zeek/src/script_opt/ZAM/ZInst.cc

578 lines
15 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include "zeek/script_opt/ZAM/ZInst.h"
#include "zeek/Desc.h"
#include "zeek/Func.h"
#include "zeek/Reporter.h"
using std::string;
namespace zeek::detail {
void ZInst::Dump(zeek_uint_t inst_num, const FrameReMap* mappings) const {
// printf("v%d ", n);
auto id1 = VName(1, inst_num, mappings);
auto id2 = VName(2, inst_num, mappings);
auto id3 = VName(3, inst_num, mappings);
auto id4 = VName(4, inst_num, mappings);
Dump(id1, id2, id3, id4);
}
void ZInst::Dump(const string& id1, const string& id2, const string& id3, const string& id4) const {
printf("%s ", ZOP_name(op));
// printf("(%s) ", op_type_name(op_type));
if ( t && 0 )
printf("(%s) ", type_name(t->Tag()));
switch ( op_type ) {
case OP_X: break;
case OP_V: printf("%s", id1.c_str()); break;
case OP_VV: printf("%s, %s", id1.c_str(), id2.c_str()); break;
case OP_VVV: printf("%s, %s, %s", id1.c_str(), id2.c_str(), id3.c_str()); break;
case OP_VVVV: printf("%s, %s, %s, %s", id1.c_str(), id2.c_str(), id3.c_str(), id4.c_str()); break;
case OP_VVVC: printf("%s, %s, %s, %s", id1.c_str(), id2.c_str(), id3.c_str(), ConstDump().c_str()); break;
case OP_C: printf("%s", ConstDump().c_str()); break;
case OP_VC: printf("%s, %s", id1.c_str(), ConstDump().c_str()); break;
case OP_VVC: printf("%s, %s, %s", id1.c_str(), id2.c_str(), ConstDump().c_str()); break;
case OP_V_I1: printf("%d", v1); break;
case OP_VC_I1: printf("%d %s", v1, ConstDump().c_str()); break;
case OP_VV_FRAME: printf("%s, interpreter frame[%d]", id1.c_str(), v2); break;
case OP_VV_I2: printf("%s, %d", id1.c_str(), v2); break;
case OP_VV_I1_I2: printf("%d, %d", v1, v2); break;
case OP_VVC_I2: printf("%s, %d, %s", id1.c_str(), v2, ConstDump().c_str()); break;
case OP_VVV_I3: printf("%s, %s, %d", id1.c_str(), id2.c_str(), v3); break;
case OP_VVV_I2_I3: printf("%s, %d, %d", id1.c_str(), v2, v3); break;
case OP_VVVV_I4: printf("%s, %s, %s, %d", id1.c_str(), id2.c_str(), id3.c_str(), v4); break;
case OP_VVVV_I3_I4: printf("%s, %s, %d, %d", id1.c_str(), id2.c_str(), v3, v4); break;
case OP_VVVV_I2_I3_I4: printf("%s, %d, %d, %d", id1.c_str(), v2, v3, v4); break;
case OP_VVVC_I3: printf("%s, %s, %d, %s", id1.c_str(), id2.c_str(), v3, ConstDump().c_str()); break;
case OP_VVVC_I2_I3: printf("%s, %d, %d, %s", id1.c_str(), v2, v3, ConstDump().c_str()); break;
case OP_VVVC_I1_I2_I3: printf("%d, %d, %d, %s", v1, v2, v3, ConstDump().c_str()); break;
}
if ( func )
printf(" (func %s)", func->Name());
printf("\n");
}
int ZInst::NumFrameSlots() const {
switch ( op_type ) {
case OP_X:
case OP_C:
case OP_V_I1:
case OP_VC_I1:
case OP_VV_I1_I2:
case OP_VVVC_I1_I2_I3: return 0;
case OP_V:
case OP_VC:
case OP_VV_FRAME:
case OP_VV_I2:
case OP_VVC_I2:
case OP_VVV_I2_I3:
case OP_VVVC_I2_I3:
case OP_VVVV_I2_I3_I4: return 1;
case OP_VV:
case OP_VVC:
case OP_VVV_I3:
case OP_VVVC_I3:
case OP_VVVV_I3_I4: return 2;
case OP_VVV:
case OP_VVVC:
case OP_VVVV_I4: return 3;
case OP_VVVV: return 4;
}
return -1;
}
int ZInst::NumSlots() const {
switch ( op_type ) {
case OP_C:
case OP_X: return 0;
case OP_V:
case OP_V_I1:
case OP_VC:
case OP_VC_I1: return 1;
case OP_VV:
case OP_VVC:
case OP_VV_FRAME:
case OP_VV_I2:
case OP_VVC_I2:
case OP_VV_I1_I2: return 2;
case OP_VVV:
case OP_VVV_I3:
case OP_VVV_I2_I3:
case OP_VVVC:
case OP_VVVC_I3:
case OP_VVVC_I2_I3:
case OP_VVVC_I1_I2_I3: return 3;
case OP_VVVV:
case OP_VVVV_I4:
case OP_VVVV_I3_I4:
case OP_VVVV_I2_I3_I4: return 4;
}
return -1;
}
string ZInst::VName(int n, zeek_uint_t inst_num, const FrameReMap* mappings) const {
if ( n > NumFrameSlots() )
return "";
int slot = n == 1 ? v1 : (n == 2 ? v2 : (n == 3 ? v3 : v4));
if ( slot < 0 )
return "<special>";
// Find which identifier manifests at this instruction.
