zeek/src/script_opt/Stmt.cc

1287 lines
35 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
// Optimization-related methods for Stmt classes.
#include "zeek/Stmt.h"
#include "zeek/Desc.h"
#include "zeek/Expr.h"
#include "zeek/Frame.h"
#include "zeek/Reporter.h"
#include "zeek/Traverse.h"
#include "zeek/script_opt/Expr.h"
#include "zeek/script_opt/IDOptInfo.h"
#include "zeek/script_opt/Reduce.h"
namespace zeek::detail {
bool Stmt::IsReduced(Reducer* c) const { return true; }
StmtPtr Stmt::Reduce(Reducer* c) {
auto this_ptr = ThisPtr();
auto repl = c->ReplacementStmt(this_ptr);
if ( repl )
return repl;
if ( c->ShouldOmitStmt(this) )
return with_location_of(make_intrusive<NullStmt>(), this);
c->SetCurrStmt(this);
return DoReduce(c);
}
StmtPtr Stmt::TransformMe(StmtPtr new_me, Reducer* c) {
ASSERT(new_me != this);
// Set the original prior to reduction, to support "original chains"
// to ultimately resolve back to the source statement.
new_me->SetLocationInfo(GetLocationInfo());
return new_me->Reduce(c);
}
void ExprListStmt::Inline(Inliner* inl) {
auto& e = l->Exprs();
for ( auto i = 0; i < e.length(); ++i )
e.replace(i, e[i]->Inline(inl).release());
}
bool ExprListStmt::IsReduced(Reducer* c) const {
const ExprPList& e = l->Exprs();
for ( const auto& expr : e )
if ( ! expr->IsSingleton(c) )
return NonReduced(expr);
return true;
}
StmtPtr ExprListStmt::DoReduce(Reducer* c) {
if ( ! c->Optimizing() && IsReduced(c) )
return ThisPtr();
auto new_l = with_location_of(make_intrusive<ListExpr>(), this);
auto s = with_location_of(make_intrusive<StmtList>(), this);
ExprPList& e = l->Exprs();
for ( auto& expr : e ) {
if ( c->Optimizing() )
new_l->Append(c->OptExpr(expr));
else if ( expr->IsSingleton(c) )
new_l->Append({NewRef{}, expr});
else {
StmtPtr red_e_stmt;
auto red_e = expr->ReduceToSingleton(c, red_e_stmt);
new_l->Append(red_e);
if ( red_e_stmt )
s->Stmts().push_back(red_e_stmt);
}
}
if ( c->Optimizing() ) {
l = new_l;
return ThisPtr();
}
else {
s->Stmts().push_back(DoSubclassReduce(new_l, c));
return s->Reduce(c);
}
}
StmtPtr PrintStmt::Duplicate() { return SetSucc(new PrintStmt(l->Duplicate()->AsListExprPtr())); }
StmtPtr PrintStmt::DoSubclassReduce(ListExprPtr singletons, Reducer* c) {
return with_location_of(make_intrusive<PrintStmt>(singletons), this);
}
StmtPtr ExprStmt::Duplicate() { return SetSucc(new ExprStmt(e ? e->Duplicate() : nullptr)); }
void ExprStmt::Inline(Inliner* inl) {
if ( e )
e = e->Inline(inl);
}
bool ExprStmt::IsReduced(Reducer* c) const {
if ( ! e || e->IsReduced(c) )
return true;
return NonReduced(e.get());
}
StmtPtr ExprStmt::DoReduce(Reducer* c) {
if ( ! e )
// e can be nil for our derived classes (like ReturnStmt).
return TransformMe(make_intrusive<NullStmt>(), c);
auto t = e->Tag();
if ( t == EXPR_NOP )
return TransformMe(make_intrusive<NullStmt>(), c);
if ( c->Optimizing() ) {
e = c->OptExpr(e);
return ThisPtr();
}
if ( e->IsSingleton(c) )
// No point evaluating.
return TransformMe(make_intrusive<NullStmt>(), c);
if ( (t == EXPR_ASSIGN || t == EXPR_CALL || t == EXPR_INDEX_ASSIGN || t == EXPR_FIELD_LHS_ASSIGN ||
t == EXPR_APPEND_TO || t == EXPR_ADD_TO || t == EXPR_REMOVE_FROM) &&
e->IsReduced(c) )
return ThisPtr();
StmtPtr red_e_stmt;
if ( t == EXPR_CALL )
// A bare call. If we reduce it regularly, if
// it has a non-void type it'll generate an
// assignment to a temporary.
red_e_stmt = e->ReduceToSingletons(c);
else {
e = e->Reduce(c, red_e_stmt);
// It's possible that 'e' has gone away because it was a call
// to an inlined function that doesn't have a return value.
