zeek/src/Expr.cc
Jon Siwek 87962a48dd Add a new attribute: &deprecated.
While scripts are parsed, a warning is raised for each usage of an
identifier marked as &deprecated.  This also works for BIFs.

Addresses BIT-924, BIT-757.
2015-01-21 09:40:50 -06:00

5985 lines
115 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include "config.h"
#include "Expr.h"
#include "Event.h"
#include "Frame.h"
#include "Func.h"
#include "RE.h"
#include "Scope.h"
#include "Stmt.h"
#include "EventRegistry.h"
#include "RemoteSerializer.h"
#include "Net.h"
#include "Traverse.h"
#include "Trigger.h"
#include "IPAddr.h"
const char* expr_name(BroExprTag t)
{
static char errbuf[512];
static const char* expr_names[int(NUM_EXPRS)] = {
"name", "const",
"(*)",
"++", "--", "!", "+", "-",
"+", "-", "+=", "-=", "*", "/", "%", "&&", "||",
"<", "<=", "==", "!=", ">=", ">", "?:", "ref",
"=", "~", "[]", "$", "?$", "[=]",
"table()", "set()", "vector()",
"$=", "in", "<<>>",
"()", "event", "schedule",
"coerce", "record_coerce", "table_coerce",
"sizeof", "flatten"
};
if ( int(t) >= NUM_EXPRS )
{
static char errbuf[512];
// This isn't quite right - we return a static buffer,
// so multiple calls to expr_name() could lead to confusion
// by overwriting the buffer. But oh well.
snprintf(errbuf, sizeof(errbuf),
"%d: not an expression tag", int(t));
return errbuf;
}
return expr_names[int(t)];
}
Expr::Expr(BroExprTag arg_tag)
{
tag = arg_tag;
type = 0;
paren = 0;
SetLocationInfo(&start_location, &end_location);
}
Expr::~Expr()
{
Unref(type);
}
int Expr::CanAdd() const
{
return 0;
}
int Expr::CanDel() const
{
return 0;
}
void Expr::Add(Frame* /* f */)
{
Internal("Expr::Delete called");
}
void Expr::Delete(Frame* /* f */)
{
Internal("Expr::Delete called");
}
Expr* Expr::MakeLvalue()
{
if ( ! IsError() )
ExprError("can't be assigned to");
return this;
}
void Expr::EvalIntoAggregate(const BroType* /* t */, Val* /* aggr */,
Frame* /* f */) const
{
Internal("Expr::EvalIntoAggregate called");
}
void Expr::Assign(Frame* /* f */, Val* /* v */, Opcode /* op */)
{
Internal("Expr::Assign called");
}
BroType* Expr::InitType() const
{
return type->Ref();
}
int Expr::IsRecordElement(TypeDecl* /* td */) const
{
return 0;
}
int Expr::IsPure() const
{
return 1;
}
Val* Expr::InitVal(const BroType* t, Val* aggr) const
{
if ( aggr )
{
Error("bad initializer");
return 0;
}
if ( IsError() )
return 0;
return check_and_promote(Eval(0), t, 1);
}
void Expr::SetError(const char* msg)
{
Error(msg);
SetError();
}
void Expr::Describe(ODesc* d) const
{
if ( IsParen() && ! d->IsBinary() )
d->Add("(");
if ( d->IsPortable() || d->IsBinary() )
AddTag(d);
ExprDescribe(d);
if ( IsParen() && ! d->IsBinary() )
d->Add(")");
}
void Expr::AddTag(ODesc* d) const
{
if ( d->IsBinary() )
d->Add(int(Tag()));
else
d->AddSP(expr_name(Tag()));
}