ASSERT(slot >= 0 && static_cast<zeek_uint_t>(slot) < mappings->size());
auto& map = (*mappings)[slot];
unsigned int i;
for ( i = 0; i < map.id_start.size(); ++i ) {
// If the slot is right at the boundary between two identifiers, then
// it matters whether this is an assigned slot (starts right here) vs.
// not assigned (ignore change right at the boundary and stick with
// older value).
auto target_inst = AssignsToSlot(n) ? inst_num + 1 : inst_num;
if ( map.id_start[i] >= target_inst )
// Went too far.
break;
}
if ( i < map.id_start.size() ) {
ASSERT(i > 0);
}
auto id = map.names.empty() ? map.ids[i - 1]->Name() : map.names[i - 1];
return util::fmt("%d (%s)", slot, id);
}
ValPtr ZInst::ConstVal() const {
switch ( op_type ) {
case OP_C:
case OP_VC:
case OP_VC_I1:
case OP_VVC:
case OP_VVC_I2:
case OP_VVVC:
case OP_VVVC_I3:
case OP_VVVC_I2_I3:
case OP_VVVC_I1_I2_I3: return c.ToVal(t);
case OP_X:
case OP_V:
case OP_VV:
case OP_VVV:
case OP_VVVV:
case OP_V_I1:
case OP_VV_FRAME:
case OP_VV_I2:
case OP_VV_I1_I2:
case OP_VVV_I3:
case OP_VVV_I2_I3:
case OP_VVVV_I4:
case OP_VVVV_I3_I4:
case OP_VVVV_I2_I3_I4: return nullptr;
}
return nullptr;
}
bool ZInst::IsLoopIterationAdvancement() const {
switch ( op ) {
case OP_NEXT_TABLE_ITER_VV:
case OP_NEXT_TABLE_ITER_NO_VARS_VV:
case OP_NEXT_TABLE_ITER_VAL_VAR_VVV:
case OP_NEXT_TABLE_ITER_VAL_VAR_NO_VARS_VVV:
case OP_NEXT_VECTOR_ITER_VVV:
case OP_NEXT_VECTOR_BLANK_ITER_VV:
case OP_NEXT_VECTOR_ITER_VAL_VAR_VVVV:
case OP_NEXT_VECTOR_BLANK_ITER_VAL_VAR_VVV:
case OP_NEXT_STRING_ITER_VVV:
case OP_NEXT_STRING_BLANK_ITER_VV: return true;
default: return false;
}
}
bool ZInst::AssignsToSlot1() const {
switch ( op_type ) {
case OP_X:
case OP_C:
case OP_V_I1:
case OP_VC_I1:
case OP_VV_I1_I2:
case OP_VVVC_I1_I2_I3: return false;
// We use this ginormous set of cases rather than "default" so
// that when we add a new operand type, we have to consider
// its behavior here. (Same for many of the other switch's
// used for ZInst/ZinstI.)