if ( ! e )
return red_e_stmt;
}
if ( red_e_stmt ) {
auto s = make_intrusive<StmtList>(red_e_stmt, ThisPtr());
return TransformMe(s, c);
}
else
return ThisPtr();
}
StmtPtr IfStmt::Duplicate() { return SetSucc(new IfStmt(e->Duplicate(), s1->Duplicate(), s2->Duplicate())); }
void IfStmt::Inline(Inliner* inl) {
ExprStmt::Inline(inl);
if ( s1 )
s1->Inline(inl);
if ( s2 )
s2->Inline(inl);
}
bool IfStmt::IsReduced(Reducer* c) const {
if ( e->IsConst() || ! e->IsReducedConditional(c) || IsMinMaxConstruct() )
return NonReduced(e.get());
return s1->IsReduced(c) && s2->IsReduced(c);
}
StmtPtr IfStmt::DoReduce(Reducer* c) {
StmtPtr red_e_stmt;
if ( e->WillTransformInConditional(c) )
e = e->ReduceToConditional(c, red_e_stmt);
// First, assess some fundamental transformations.
if ( IsMinMaxConstruct() )
return ConvertToMinMaxConstruct()->Reduce(c);
if ( e->Tag() == EXPR_NOT ) { // Change "if ( ! x ) s1 else s2" to "if ( x ) s2 else s1".
std::swap(s1, s2);
e = e->GetOp1();
}
if ( e->Tag() == EXPR_OR_OR && c->BifurcationOkay() ) {
c->PushBifurcation();
// Expand "if ( a || b ) s1 else s2" to
// "if ( a ) s1 else { if ( b ) s1 else s2 }"
auto a = e->GetOp1();
auto b = e->GetOp2();
auto s1_dup = s1 ? s1->Duplicate() : nullptr;
s2 = with_location_of(make_intrusive<IfStmt>(b, s1_dup, s2), s2);
e = a;
auto res = DoReduce(c);
c->PopBifurcation();
return res;
}
if ( e->Tag() == EXPR_AND_AND && c->BifurcationOkay() ) {
c->PushBifurcation();
// Expand "if ( a && b ) s1 else s2" to
// "if ( a ) { if ( b ) s1 else s2 } else s2"
auto a = e->GetOp1();
auto b = e->GetOp2();
auto s2_dup = s2 ? s2->Duplicate() : nullptr;
s1 = with_location_of(make_intrusive<IfStmt>(b, s1, s2_dup), s1);
e = a;
auto res = DoReduce(c);
c->PopBifurcation();
return res;
}
s1 = s1->Reduce(c);
s2 = s2->Reduce(c);
if ( s1->Tag() == STMT_NULL && s2->Tag() == STMT_NULL )
return TransformMe(make_intrusive<NullStmt>(), c);
if ( c->Optimizing() )
e = c->OptExpr(e);
else {
StmtPtr cond_red_stmt;
e = e->ReduceToConditional(c, cond_red_stmt);
if ( red_e_stmt && cond_red_stmt )
red_e_stmt = with_location_of(make_intrusive<StmtList>(red_e_stmt, cond_red_stmt), this);
else if ( cond_red_stmt )
red_e_stmt = cond_red_stmt;
}
StmtPtr sl;
if ( e->IsConst() ) {
auto c_e = e->AsConstExprPtr();
auto t = c_e->Value()->AsBool();
if ( c->Optimizing() )
return t ? s1 : s2;
sl = make_intrusive<StmtList>(red_e_stmt, t ? s1 : s2);
}
else if ( red_e_stmt )
sl = make_intrusive<StmtList>(red_e_stmt, ThisPtr());
if ( sl )
return TransformMe(std::move(sl), c);
return ThisPtr();
}
bool IfStmt::NoFlowAfter(bool ignore_break) const {
if ( s1 && s2 )
return s1->NoFlowAfter(ignore_break) && s2->NoFlowAfter(ignore_break);
// Assuming the test isn't constant, the nonexistent branch
// could be picked, so flow definitely continues afterwards.
// (Constant branches will be pruned during reduction.)
return false;
}
bool IfStmt::CouldReturn(bool ignore_break) const {
return (s1 && s1->CouldReturn(ignore_break)) || (s2 && s2->CouldReturn(ignore_break));
}
bool IfStmt::IsMinMaxConstruct() const {
if ( ! s1 || ! s2 )
// not an if-else construct
return false;
if ( s1->Tag() != STMT_EXPR || s2->Tag() != STMT_EXPR )
// definitely not if-else assignments
return false;
auto es1 = s1->AsExprStmt()->StmtExpr();
auto es2 = s2->AsExprStmt()->StmtExpr();
if ( es1->Tag() != EXPR_ASSIGN || es2->Tag() != EXPR_ASSIGN )
return false;
switch ( e->Tag() ) {
case EXPR_LT:
case EXPR_LE:
case EXPR_GE:
case EXPR_GT: break;
default:
// Not an apt conditional.
return false;
}
auto a1 = es1->AsAssignExpr();
auto a2 = es2->AsAssignExpr();
auto a1_lhs = a1->GetOp1();
auto a2_lhs = a2->GetOp1();
if ( ! same_expr(a1_lhs, a2_lhs) )
// if-else assignments are not to the same variable
return false;
auto a1_rhs = a1->GetOp2();
auto a2_rhs = a2->GetOp2();
auto op1 = e->GetOp1();
auto op2 = e->GetOp2();
if ( ! same_expr(op1, a1_rhs) && ! same_expr(op1, a2_rhs) )
// Operand does not appear in the assignment RHS.
