ++i )
{
auto v = (*val.vector_val)[i]->Clone(state);
vv->val.vector_val->push_back(v);
}
return vv;
}
void VectorVal::ValDescribe(ODesc* d) const
{
d->Add("[");
if ( val.vector_val->size() > 0 )
for ( unsigned int i = 0; i < (val.vector_val->size() - 1); ++i )
{
if ( (*val.vector_val)[i] )
(*val.vector_val)[i]->Describe(d);
d->Add(", ");
}
if ( val.vector_val->size() &&
(*val.vector_val)[val.vector_val->size() - 1] )
(*val.vector_val)[val.vector_val->size() - 1]->Describe(d);
d->Add("]");
}
Val* check_and_promote(Val* v, const BroType* t, int is_init, const Location* expr_location)
{
if ( ! v )
return 0;
BroType* vt = v->Type();
vt = flatten_type(vt);
t = flatten_type(t);
TypeTag t_tag = t->Tag();
TypeTag v_tag = vt->Tag();
// More thought definitely needs to go into this.
if ( t_tag == TYPE_ANY || v_tag == TYPE_ANY )
return v;
if ( ! EitherArithmetic(t_tag, v_tag) ||
/* allow sets as initializers */
(is_init && v_tag == TYPE_TABLE) )
{
if ( same_type(t, vt, is_init) )
return v;
t->Error("type clash", v, 0, expr_location);
Unref(v);
return 0;
}
if ( ! BothArithmetic(t_tag, v_tag) &&
(! IsArithmetic(v_tag) || t_tag != TYPE_TIME || ! v->IsZero()) )
{
if ( t_tag == TYPE_LIST || v_tag == TYPE_LIST )
t->Error("list mixed with scalar", v, 0, expr_location);
else
t->Error("arithmetic mixed with non-arithmetic", v, 0, expr_location);
Unref(v);
return 0;
}
if ( v_tag == t_tag )
return v;
if ( t_tag != TYPE_TIME && ! BothArithmetic(t_tag, v_tag) )
{
TypeTag mt = max_type(t_tag, v_tag);
if ( mt != t_tag )
{
t->Error("over-promotion of arithmetic value", v, 0, expr_location);
Unref(v);
return 0;
}
}
// Need to promote v to type t.
InternalTypeTag it = t->InternalType();
InternalTypeTag vit = vt->InternalType();
if ( it == vit )
// Already has the right internal type.
return v;
Val* promoted_v;
switch ( it ) {
case TYPE_INTERNAL_INT:
if ( ( vit == TYPE_INTERNAL_UNSIGNED || vit == TYPE_INTERNAL_DOUBLE ) && Val::WouldOverflow(vt, t, v) )
{
t->Error("overflow promoting from unsigned/double to signed arithmetic value", v, 0, expr_location);
Unref(v);
return 0;
}
else if ( t_tag == TYPE_INT )
promoted_v = val_mgr->GetInt(v->CoerceToInt());
else if ( t_tag == TYPE_BOOL )
promoted_v = val_mgr->GetBool(v->CoerceToInt());
else // enum
{
reporter->InternalError("bad internal type in check_and_promote()");
Unref(v);
return 0;
}
break;
case TYPE_INTERNAL_UNSIGNED:
if ( ( vit == TYPE_INTERNAL_DOUBLE || vit == TYPE_INTERNAL_INT) && Val::WouldOverflow(vt, t, v) )
{
t->Error("overflow promoting from signed/double to unsigned arithmetic value", v, 0, expr_location);
Unref(v);
return 0;
}
else if ( t_tag == TYPE_COUNT || t_tag == TYPE_COUNTER )
promoted_v = val_mgr->GetCount(v->CoerceToUnsigned());
else // port
{
reporter->InternalError("bad internal type in check_and_promote()");
Unref(v);
return 0;
}
break;
case TYPE_INTERNAL_DOUBLE:
promoted_v = new Val(v->CoerceToDouble(), t_tag);
break;
default:
reporter->InternalError("bad internal type in check_and_promote()");
Unref(v);
return 0;
}
Unref(v);
return promoted_v;
}
int same_val(const Val* /* v1 */, const Val* /* v2 */)
{
reporter->InternalError("same_val not implemented");
return 0;
}
bool is_atomic_val(const Val* v)
{
return is_atomic_type(v->Type());
}
int same_atomic_val(const Val* v1, const Val* v2)
{
// This is a very preliminary implementation of same_val(),
// true only for equal, simple atomic values of same type.