void Expr::Canonicize()
{
}
void Expr::SetType(BroType* t)
{
if ( ! type || type->Tag() != TYPE_ERROR )
{
Unref(type);
type = t;
}
else
Unref(t);
}
void Expr::ExprError(const char msg[])
{
Error(msg);
SetError();
}
bool Expr::Serialize(SerialInfo* info) const
{
return SerialObj::Serialize(info);
}
Expr* Expr::Unserialize(UnserialInfo* info, BroExprTag want)
{
Expr* e = (Expr*) SerialObj::Unserialize(info, SER_EXPR);
if ( ! e )
return 0;
if ( want != EXPR_ANY && e->tag != want )
{
info->s->Error("wrong expression type");
Unref(e);
return 0;
}
return e;
}
bool Expr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_EXPR, BroObj);
if ( ! (SERIALIZE(char(tag)) && SERIALIZE(paren)) )
return false;
SERIALIZE_OPTIONAL(type);
return true;
}
bool Expr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BroObj);
char c;
if ( ! (UNSERIALIZE(&c) && UNSERIALIZE(&paren)) )
return 0;
tag = BroExprTag(c);
BroType* t = 0;
UNSERIALIZE_OPTIONAL(t, BroType::Unserialize(info));
SetType(t);
return true;
}
NameExpr::NameExpr(ID* arg_id, bool const_init) : Expr(EXPR_NAME)
{
id = arg_id;
in_const_init = const_init;
if ( id->AsType() )
SetType(new TypeType(id->AsType()));
else
SetType(id->Type()->Ref());
EventHandler* h = event_registry->Lookup(id->Name());
if ( h )
h->SetUsed();
}
NameExpr::~NameExpr()
{
Unref(id);
}
Expr* NameExpr::Simplify(SimplifyType simp_type)
{
if ( simp_type != SIMPLIFY_LHS && id->IsConst() )
{
Val* v = Eval(0);
if ( v )
return new ConstExpr(v);
}
return this;
}
Val* NameExpr::Eval(Frame* f) const
{
Val* v;
if ( id->AsType() )
return new Val(id->AsType(), true);
if ( id->IsGlobal() )
v = id->ID_Val();
else if ( f )
v = f->NthElement(id->Offset());
else
// No frame - evaluating for Simplify() purposes
return 0;
if ( v )
return v->Ref();
else
{
Error("value used but not set");
return 0;
}
}
Expr* NameExpr::MakeLvalue()
{
if ( id->AsType() )
ExprError("Type name is not an lvalue");
if ( id->IsConst() && ! in_const_init )
ExprError("const is not a modifiable lvalue");
return new RefExpr(this);
}
void NameExpr::Assign(Frame* f, Val* v, Opcode op)
{
if ( id->IsGlobal() )
id->SetVal(v, op);
else
f->SetElement(id->Offset(), v);
}
int NameExpr::IsPure() const
{
return id->IsConst();
}
TraversalCode NameExpr::Traverse(TraversalCallback* cb) const
{
TraversalCode tc = cb->PreExpr(this);
HANDLE_TC_EXPR_PRE(tc);
tc = id->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = cb->PostExpr(this);
HANDLE_TC_EXPR_POST(tc);
}
void NameExpr::ExprDescribe(ODesc* d) const
{
if ( d->IsReadable() )
d->Add(id->Name());
else
{
if ( d->IsPortable() )
d->Add(id->Name());
else
d->AddCS(id->Name());
}
}
IMPLEMENT_SERIAL(NameExpr, SER_NAME_EXPR);
bool NameExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_NAME_EXPR, Expr);
// Write out just the name of the function if requested.