return false;
if ( ! same_expr(op2, a1_rhs) && ! same_expr(op2, a2_rhs) )
// Operand does not appear in the assignment RHS.
return false;
if ( same_expr(op1, op2) )
// This is degenerate and should be found by other reductions.
return false;
return true;
}
StmtPtr IfStmt::ConvertToMinMaxConstruct() {
auto relop1 = e->GetOp1();
auto relop2 = e->GetOp2();
auto is_min = (e->Tag() == EXPR_LT || e->Tag() == EXPR_LE);
auto assign2 = s2->AsExprStmt()->StmtExpr();
auto lhs2 = assign2->GetOp1();
auto rhs2 = assign2->GetOp2();
if ( same_expr(relop1, rhs2) )
is_min = ! is_min;
auto built_in = is_min ? ScriptOptBuiltinExpr::MINIMUM : ScriptOptBuiltinExpr::MAXIMUM;
auto bi = with_location_of(make_intrusive<ScriptOptBuiltinExpr>(built_in, relop1, relop2), this);
auto new_assign = with_location_of(make_intrusive<AssignExpr>(lhs2, bi, false), this);
return with_location_of(make_intrusive<ExprStmt>(new_assign), this);
}
IntrusivePtr<Case> Case::Duplicate() {
if ( expr_cases ) {
auto new_exprs = expr_cases->Duplicate()->AsListExprPtr();
return make_intrusive<Case>(new_exprs, nullptr, s->Duplicate());
}
IDPList* new_type_cases = nullptr;
if ( type_cases ) {
new_type_cases = new IDPList();
for ( auto tc : *type_cases ) {
zeek::Ref(tc);
new_type_cases->append(tc);
}
}
return make_intrusive<Case>(nullptr, new_type_cases, s->Duplicate());
}
StmtPtr SwitchStmt::Duplicate() {
auto new_cases = new case_list;
loop_over_list(*cases, i) new_cases->append((*cases)[i]->Duplicate().release());
return SetSucc(new SwitchStmt(e->Duplicate(), new_cases));
}
void SwitchStmt::Inline(Inliner* inl) {
ExprStmt::Inline(inl);
for ( auto c : *cases )
// In principle this can do the operation multiple times
// for a given body, but that's no big deal as repeated
// calls won't do anything.
c->Body()->Inline(inl);
}
bool SwitchStmt::IsReduced(Reducer* r) const {
if ( ! e->IsReduced(r) )
return NonReduced(e.get());
if ( cases->length() == 0 )
return false;
for ( const auto& c : *cases ) {
if ( c->ExprCases() && ! c->ExprCases()->IsReduced(r) )
return false;
if ( c->TypeCases() && ! r->IDsAreReduced(c->TypeCases()) )
return false;
if ( ! c->Body()->IsReduced(r) )
return false;
}
return true;
}
StmtPtr SwitchStmt::DoReduce(Reducer* rc) {
if ( cases->length() == 0 )
// Degenerate.
return TransformMe(make_intrusive<NullStmt>(), rc);
auto s = with_location_of(make_intrusive<StmtList>(), this);
StmtPtr red_e_stmt;
if ( rc->Optimizing() )
e = rc->OptExpr(e);
else
e = e->Reduce(rc, red_e_stmt);
// Note, the compiler checks for constant switch expressions.
if ( red_e_stmt )
s->Stmts().push_back(red_e_stmt);
// Update type cases.
for ( auto& i : case_label_type_list ) {
IDPtr idp = {NewRef{}, i.first};
if ( idp->Name() )
i.first = rc->UpdateID(idp).release();
}
for ( const auto& c : *cases ) {
auto c_e = c->ExprCases();
if ( c_e ) {
StmtPtr c_e_stmt;
auto red_cases = c_e->Reduce(rc, c_e_stmt);
if ( c_e_stmt )
s->Stmts().push_back(c_e_stmt);
}
auto c_t = c->TypeCases();
if ( c_t ) {
for ( auto& c_t_i : *c_t )
if ( c_t_i->Name() )
c_t_i = rc->UpdateID({NewRef{}, c_t_i}).release();
}
c->UpdateBody(c->Body()->Reduce(rc));
}
if ( ! s->Stmts().empty() )
return TransformMe(make_intrusive<StmtList>(s, ThisPtr()), rc);
return ThisPtr();
}
bool SwitchStmt::NoFlowAfter(bool ignore_break) const {
bool control_reaches_end = false;
bool default_seen_with_no_flow_after = false;
for ( const auto& c : *Cases() ) {
if ( ! c->Body()->NoFlowAfter(true) )
return false;
if ( (! c->ExprCases() || c->ExprCases()->Exprs().length() == 0) &&
(! c->TypeCases() || c->TypeCases()->length() == 0) )
// We saw the default, and the test before this
// one established that it has no flow after it.