if ( v1->Type()->Tag() != v2->Type()->Tag() )
return 0;
switch ( v1->Type()->InternalType() ) {
case TYPE_INTERNAL_INT:
return v1->InternalInt() == v2->InternalInt();
case TYPE_INTERNAL_UNSIGNED:
return v1->InternalUnsigned() == v2->InternalUnsigned();
case TYPE_INTERNAL_DOUBLE:
return v1->InternalDouble() == v2->InternalDouble();
case TYPE_INTERNAL_STRING:
return Bstr_eq(v1->AsString(), v2->AsString());
case TYPE_INTERNAL_ADDR:
return v1->AsAddr() == v2->AsAddr();
case TYPE_INTERNAL_SUBNET:
return v1->AsSubNet() == v2->AsSubNet();
default:
reporter->InternalWarning("same_atomic_val called for non-atomic value");
return 0;
}
return 0;
}
void describe_vals(const val_list* vals, ODesc* d, int offset)
{
if ( ! d->IsReadable() )
{
d->Add(vals->length());
d->SP();
}
for ( int i = offset; i < vals->length(); ++i )
{
if ( i > offset && d->IsReadable() && d->Style() != RAW_STYLE )
d->Add(", ");
(*vals)[i]->Describe(d);
}
}
void delete_vals(val_list* vals)
{
if ( vals )
{
for ( const auto& val : *vals )
Unref(val);
delete vals;
}
}
Val* cast_value_to_type(Val* v, BroType* t)
{
// Note: when changing this function, adapt all three of
// cast_value_to_type()/can_cast_value_to_type()/can_cast_value_to_type().
if ( ! v )
return 0;
// Always allow casting to same type. This also covers casting 'any'
// to the actual type.
if ( same_type(v->Type(), t) )
return v->Ref();
if ( same_type(v->Type(), bro_broker::DataVal::ScriptDataType()) )
{
auto dv = v->AsRecordVal()->Lookup(0);
if ( ! dv )
return 0;
return static_cast<bro_broker::DataVal *>(dv)->castTo(t);
}
return 0;
}
bool can_cast_value_to_type(const Val* v, BroType* t)
{
// Note: when changing this function, adapt all three of
// cast_value_to_type()/can_cast_value_to_type()/can_cast_value_to_type().
if ( ! v )
return false;
// Always allow casting to same type. This also covers casting 'any'
// to the actual type.
if ( same_type(v->Type(), t) )
return true;
if ( same_type(v->Type(), bro_broker::DataVal::ScriptDataType()) )
{
auto dv = v->AsRecordVal()->Lookup(0);
if ( ! dv )
return false;
return static_cast<const bro_broker::DataVal *>(dv)->canCastTo(t);
}
return false;
}
bool can_cast_value_to_type(const BroType* s, BroType* t)
{
// Note: when changing this function, adapt all three of
// cast_value_to_type()/can_cast_value_to_type()/can_cast_value_to_type().
// Always allow casting to same type. This also covers casting 'any'
// to the actual type.
if ( same_type(s, t) )
return true;
if ( same_type(s, bro_broker::DataVal::ScriptDataType()) )
// As Broker is dynamically typed, we don't know if we will be able
// to convert the type as intended. We optimistically assume that we
// will.
return true;
return false;
}
ValManager::ValManager()
{
empty_string = new StringVal("");
b_false = Val::MakeBool(false);
b_true = Val::MakeBool(true);
counts = new Val*[PREALLOCATED_COUNTS];
ints = new Val*[PREALLOCATED_INTS];
for ( auto i = 0u; i < PREALLOCATED_COUNTS; ++i )
counts[i] = Val::MakeCount(i);
for ( auto i = 0u; i < PREALLOCATED_INTS; ++i )
ints[i] = Val::MakeInt(PREALLOCATED_INT_LOWEST + i);
for ( auto i = 0u; i < ports.size(); ++i )
{
auto& arr = ports[i];
auto port_type = (TransportProto)i;
for ( auto j = 0u; j < arr.size(); ++j )
arr[j] = new PortVal(PortVal::Mask(j, port_type), true);
}
}
ValManager::~ValManager()
{
Unref(empty_string);
Unref(b_true);
Unref(b_false);
for ( auto i = 0u; i < PREALLOCATED_COUNTS; ++i )
Unref(counts[i]);
for ( auto i = 0u; i < PREALLOCATED_INTS; ++i )
Unref(ints[i]);
delete [] counts;
delete [] ints;
for ( auto& arr : ports )
for ( auto& pv : arr )
Unref(pv);
}
StringVal* ValManager::GetEmptyString() const
{
::Ref(empty_string);
return empty_string;
}
PortVal* ValManager::GetPort(uint32 port_num, TransportProto port_type) const
{
if ( port_num >= 65536 )
{
reporter->Warning("bad port number %d", port_num);
port_num = 0;
}
auto rval = ports[port_type][port_num];
::Ref(rval);
return rval;
}
PortVal* ValManager::GetPort(uint32 port_num) const
{
auto mask = port_num & PORT_SPACE_MASK;
port_num &= ~PORT_SPACE_MASK;
if ( mask == TCP_PORT_MASK )
return GetPort(port_num, TRANSPORT_TCP);
else if ( mask == UDP_PORT_MASK )
return GetPort(port_num, TRANSPORT_UDP);
else if ( mask == ICMP_PORT_MASK )
return GetPort(port_num, TRANSPORT_ICMP);
else
return GetPort(port_num, TRANSPORT_UNKNOWN);
}