if ( info->globals_as_names && id->IsGlobal() )
return SERIALIZE('n') && SERIALIZE(id->Name()) &&
SERIALIZE(in_const_init);
else
return SERIALIZE('f') && id->Serialize(info) &&
SERIALIZE(in_const_init);
}
bool NameExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(Expr);
char type;
if ( ! UNSERIALIZE(&type) )
return false;
if ( type == 'n' )
{
const char* name;
if ( ! UNSERIALIZE_STR(&name, 0) )
return false;
id = global_scope()->Lookup(name);
if ( id )
::Ref(id);
else
reporter->Warning("configuration changed: unserialized unknown global name from persistent state");
delete [] name;
}
else
id = ID::Unserialize(info);
if ( ! id )
return false;
if ( ! UNSERIALIZE(&in_const_init) )
return false;
return true;
}
ConstExpr::ConstExpr(Val* arg_val) : Expr(EXPR_CONST)
{
val = arg_val;
if ( val->Type()->Tag() == TYPE_LIST && val->AsListVal()->Length() == 1 )
{
val = val->AsListVal()->Index(0);
val->Ref();
Unref(arg_val);
}
SetType(val->Type()->Ref());
}
ConstExpr::~ConstExpr()
{
Unref(val);
}
void ConstExpr::ExprDescribe(ODesc* d) const
{
val->Describe(d);
}
Expr* ConstExpr::Simplify(SimplifyType /* simp_type */)
{
return this;
}
Val* ConstExpr::Eval(Frame* /* f */) const
{
return Value()->Ref();
}
TraversalCode ConstExpr::Traverse(TraversalCallback* cb) const
{
TraversalCode tc = cb->PreExpr(this);
HANDLE_TC_EXPR_PRE(tc);
tc = cb->PostExpr(this);
HANDLE_TC_EXPR_POST(tc);
}
IMPLEMENT_SERIAL(ConstExpr, SER_CONST_EXPR);
bool ConstExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_CONST_EXPR, Expr);
return val->Serialize(info);
}
bool ConstExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(Expr);
val = Val::Unserialize(info);
return val != 0;
}
UnaryExpr::UnaryExpr(BroExprTag arg_tag, Expr* arg_op) : Expr(arg_tag)
{
op = arg_op;
if ( op->IsError() )
SetError();
}
UnaryExpr::~UnaryExpr()
{
Unref(op);
}
Expr* UnaryExpr::Simplify(SimplifyType simp_type)
{
if ( IsError() )
return this;
op = simplify_expr(op, simp_type);
Canonicize();
return DoSimplify();
}
Val* UnaryExpr::Eval(Frame* f) const
{
if ( IsError() )
return 0;
Val* v = op->Eval(f);
if ( ! v )
return 0;
if ( is_vector(v) )
{
VectorVal* v_op = v->AsVectorVal();
VectorVal* result = new VectorVal(Type()->AsVectorType());
for ( unsigned int i = 0; i < v_op->Size(); ++i )
{
Val* v_i = v_op->Lookup(i);
result->Assign(i, v_i ? Fold(v_i) : 0);
}
Unref(v);
return result;
}
else
{
Val* result = Fold(v);
Unref(v);
return result;
}
}
int UnaryExpr::IsPure() const
{
return op->IsPure();
}
TraversalCode UnaryExpr::Traverse(TraversalCallback* cb) const
{
TraversalCode tc = cb->PreExpr(this);
HANDLE_TC_EXPR_PRE(tc);
tc = op->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = cb->PostExpr(this);
HANDLE_TC_EXPR_POST(tc);
}
Expr* UnaryExpr::DoSimplify()
{
return this;
}
Val* UnaryExpr::Fold(Val* v) const
{
return v->Ref();
}
void UnaryExpr::ExprDescribe(ODesc* d) const
{
bool is_coerce =
Tag() == EXPR_ARITH_COERCE || Tag() == EXPR_RECORD_COERCE ||
Tag() == EXPR_TABLE_COERCE;
if ( d->IsReadable() )
{
if ( is_coerce )
d->Add("(coerce ");
else if ( Tag() == EXPR_FLATTEN )
d->Add("flatten ");