default_seen_with_no_flow_after = true;
}
return default_seen_with_no_flow_after;
}
bool SwitchStmt::CouldReturn(bool ignore_break) const {
for ( const auto& c : *Cases() )
if ( c->Body()->CouldReturn(true) )
return true;
return false;
}
bool AddDelStmt::IsReduced(Reducer* c) const { return e->HasReducedOps(c); }
StmtPtr AddDelStmt::DoReduce(Reducer* c) {
if ( c->Optimizing() ) {
e = c->OptExpr(e);
return ThisPtr();
}
auto red_e_stmt = e->ReduceToSingletons(c);
if ( red_e_stmt )
return TransformMe(make_intrusive<StmtList>(red_e_stmt, ThisPtr()), c);
else
return ThisPtr();
}
StmtPtr AddStmt::Duplicate() { return SetSucc(new AddStmt(e->Duplicate())); }
StmtPtr DelStmt::Duplicate() { return SetSucc(new DelStmt(e->Duplicate())); }
StmtPtr EventStmt::Duplicate() { return SetSucc(new EventStmt(e->Duplicate()->AsEventExprPtr())); }
StmtPtr EventStmt::DoReduce(Reducer* c) {
if ( c->Optimizing() ) {
e = c->OptExpr(e);
event_expr = e->AsEventExprPtr();
}
else if ( ! event_expr->IsSingleton(c) ) {
StmtPtr red_e_stmt;
auto ee_red = event_expr->Reduce(c, red_e_stmt);
event_expr = ee_red->AsEventExprPtr();
e = event_expr;
if ( red_e_stmt )
return TransformMe(make_intrusive<StmtList>(red_e_stmt, ThisPtr()), c);
}
return ThisPtr();
}
StmtPtr WhileStmt::Duplicate() { return SetSucc(new WhileStmt(loop_condition->Duplicate(), body->Duplicate())); }
void WhileStmt::Inline(Inliner* inl) {
loop_condition = loop_condition->Inline(inl);
if ( loop_cond_pred_stmt )
loop_cond_pred_stmt->Inline(inl);
if ( body )
body->Inline(inl);
}
bool WhileStmt::IsReduced(Reducer* c) const {
// No need to check loop_cond_pred_stmt, as we create it reduced.
return loop_condition->IsReducedConditional(c) && body->IsReduced(c);
}
StmtPtr WhileStmt::DoReduce(Reducer* c) {
if ( loop_cond_pred_stmt )
// Important to do this before updating the loop_condition, since
// changes to the predecessor statement can alter the condition.
loop_cond_pred_stmt = loop_cond_pred_stmt->Reduce(c);
if ( c->Optimizing() )
loop_condition = c->OptExpr(loop_condition);
else {
if ( IsReduced(c) ) {
if ( ! c->IsPruning() ) {
// See comment below for the particulars
// of this constructor.
stmt_loop_condition = with_location_of(make_intrusive<ExprStmt>(STMT_EXPR, loop_condition), this);
return ThisPtr();
}
}
else
loop_condition = loop_condition->ReduceToConditional(c, loop_cond_pred_stmt);
}
body = body->Reduce(c);
// We use the more involved ExprStmt constructor here to bypass
// its check for whether the expression is being ignored, since
// we're not actually creating an ExprStmt for execution.
stmt_loop_condition = with_location_of(make_intrusive<ExprStmt>(STMT_EXPR, loop_condition), this);
return ThisPtr();
}
bool WhileStmt::CouldReturn(bool ignore_break) const { return body->CouldReturn(false); }
StmtPtr ForStmt::Duplicate() {
auto expr_copy = e->Duplicate();
auto new_loop_vars = new zeek::IDPList;
loop_over_list(*loop_vars, i) {
auto id = (*loop_vars)[i];
zeek::Ref(id);
new_loop_vars->append(id);
}
ForStmt* f;
if ( value_var )
f = new ForStmt(new_loop_vars, expr_copy, value_var);
else
f = new ForStmt(new_loop_vars, expr_copy);
f->AddBody(body->Duplicate());
return SetSucc(f);
}
void ForStmt::Inline(Inliner* inl) {
ExprStmt::Inline(inl);
body->Inline(inl);
}
bool ForStmt::IsReduced(Reducer* c) const {
if ( ! e->IsReduced(c) )
return NonReduced(e.get());
if ( ! c->IDsAreReduced(loop_vars) )
return false;
if ( value_var && (value_var->IsBlank() || ! c->ID_IsReduced(value_var)) )
return false;
return body->IsReduced(c);
}
StmtPtr ForStmt::DoReduce(Reducer* c) {
if ( value_var && value_var->IsBlank() ) {
auto no_vv = make_intrusive<ForStmt>(loop_vars, e);
no_vv->AddBody(body);
return TransformMe(no_vv, c);
}
StmtPtr red_e_stmt;