case OP_V:
case OP_VC:
case OP_VV_FRAME:
case OP_VV_I2:
case OP_VVC_I2:
case OP_VVV_I2_I3:
case OP_VVVC_I2_I3:
case OP_VVVV_I2_I3_I4:
case OP_VV:
case OP_VVC:
case OP_VVV_I3:
case OP_VVVV_I3_I4:
case OP_VVVC_I3:
case OP_VVV:
case OP_VVVC:
case OP_VVVV_I4:
case OP_VVVV: auto fl = op1_flavor[op]; return fl == OP1_WRITE || fl == OP1_READ_WRITE;
}
return false;
}
bool ZInst::AssignsToSlot(int slot) const {
switch ( op ) {
case OP_NEXT_VECTOR_ITER_VAL_VAR_VVVV: return slot == 1 || slot == 2;
default: return slot == 1 && AssignsToSlot1();
}
}
string ZInst::ConstDump() const {
auto v = ConstVal();
ODesc d;
d.Clear();
v->Describe(&d);
return d.Description();
}
void ZInstI::Dump(const FrameMap* frame_ids, const FrameReMap* remappings) const {
int n = NumFrameSlots();
// printf("v%d ", n);
auto id1 = VName(1, frame_ids, remappings);
auto id2 = VName(2, frame_ids, remappings);
auto id3 = VName(3, frame_ids, remappings);
auto id4 = VName(4, frame_ids, remappings);
ZInst::Dump(id1, id2, id3, id4);
}
string ZInstI::VName(int n, const FrameMap* frame_ids, const FrameReMap* remappings) const {
if ( n > NumFrameSlots() )
return "";
int slot = n == 1 ? v1 : (n == 2 ? v2 : (n == 3 ? v3 : v4));
if ( slot < 0 )
return "<special>";
const ID* id;
if ( remappings && live ) { // Find which identifier manifests at this instruction.
ASSERT(slot >= 0 && static_cast<zeek_uint_t>(slot) < remappings->size());
auto& map = (*remappings)[slot];
unsigned int i;
auto inst_num_u = static_cast<zeek_uint_t>(inst_num);
for ( i = 0; i < map.id_start.size(); ++i ) {
// See discussion for ZInst::VName, though this is
// a tad different since we have the general notion
// of AssignsToSlot().
if ( AssignsToSlot(n) ) {
if ( map.id_start[i] > inst_num_u )
break;
}
else if ( map.id_start[i] >= inst_num_u )
// Went too far.
break;
}
if ( i < map.id_start.size() ) {
ASSERT(i > 0);
}
// For ZInstI's, map.ids is always populated.
id = map.ids[i - 1];
}
else
id = (*frame_ids)[slot];
return util::fmt("%d (%s)", slot, id->Name());
}
bool ZInstI::DoesNotContinue() const {
switch ( op ) {
case OP_GOTO_V:
case OP_HOOK_BREAK_X:
case OP_RETURN_C:
case OP_RETURN_V:
case OP_RETURN_X: return true;
default: return false;
}
}
bool ZInstI::IsDirectAssignment() const {
if ( op_type != OP_VV )
return false;
switch ( op ) {
case OP_ASSIGN_VV_A:
case OP_ASSIGN_VV_D:
case OP_ASSIGN_VV_F:
case OP_ASSIGN_VV_I:
case OP_ASSIGN_VV_L:
case OP_ASSIGN_VV_N:
case OP_ASSIGN_VV_O:
case OP_ASSIGN_VV_P:
case OP_ASSIGN_VV_R:
case OP_ASSIGN_VV_S:
case OP_ASSIGN_VV_T:
case OP_ASSIGN_VV_U:
case OP_ASSIGN_VV_V:
case OP_ASSIGN_VV_a:
case OP_ASSIGN_VV_f:
case OP_ASSIGN_VV_t:
case OP_ASSIGN_VV: return true;
default: return false;
}
}
bool ZInstI::HasCaptures() const {
switch ( op ) {
case OP_LAMBDA_VV:
case OP_WHEN_V:
case OP_WHEN_TIMEOUT_VV:
case OP_WHEN_TIMEOUT_VC: return true;
default: return false;
}
}
bool ZInstI::HasSideEffects() const { return op_side_effects[op]; }
bool ZInstI::UsesSlot(int slot) const {
auto fl = op1_flavor[op];
auto v1_relevant = fl == OP1_READ || fl == OP1_READ_WRITE;
