zeek/src/threading/Queue.h
Robin Sommer 64812daa50 Next version of the threading queue deadlock fix.
We now just use the read/write counters, as suggested by Gilbert.
2013-10-26 19:15:43 -07:00

276 lines
6 KiB
C++

#ifndef THREADING_QUEUE_H
#define THREADING_QUEUE_H
#include <pthread.h>
#include <queue>
#include <deque>
#include <stdint.h>
#include <sys/time.h>
#include "Reporter.h"
#include "BasicThread.h"
#undef Queue // Defined elsewhere unfortunately.
namespace threading {
/**
* A thread-safe single-reader single-writer queue.
*
* The implementation uses multiple queues and reads/writes in rotary fashion
* in an attempt to limit contention.
*
* All Queue instances must be instantiated by Bro's main thread.
*
* TODO: Unclear how critical performance is for this qeueue. We could like;y
* optimize it further if helpful.
*/
template<typename T>
class Queue
{
public:
/**
* Constructor.
*
* reader, writer: The corresponding threads. This is for checking
* whether they have terminated so that we can abort I/O opeations.
* Can be left null for the main thread.
*/
Queue(BasicThread* arg_reader, BasicThread* arg_writer);
/**
* Destructor.
*/
~Queue();
/**
* Retrieves one element. This may block for a little while of no
* input is available and eventually return with a null element if
* nothing shows up.
*/
T Get();
/**
* Queues one element.
*/
void Put(T data);
/**
* Returns true if the next Get() operation will succeed.
*/
bool Ready();
/**
* Returns true if the next Get() operation might succeed. This
* function may occasionally return a value not indicating the actual
* state, but won't do so very often. Note that this means that it can
* consistently return false even if there is something in the Queue.
* You have to check real queue status from time to time to be sure that
* it is empty. In other words, this method helps to avoid locking the queue
* frequently, but doesn't allow you to forgo it completely.
*/
bool MaybeReady() { return (num_reads != num_writes); }
/** Wake up the reader if it's currently blocked for input. This is
primarily to give it a chance to check termination quickly.
**/
void WakeUp();
/**
* Returns the number of queued items not yet retrieved.
*/
uint64_t Size();
/**
* Statistics about inter-thread communication.
*/
struct Stats
{
uint64_t num_reads; //! Number of messages read from the queue.
uint64_t num_writes; //! Number of messages written to the queue.
};
/**
* Returns statistics about the queue's usage.
*
* @param stats A pointer to a structure that will be filled with
* current numbers. */
void GetStats(Stats* stats);
private:
static const int NUM_QUEUES = 8;
pthread_mutex_t mutex[NUM_QUEUES]; // Mutex protected shared accesses.
pthread_cond_t has_data[NUM_QUEUES]; // Signals when data becomes available
std::queue<T> messages[NUM_QUEUES]; // Actually holds the queued messages
int read_ptr; // Where the next operation will read from
int write_ptr; // Where the next operation will write to
BasicThread* reader;
BasicThread* writer;
// Statistics.
uint64_t num_reads;
uint64_t num_writes;
};
inline static void safe_lock(pthread_mutex_t* mutex)
{
int res = pthread_mutex_lock(mutex);
if ( res != 0 )
reporter->FatalErrorWithCore("cannot lock mutex: %d(%s)", res, strerror(res));
}
inline static void safe_unlock(pthread_mutex_t* mutex)
{
if ( pthread_mutex_unlock(mutex) != 0 )
reporter->FatalErrorWithCore("cannot unlock mutex");
}
template<typename T>
inline Queue<T>::Queue(BasicThread* arg_reader, BasicThread* arg_writer)
{
read_ptr = 0;
write_ptr = 0;
num_reads = num_writes = 0;
reader = arg_reader;
writer = arg_writer;
for( int i = 0; i < NUM_QUEUES; ++i )
{
if ( pthread_cond_init(&has_data[i], 0) != 0 )
reporter->FatalError("cannot init queue condition variable");
if ( pthread_mutex_init(&mutex[i], 0) != 0 )
reporter->FatalError("cannot init queue mutex");
}
}
template<typename T>
inline Queue<T>::~Queue()
{
for( int i = 0; i < NUM_QUEUES; ++i )
{
pthread_cond_destroy(&has_data[i]);
pthread_mutex_destroy(&mutex[i]);
}
}
template<typename T>
inline T Queue<T>::Get()
{
safe_lock(&mutex[read_ptr]);
int old_read_ptr = read_ptr;
if ( messages[read_ptr].empty() && ! ((reader && reader->Killed()) || (writer && writer->Killed())) )
{
struct timespec ts;
ts.tv_sec = time(0) + 5;
ts.tv_nsec = 0;
pthread_cond_timedwait(&has_data[read_ptr], &mutex[read_ptr], &ts);
safe_unlock(&mutex[read_ptr]);
return 0;
}
else if ( messages[read_ptr].empty() )
{
safe_unlock(&mutex[read_ptr]);
return 0;
}
T data = messages[read_ptr].front();
messages[read_ptr].pop();
read_ptr = (read_ptr + 1) % NUM_QUEUES;
++num_reads;
safe_unlock(&mutex[old_read_ptr]);
return data;
}
template<typename T>
inline void Queue<T>::Put(T data)
{
safe_lock(&mutex[write_ptr]);
int old_write_ptr = write_ptr;
bool need_signal = messages[write_ptr].empty();
messages[write_ptr].push(data);
if ( need_signal )
pthread_cond_signal(&has_data[write_ptr]);
write_ptr = (write_ptr + 1) % NUM_QUEUES;
++num_writes;
safe_unlock(&mutex[old_write_ptr]);
}
template<typename T>
inline bool Queue<T>::Ready()
{
safe_lock(&mutex[read_ptr]);
bool ret = (messages[read_ptr].size());
safe_unlock(&mutex[read_ptr]);
return ret;
}
template<typename T>
inline uint64_t Queue<T>::Size()
{
// Need to lock all queues.
for ( int i = 0; i < NUM_QUEUES; i++ )
safe_lock(&mutex[i]);
uint64_t size = 0;
for ( int i = 0; i < NUM_QUEUES; i++ )
size += messages[i].size();
for ( int i = 0; i < NUM_QUEUES; i++ )
safe_unlock(&mutex[i]);
return size;
}
template<typename T>
inline void Queue<T>::GetStats(Stats* stats)
{
// To be safe, we look all queues. That's probably unneccessary, but
// doesn't really hurt.
for ( int i = 0; i < NUM_QUEUES; i++ )
safe_lock(&mutex[i]);
stats->num_reads = num_reads;
stats->num_writes = num_writes;
for ( int i = 0; i < NUM_QUEUES; i++ )
safe_unlock(&mutex[i]);
}
template<typename T>
inline void Queue<T>::WakeUp()
{
for ( int i = 0; i < NUM_QUEUES; i++ )
{
safe_lock(&mutex[i]);
pthread_cond_signal(&has_data[i]);
safe_unlock(&mutex[i]);
}
}
}
#endif