if ( c->Optimizing() )
e = c->OptExpr(e);
else {
e = e->Reduce(c, red_e_stmt);
c->UpdateIDs(loop_vars);
if ( value_var )
value_var = c->UpdateID(value_var);
}
body = body->Reduce(c);
if ( body->Tag() == STMT_NULL )
Warn("empty \"for\" body leaves loop variables in indeterminate state");
if ( red_e_stmt )
return TransformMe(make_intrusive<StmtList>(red_e_stmt, ThisPtr()), c);
return ThisPtr();
}
bool ForStmt::CouldReturn(bool ignore_break) const { return body->CouldReturn(false); }
StmtPtr ReturnStmt::Duplicate() { return SetSucc(new ReturnStmt(e ? e->Duplicate() : nullptr, true)); }
ReturnStmt::ReturnStmt(ExprPtr arg_e, bool ignored) : ExprStmt(STMT_RETURN, std::move(arg_e)) {}
bool ReturnStmt::IsReduced(Reducer* c) const {
if ( ! e || e->IsSingleton(c) )
return true;
return NonReduced(e.get());
}
StmtPtr ReturnStmt::DoReduce(Reducer* c) {
if ( ! e )
return ThisPtr();
if ( c->Optimizing() )
e = c->OptExpr(e);
else if ( ! e->IsSingleton(c) ) {
StmtPtr red_e_stmt;
e = e->ReduceToSingleton(c, red_e_stmt);
if ( red_e_stmt )
return TransformMe(make_intrusive<StmtList>(red_e_stmt, ThisPtr()), c);
}
return ThisPtr();
}
StmtList::StmtList(StmtPtr s1, StmtPtr s2) : Stmt(STMT_LIST) {
if ( s1 )
stmts.push_back(std::move(s1));
if ( s2 )
stmts.push_back(std::move(s2));
}
StmtList::StmtList(StmtPtr s1, StmtPtr s2, StmtPtr s3) : Stmt(STMT_LIST) {
if ( s1 )
stmts.push_back(std::move(s1));
if ( s2 )
stmts.push_back(std::move(s2));
if ( s3 )
stmts.push_back(std::move(s3));
}
StmtPtr StmtList::Duplicate() {
auto new_sl = new StmtList();
for ( auto& stmt : stmts )
new_sl->stmts.push_back(stmt->Duplicate());
return SetSucc(new_sl);
}
void StmtList::Inline(Inliner* inl) {
for ( const auto& stmt : stmts )
stmt->Inline(inl);
}
bool StmtList::IsReduced(Reducer* c) const {
auto n = stmts.size();
for ( auto i = 0U; i < n; ++i ) {
auto& s_i = stmts[i];
if ( ! s_i->IsReduced(c) )
return false;
if ( s_i->NoFlowAfter(false) && i < n - 1 )
return false;
}
return true;
}
StmtPtr StmtList::DoReduce(Reducer* c) {
std::vector<StmtPtr> f_stmts;
bool did_change = false;
auto n = stmts.size();
for ( auto i = 0U; i < n; ++i ) {
if ( ReduceStmt(i, f_stmts, c) )
did_change = true;
if ( i < n - 1 && stmts[i]->NoFlowAfter(false) ) {
did_change = true;
break;
}
if ( reporter->Errors() > 0 )
return ThisPtr();
}
if ( f_stmts.empty() )
return TransformMe(make_intrusive<NullStmt>(), c);
if ( f_stmts.size() == 1 )
return f_stmts[0]->Reduce(c);
if ( did_change ) {
ResetStmts(std::move(f_stmts));
return Reduce(c);
}
return ThisPtr();
}
unsigned int StmtList::FindRecAssignmentChain(unsigned int i) const {
const NameExpr* targ_rec = nullptr;
std::set<int> fields_seen;
for ( ; i < stmts.size(); ++i ) {
const auto& s = stmts[i];
// We're looking for either "x$a = y$b" or "x$a = x$a + y$b".
if ( s->Tag() != STMT_EXPR )
// No way it's an assignment.
return i;
auto se = s->AsExprStmt()->StmtExpr();
if ( se->Tag() != EXPR_ASSIGN )
return i;
// The LHS of an assignment starts with a RefExpr.
auto lhs_ref = se->GetOp1();
ASSERT(lhs_ref->Tag() == EXPR_REF);
auto lhs = lhs_ref->GetOp1();
if ( lhs->Tag() != EXPR_FIELD )
// Not of the form "x$a = ...".
return i;
auto lhs_field = lhs->AsFieldExpr()->Field();
if ( fields_seen.count(lhs_field) > 0 )
// Earlier in this chain we've already seen "x$a", so end the
// chain at this repeated use because it's no longer a simple
// block of field assignments.
return i;
fields_seen.insert(lhs_field);
auto lhs_rec = lhs->GetOp1();
if ( lhs_rec->Tag() != EXPR_NAME )
// Not a simple field reference, e.g. "x$y$a".
return i;
auto lhs_rec_n = lhs_rec->AsNameExpr();
if ( targ_rec ) {
if ( lhs_rec_n->Id() != targ_rec->Id() )
// It's no longer "x$..." but some new variable "z$...".