auto v1_match = v1_relevant && v1 == slot;
switch ( op_type ) {
case OP_X:
case OP_C:
case OP_V_I1:
case OP_VC_I1:
case OP_VV_I1_I2:
case OP_VVVC_I1_I2_I3: return false;
case OP_V:
case OP_VC:
case OP_VV_FRAME:
case OP_VV_I2:
case OP_VVC_I2:
case OP_VVV_I2_I3:
case OP_VVVC_I2_I3:
case OP_VVVV_I2_I3_I4: return v1_match;
case OP_VV:
case OP_VVC:
case OP_VVV_I3:
case OP_VVVV_I3_I4:
case OP_VVVC_I3: return v1_match || v2 == slot;
case OP_VVV:
case OP_VVVC:
case OP_VVVV_I4: return v1_match || v2 == slot || v3 == slot;
case OP_VVVV: return v1_match || v2 == slot || v3 == slot || v4 == slot;
}
return false;
}
bool ZInstI::UsesSlots(int& s1, int& s2, int& s3, int& s4) const {
s1 = s2 = s3 = s4 = -1;
auto fl = op1_flavor[op];
auto v1_relevant = fl == OP1_READ || fl == OP1_READ_WRITE;
switch ( op_type ) {
case OP_X:
case OP_C:
case OP_V_I1:
case OP_VC_I1:
case OP_VV_I1_I2:
case OP_VVVC_I1_I2_I3: return false;
case OP_V:
case OP_VC:
case OP_VV_FRAME:
case OP_VV_I2:
case OP_VVC_I2:
case OP_VVV_I2_I3:
case OP_VVVC_I2_I3:
case OP_VVVV_I2_I3_I4:
if ( ! v1_relevant )
return false;
s1 = v1;
return true;
case OP_VV:
case OP_VVC:
case OP_VVV_I3:
case OP_VVVV_I3_I4:
case OP_VVVC_I3:
s1 = v2;
if ( v1_relevant )
s2 = v1;
return true;
case OP_VVV:
case OP_VVVC:
case OP_VVVV_I4:
s1 = v2;
s2 = v3;
if ( v1_relevant )
s3 = v1;
return true;
case OP_VVVV:
s1 = v2;
s2 = v3;
s3 = v4;
if ( v1_relevant )
s4 = v1;
return true;
}
return false;
}
void ZInstI::UpdateSlots(std::vector<int>& slot_mapping) {
switch ( op_type ) {
case OP_X:
case OP_C:
case OP_V_I1:
case OP_VC_I1:
case OP_VV_I1_I2:
case OP_VVVC_I1_I2_I3: return; // so we don't do any v1 remapping.
case OP_V:
case OP_VC:
case OP_VV_FRAME:
case OP_VV_I2:
case OP_VVC_I2:
case OP_VVV_I2_I3:
case OP_VVVC_I2_I3:
case OP_VVVV_I2_I3_I4: break;
case OP_VV:
case OP_VVC:
case OP_VVV_I3:
case OP_VVVV_I3_I4:
case OP_VVVC_I3: v2 = slot_mapping[v2]; break;
case OP_VVV:
case OP_VVVC:
case OP_VVVV_I4:
v2 = slot_mapping[v2];
v3 = slot_mapping[v3];
break;
case OP_VVVV:
v2 = slot_mapping[v2];
v3 = slot_mapping[v3];
v4 = slot_mapping[v4];
break;
}
// Note, unlike for UsesSlots() we do *not* include OP1_READ_WRITE
// here, because such instructions will already have v1 remapped
// given it's an assignment target.
if ( op1_flavor[op] == OP1_READ && v1 >= 0 )
v1 = slot_mapping[v1];
}
bool ZInstI::IsGlobalLoad() const {
if ( op == OP_LOAD_GLOBAL_TYPE_VV )
// These don't have flavors.
return true;
static std::unordered_set<ZOp> global_ops;
if ( global_ops.empty() ) { // Initialize the set.
for ( int t = 0; t < NUM_TYPES; ++t ) {
TypeTag tag = TypeTag(t);
ZOp global_op_flavor = AssignmentFlavor(OP_LOAD_GLOBAL_VV, tag, false);
if ( global_op_flavor != OP_NOP )
global_ops.insert(global_op_flavor);
}
}
return global_ops.count(op) > 0;
}
bool ZInstI::IsCaptureLoad() const { return op == OP_LOAD_CAPTURE_VV || op == OP_LOAD_MANAGED_CAPTURE_VV; }
void ZInstI::InitConst(const ConstExpr* ce) {
auto v = ce->ValuePtr();
t = ce->GetType();
c = ZVal(v, t);
if ( ZAM_error )
reporter->InternalError("bad value compiling code");
}
} // namespace zeek::detail