zeek/src/RE.h
Jon Siwek 171c6ce86b Refactor regex/signature AcceptingSet data structure and usages.
Several parts of that code would do membership checks and that's going
to be more efficient with a set instead of a list data structure.
2014-04-21 16:55:51 -05:00

233 lines
6.1 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#ifndef re_h
#define re_h
#include "Obj.h"
#include "Dict.h"
#include "BroString.h"
#include "CCL.h"
#include "EquivClass.h"
#include <set>
#include <map>
#include <ctype.h>
typedef int (*cce_func)(int);
class CCL;
class NFA_Machine;
class DFA_Machine;
class Specific_RE_Matcher;
class RE_Matcher;
class DFA_State;
declare(PDict,char);
declare(PDict,CCL);
declare(PList,CCL);
extern int case_insensitive;
extern CCL* curr_ccl;
extern NFA_Machine* nfa;
extern Specific_RE_Matcher* rem;
extern const char* RE_parse_input;
extern int re_lex(void);
extern int clower(int);
extern void synerr(const char str[]);
typedef int AcceptIdx;
typedef std::set<AcceptIdx> AcceptingSet;
typedef uint64 MatchPos;
typedef std::map<AcceptIdx, MatchPos> AcceptingMatchSet;
typedef name_list string_list;
typedef enum { MATCH_ANYWHERE, MATCH_EXACTLY, } match_type;
// A "specific" RE matcher will match one type of pattern: either
// MATCH_ANYWHERE or MATCH_EXACTLY.
class Specific_RE_Matcher {
public:
Specific_RE_Matcher(match_type mt, int multiline=0);
~Specific_RE_Matcher();
void AddPat(const char* pat);
void SetPat(const char* pat) { pattern_text = copy_string(pat); }
int Compile(int lazy = 0);
// The following is vestigial from flex's use of "{name}" definitions.
// It's here because at some point we may want to support such
// functionality.
const char* LookupDef(const char* def);
void InsertCCL(const char* txt, CCL* ccl) { ccl_dict.Insert(txt, ccl); }
int InsertCCL(CCL* ccl)
{
ccl_list.append(ccl);
return ccl_list.length() - 1;
}
CCL* LookupCCL(const char* txt) { return ccl_dict.Lookup(txt); }
CCL* LookupCCL(int index) { return ccl_list[index]; }
CCL* AnyCCL();
void ConvertCCLs();
int MatchAll(const char* s);
int MatchAll(const BroString* s);
// Compiles a set of regular expressions simultaniously.
// 'idx' contains indizes associated with the expressions.
// On matching, the set of indizes is returned which correspond
// to the matching expressions. (idx must not contain zeros).
int CompileSet(const string_list& set, const int_list& idx);
// Returns the position in s just beyond where the first match
// occurs, or 0 if there is no such position in s. Note that
// if the pattern matches empty strings, matching continues
// in an attempt to match at least one character.
int Match(const char* s);
int Match(const BroString* s);
int LongestMatch(const char* s);
int LongestMatch(const BroString* s);
int LongestMatch(const u_char* bv, int n);
EquivClass* EC() { return &equiv_class; }
const char* PatternText() const { return pattern_text; }
DFA_Machine* DFA() const { return dfa; }
void Dump(FILE* f);
unsigned int MemoryAllocation() const;
protected:
void AddAnywherePat(const char* pat);
void AddExactPat(const char* pat);
// Used by the above. orig_fmt is the format to use when building
// up a new pattern_text from the given pattern; app_fmt is for when
// appending to an existing pattern_text.
void AddPat(const char* pat, const char* orig_fmt, const char* app_fmt);
int MatchAll(const u_char* bv, int n);
int Match(const u_char* bv, int n);
match_type mt;
int multiline;
char* pattern_text;
PDict(char) defs;
PDict(CCL) ccl_dict;
PList(CCL) ccl_list;
EquivClass equiv_class;
int* ecs;
DFA_Machine* dfa;
CCL* any_ccl;
AcceptingSet* accepted;
};
class RE_Match_State {
public:
RE_Match_State(Specific_RE_Matcher* matcher)
{
dfa = matcher->DFA() ? matcher->DFA() : 0;
ecs = matcher->EC()->EquivClasses();
current_pos = -1;
current_state = 0;
}
const AcceptingMatchSet& AcceptedMatches() const
{ return accepted_matches; }
// Returns the number of bytes feeded into the matcher so far
int Length() { return current_pos; }
// Returns true if this inputs leads to at least one new match.
// If clear is true, starts matching over.
bool Match(const u_char* bv, int n, bool bol, bool eol, bool clear);
void Clear()
{
current_pos = -1;
current_state = 0;
accepted_matches.clear();
}
void AddMatches(const AcceptingSet& as, MatchPos position);
protected:
DFA_Machine* dfa;
int* ecs;
AcceptingMatchSet accepted_matches;
DFA_State* current_state;
int current_pos;
};
class RE_Matcher : SerialObj {
public:
RE_Matcher();
RE_Matcher(const char* pat);
virtual ~RE_Matcher();
void AddDef(const char* defn_name, const char* defn_val);
void AddPat(const char* pat);
int Compile(int lazy = 0);
// Returns true if s exactly matches the pattern, false otherwise.
int MatchExactly(const char* s)
{ return re_exact->MatchAll(s); }
int MatchExactly(const BroString* s)
{ return re_exact->MatchAll(s); }
// Returns the position in s just beyond where the first match
// occurs, or 0 if there is no such position in s. Note that
// if the pattern matches empty strings, matching continues
// in an attempt to match at least one character.
int MatchAnywhere(const char* s)
{ return re_anywhere->Match(s); }
int MatchAnywhere(const BroString* s)
{ return re_anywhere->Match(s); }
// Note: it matches the *longest* prefix and returns the
// length of matched prefix. It returns -1 on mismatch.
int MatchPrefix(const char* s)
{ return re_exact->LongestMatch(s); }
int MatchPrefix(const BroString* s)
{ return re_exact->LongestMatch(s); }
int MatchPrefix(const u_char* s, int n)
{ return re_exact->LongestMatch(s, n); }
const char* PatternText() const { return re_exact->PatternText(); }
const char* AnywherePatternText() const { return re_anywhere->PatternText(); }
bool Serialize(SerialInfo* info) const;
static RE_Matcher* Unserialize(UnserialInfo* info);
unsigned int MemoryAllocation() const
{
return padded_sizeof(*this)
+ (re_anywhere ? re_anywhere->MemoryAllocation() : 0)
+ (re_exact ? re_exact->MemoryAllocation() : 0);
}
protected:
DECLARE_SERIAL(RE_Matcher);
Specific_RE_Matcher* re_anywhere;
Specific_RE_Matcher* re_exact;
};
declare(PList, RE_Matcher);
typedef PList(RE_Matcher) re_matcher_list;
extern RE_Matcher* RE_Matcher_conjunction(const RE_Matcher* re1, const RE_Matcher* re2);
extern RE_Matcher* RE_Matcher_disjunction(const RE_Matcher* re1, const RE_Matcher* re2);
#endif