return i;
}
else
targ_rec = lhs_rec_n;
}
return i;
}
void StmtList::UpdateAssignmentChains(const StmtPtr& s, OpChain& assign_chains, OpChain& add_chains) const {
auto se = s->AsExprStmt()->StmtExpr();
ASSERT(se->Tag() == EXPR_ASSIGN);
// We dig three times into the LHS. The first gets the EXPR_ASSIGN's
// first operand, which is a RefExpr; the second gets its operand,
// which we've guaranteed in FindRecAssignmentChain is a FieldExpr;
// and the third is the FieldExpr's operand, which we've guaranteed
// is a NameExpr.
auto lhs_id = se->GetOp1()->GetOp1()->GetOp1()->AsNameExpr()->Id();
auto rhs = se->GetOp2();
const FieldExpr* f;
OpChain* c;
// Check whether RHS is either "y$b" or "x$a + y$b".
if ( rhs->Tag() == EXPR_ADD ) {
auto rhs_op1 = rhs->GetOp1(); // need to see that it's "x$a"
if ( rhs_op1->Tag() != EXPR_FIELD )
return;
auto rhs_op1_rec = rhs_op1->GetOp1();
if ( rhs_op1_rec->Tag() != EXPR_NAME || rhs_op1_rec->AsNameExpr()->Id() != lhs_id )
return;
auto rhs_op2 = rhs->GetOp2(); // need to see that it's "y$b"
if ( rhs_op2->Tag() != EXPR_FIELD )
return;
if ( ! IsArithmetic(rhs_op2->GetType()->Tag()) )
// Avoid esoteric forms of adding.
return;
f = rhs_op2->AsFieldExpr();
c = &add_chains;
}
else if ( rhs->Tag() == EXPR_FIELD ) {
f = rhs->AsFieldExpr();
c = &assign_chains;
}
else
// Not a RHS we know how to leverage.
return;
auto f_rec = f->GetOp1();
if ( f_rec->Tag() != EXPR_NAME )
// Not a simple RHS, instead something like "y$z$b".
return;
// If we get here, it's a keeper, record the associated statement.
auto id = f_rec->AsNameExpr()->Id();
auto cf = c->find(id);
if ( cf == c->end() )
(*c)[id] = std::vector<const Stmt*>{s.get()};
else
cf->second.push_back(s.get());
}
StmtPtr StmtList::TransformChain(const OpChain& c, ExprTag t, std::set<const Stmt*>& chain_stmts) const {
IntrusivePtr<StmtList> sl;
for ( auto& id_stmts : c ) {
auto orig_s = id_stmts.second;
if ( ! sl )
// Now that we have a statement, create our list and associate
// its location with the statement.
sl = with_location_of(make_intrusive<StmtList>(), orig_s[0]);
ExprPtr e;
if ( t == EXPR_ASSIGN )
e = make_intrusive<AssignRecordFields>(orig_s, chain_stmts);
else
e = make_intrusive<AddRecordFields>(orig_s, chain_stmts);
e->SetLocationInfo(sl->GetLocationInfo());
auto es = with_location_of(make_intrusive<ExprStmt>(std::move(e)), sl);
sl->Stmts().emplace_back(std::move(es));
}
return sl;
}
bool StmtList::SimplifyChain(unsigned int start, unsigned int end, std::vector<StmtPtr>& f_stmts) const {
OpChain assign_chains;
OpChain add_chains;
std::set<const Stmt*> chain_stmts;
static bool skip_chains = getenv("ZAM_SKIP_CHAINS");
if ( skip_chains )
return false;
for ( auto i = start; i <= end; ++i ) {
auto& s = stmts[i];
chain_stmts.insert(s.get());
UpdateAssignmentChains(s, assign_chains, add_chains);
}
// An add-chain of any size is a win. For an assign-chain to be a win,
// it needs to have at least two elements, because a single "x$a = y$b"
// can be expressed using one ZAM instructino (but "x$a += y$b" cannot).
if ( add_chains.empty() ) {
bool have_useful_assign_chain = false;
for ( auto& ac : assign_chains )
if ( ac.second.size() > 1 ) {
have_useful_assign_chain = true;
break;
}
if ( ! have_useful_assign_chain )
// No gains available.
return false;
}
auto as_c = TransformChain(assign_chains, EXPR_ASSIGN, chain_stmts);
auto ad_c = TransformChain(add_chains, EXPR_ADD, chain_stmts);
ASSERT(as_c || ad_c);
if ( as_c )
f_stmts.push_back(as_c);
if ( ad_c )
f_stmts.push_back(ad_c);
// At this point, chain_stmts has only the remainders that weren't removed.
for ( auto s : stmts )
if ( chain_stmts.count(s.get()) > 0 )
f_stmts.push_back(s);
return true;
}
bool StmtList::ReduceStmt(unsigned int& s_i, std::vector<StmtPtr>& f_stmts, Reducer* c) {
bool did_change = false;
auto& stmt_i = stmts[s_i];
auto old_stmt = stmt_i;
auto chain_end = FindRecAssignmentChain(s_i);
if ( chain_end > s_i && SimplifyChain(s_i, chain_end - 1, f_stmts) ) {
s_i = chain_end - 1;
return true;
}
auto stmt = stmt_i->Reduce(c);
if ( stmt != old_stmt )
did_change = true;
if ( c->Optimizing() && stmt->Tag() == STMT_EXPR ) {
// There are two potential optimizations that affect
// whether we keep assignment statements. The first is
// for potential assignment chains like
//
// tmp1 = x;
// tmp2 = tmp1;
//
// where we can change this pair to simply "tmp2 = x", assuming
// no later use of tmp1.
//
// In addition, if we have "tmp1 = e" and "e" is an expression
// already computed into another temporary (say tmp0) that's
// safely usable at this point, then we can elide the tmp1
// assignment entirely.
auto s_e = stmt->AsExprStmt();
auto e = s_e->StmtExpr();
if ( e->Tag() != EXPR_ASSIGN ) {
f_stmts.push_back(std::move(stmt));
return did_change;
}
auto a = e->AsAssignExpr();
auto lhs = a->Op1()->AsRefExprPtr()->Op();
if ( lhs->Tag() != EXPR_NAME ) {
f_stmts.push_back(std::move(stmt));
return did_change;
}
auto var = lhs->AsNameExpr();
auto rhs = a->GetOp2();
if ( s_i < stmts.size() - 1 ) {
// See if we can compress an assignment chain.
auto& s_i_succ = stmts[s_i + 1];
// Don't reduce s_i_succ. If it's what we're
// looking for, it's already reduced. Plus
// that's what Reducer::MergeStmts (not that
// it really matters, per the comment there).
auto merge = c->MergeStmts(var, rhs, s_i_succ);
if ( merge ) {
f_stmts.push_back(std::move(merge));
// Skip both this statement and the next,
// now that we've substituted the merge.
++s_i;
return true;
}
}
if ( c->IsTemporary(var->Id()) && ! c->IsParamTemp(var->Id()) && c->IsCSE(a, var, rhs.get()) ) {
// printf("discarding %s as unnecessary\n", var->Id()->Name());
// Skip this now unnecessary statement.
return true;
}
}
if ( stmt->Tag() == STMT_LIST ) { // inline the list
auto sl = stmt->AsStmtList();
for ( auto& sub_stmt : sl->Stmts() )
f_stmts.push_back(sub_stmt);
did_change = true;
}
else if ( stmt->Tag() == STMT_NULL )
// skip it
did_change = true;
else
f_stmts.push_back(std::move(stmt));
return did_change;
}
bool StmtList::NoFlowAfter(bool ignore_break) const {
for ( auto& s : stmts ) {
// For "break" statements, if ignore_break is set then
// by construction flow *does* go to after this statement
// list. If we just used the second test below, then
// while the "break" would indicate there's flow after it,
// if there's dead code following that includes a "return",
// this would in fact be incorrect.
if ( ignore_break && s->Tag() == STMT_BREAK )
return false;
if ( s->NoFlowAfter(ignore_break) )
return true;
}
return false;
}
bool StmtList::CouldReturn(bool ignore_break) const {
for ( auto& s : stmts )
if ( s->CouldReturn(ignore_break) )
return true;
return false;
}
StmtPtr InitStmt::Duplicate() {
// Need to duplicate the initializer list since later reductions
// can modify it in place.
std::vector<IDPtr> new_inits;
for ( const auto& id : inits )
new_inits.push_back(id);
return SetSucc(new InitStmt(new_inits));
}
bool InitStmt::IsReduced(Reducer* c) const { return c->IDsAreReduced(inits); }
StmtPtr InitStmt::DoReduce(Reducer* c) {
c->UpdateIDs(inits);
return ThisPtr();
}
StmtPtr AssertStmt::Duplicate() { return SetSucc(new AssertStmt(cond->Duplicate(), msg ? msg->Duplicate() : nullptr)); }
bool AssertStmt::IsReduced(Reducer* c) const { return false; }
StmtPtr AssertStmt::DoReduce(Reducer* c) { return TransformMe(make_intrusive<NullStmt>(), c); }
bool WhenInfo::HasUnreducedIDs(Reducer* c) const {
for ( auto& cp : *cl ) {
auto cid = cp.Id();
if ( when_new_locals.count(cid.get()) == 0 && ! c->ID_IsReduced(cp.Id()) )
return true;
}
for ( auto& l : when_expr_locals )
if ( ! c->ID_IsReduced(l) )
return true;
return false;
}
void WhenInfo::UpdateIDs(Reducer* c) {
for ( auto& cp : *cl ) {
auto& cid = cp.Id();
if ( when_new_locals.count(cid.get()) == 0 )
cp.SetID(c->UpdateID(cid));
}
for ( auto& l : when_expr_locals )
l = c->UpdateID(l);
}
StmtPtr WhenStmt::Duplicate() { return SetSucc(new WhenStmt(std::make_shared<WhenInfo>(wi.get()))); }
bool WhenStmt::IsReduced(Reducer* c) const {
if ( wi->HasUnreducedIDs(c) )
return false;
if ( ! wi->Lambda()->IsReduced(c) )
return false;
if ( ! wi->TimeoutExpr() )
return true;
return wi->TimeoutExpr()->IsReduced(c);
}
StmtPtr WhenStmt::DoReduce(Reducer* c) {
if ( ! c->Optimizing() ) {
wi->UpdateIDs(c);
(void)wi->Lambda()->ReduceToSingletons(c);
}
auto e = wi->TimeoutExpr();
if ( ! e )
return ThisPtr();
if ( c->Optimizing() )
wi->SetTimeoutExpr(c->OptExpr(e));
else if ( ! e->IsSingleton(c) ) {
StmtPtr red_e_stmt;
auto new_e = e->ReduceToSingleton(c, red_e_stmt);
wi->SetTimeoutExpr(new_e);
if ( red_e_stmt )
return TransformMe(make_intrusive<StmtList>(red_e_stmt, ThisPtr()), c);
}
return ThisPtr();
}
CatchReturnStmt::CatchReturnStmt(ScriptFuncPtr _sf, StmtPtr _block, NameExprPtr _ret_var) : Stmt(STMT_CATCH_RETURN) {
sf = std::move(_sf);
block = std::move(_block);
ret_var = std::move(_ret_var);
}
ValPtr CatchReturnStmt::Exec(Frame* f, StmtFlowType& flow) {
RegisterAccess();
auto val = block->Exec(f, flow);
if ( flow == FLOW_RETURN )
flow = FLOW_NEXT;
if ( ret_var )
f->SetElement(ret_var->Id()->Offset(), val);
// Note, do *not* return the value! That's taken as a signal
// that a full return executed.
return nullptr;
}
bool CatchReturnStmt::IsPure() const {
// The ret_var is pure by construction.
return block->IsPure();
}
StmtPtr CatchReturnStmt::Duplicate() {
auto rv_dup = ret_var->Duplicate();
auto rv_dup_ptr = rv_dup->AsNameExprPtr();
return SetSucc(new CatchReturnStmt(sf, block->Duplicate(), rv_dup_ptr));
}
StmtPtr CatchReturnStmt::DoReduce(Reducer* c) {
block = block->Reduce(c);
if ( block->Tag() == STMT_RETURN ) {
// The whole thing reduced to a bare return. This can
// happen due to constant propagation.
auto ret = block->AsReturnStmt();
auto ret_e = ret->StmtExprPtr();
if ( ! ret_e ) {
if ( ret_var )
reporter->InternalError("inlining inconsistency: no return value");
return TransformMe(make_intrusive<NullStmt>(), c);
}
auto rv_dup = ret_var->Duplicate();
auto ret_e_dup = ret_e->Duplicate();
auto assign = with_location_of(make_intrusive<AssignExpr>(rv_dup, ret_e_dup, false), this);
assign_stmt = with_location_of(make_intrusive<ExprStmt>(assign), this);
if ( ret_e_dup->Tag() == EXPR_CONST ) {
auto ce = ret_e_dup->AsConstExpr();
rv_dup->AsNameExpr()->Id()->GetOptInfo()->SetConst(ce);
}
return assign_stmt;
}
return ThisPtr();
}
void CatchReturnStmt::StmtDescribe(ODesc* d) const {
Stmt::StmtDescribe(d);
block->Describe(d);
DescribeDone(d);
}
TraversalCode CatchReturnStmt::Traverse(TraversalCallback* cb) const {
TraversalCode tc = cb->PreStmt(this);
HANDLE_TC_STMT_PRE(tc);
tc = block->Traverse(cb);
HANDLE_TC_STMT_PRE(tc);
if ( ret_var ) {
tc = ret_var->Traverse(cb);
HANDLE_TC_STMT_PRE(tc);
}
tc = cb->PostStmt(this);
HANDLE_TC_STMT_POST(tc);
}
CheckAnyLenStmt::CheckAnyLenStmt(ExprPtr arg_e, int _expected_len) : ExprStmt(STMT_CHECK_ANY_LEN, std::move(arg_e)) {
expected_len = _expected_len;
}
ValPtr CheckAnyLenStmt::Exec(Frame* f, StmtFlowType& flow) {
RegisterAccess();
flow = FLOW_NEXT;
auto& v = e->Eval(f)->AsListVal()->Vals();
if ( v.size() != static_cast<size_t>(expected_len) )
reporter->ExprRuntimeError(e.get(), "mismatch in list lengths");
return nullptr;
}
StmtPtr CheckAnyLenStmt::Duplicate() { return SetSucc(new CheckAnyLenStmt(e->Duplicate(), expected_len)); }
bool CheckAnyLenStmt::IsReduced(Reducer* c) const { return true; }
StmtPtr CheckAnyLenStmt::DoReduce(Reducer* c) {
// These are created in reduced form.
return ThisPtr();
}
void CheckAnyLenStmt::StmtDescribe(ODesc* d) const {
Stmt::StmtDescribe(d);
e->Describe(d);
if ( ! d->IsBinary() )
d->Add(".length == ");
d->Add(expected_len);
DescribeDone(d);
}
} // namespace zeek::detail