else if ( Tag() != EXPR_REF )
d->Add(expr_name(Tag()));
}
op->Describe(d);
if ( d->IsReadable() && is_coerce )
{
d->Add(" to ");
Type()->Describe(d);
d->Add(")");
}
}
IMPLEMENT_SERIAL(UnaryExpr, SER_UNARY_EXPR);
bool UnaryExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_UNARY_EXPR, Expr);
return op->Serialize(info);
}
bool UnaryExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(Expr);
op = Expr::Unserialize(info);
return op != 0;
}
BinaryExpr::~BinaryExpr()
{
Unref(op1);
Unref(op2);
}
Expr* BinaryExpr::Simplify(SimplifyType /* simp_type */)
{
if ( IsError() )
return this;
SimplifyOps();
if ( BothConst() )
return new ConstExpr(Fold(op1->ExprVal(), op2->ExprVal()));
else
return DoSimplify();
}
Val* BinaryExpr::Eval(Frame* f) const
{
if ( IsError() )
return 0;
Val* v1 = op1->Eval(f);
if ( ! v1 )
return 0;
Val* v2 = op2->Eval(f);
if ( ! v2 )
{
Unref(v1);
return 0;
}
Val* result = 0;
int is_vec1 = is_vector(v1);
int is_vec2 = is_vector(v2);
if ( is_vec1 && is_vec2 )
{ // fold pairs of elements
VectorVal* v_op1 = v1->AsVectorVal();
VectorVal* v_op2 = v2->AsVectorVal();
if ( v_op1->Size() != v_op2->Size() )
{
Error("vector operands are of different sizes");
return 0;
}
VectorVal* v_result = new VectorVal(Type()->AsVectorType());
for ( unsigned int i = 0; i < v_op1->Size(); ++i )
{
if ( v_op1->Lookup(i) && v_op2->Lookup(i) )
v_result->Assign(i,
Fold(v_op1->Lookup(i),
v_op2->Lookup(i)));
else
v_result->Assign(i, 0);
// SetError("undefined element in vector operation");
}
Unref(v1);
Unref(v2);
return v_result;
}
if ( IsVector(Type()->Tag()) && (is_vec1 || is_vec2) )
{ // fold vector against scalar
VectorVal* vv = (is_vec1 ? v1 : v2)->AsVectorVal();
VectorVal* v_result = new VectorVal(Type()->AsVectorType());
for ( unsigned int i = 0; i < vv->Size(); ++i )
{
Val* vv_i = vv->Lookup(i);
if ( vv_i )
v_result->Assign(i,
is_vec1 ?
Fold(vv_i, v2) : Fold(v1, vv_i));
else
v_result->Assign(i, 0);
// SetError("Undefined element in vector operation");
}
Unref(v1);
Unref(v2);
return v_result;
}
// scalar op scalar
result = Fold(v1, v2);
Unref(v1);
Unref(v2);
return result;
}
int BinaryExpr::IsPure() const
{
return op1->IsPure() && op2->IsPure();
}
TraversalCode BinaryExpr::Traverse(TraversalCallback* cb) const
{
TraversalCode tc = cb->PreExpr(this);
HANDLE_TC_EXPR_PRE(tc);
tc = op1->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = op2->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = cb->PostExpr(this);
HANDLE_TC_EXPR_POST(tc);
}
Expr* BinaryExpr::DoSimplify()
{
return this;
}
void BinaryExpr::ExprDescribe(ODesc* d) const
{
op1->Describe(d);
d->SP();
if ( d->IsReadable() )
d->AddSP(expr_name(Tag()));
op2->Describe(d);
}
void BinaryExpr::SimplifyOps()
{
op1 = simplify_expr(op1, SIMPLIFY_GENERAL);
op2 = simplify_expr(op2, SIMPLIFY_GENERAL);
Canonicize();
}
Val* BinaryExpr::Fold(Val* v1, Val* v2) const
{
InternalTypeTag it = v1->Type()->InternalType();
if ( it == TYPE_INTERNAL_STRING )
return StringFold(v1, v2);
if ( it == TYPE_INTERNAL_ADDR )
return AddrFold(v1, v2);
if ( it == TYPE_INTERNAL_SUBNET )
return SubNetFold(v1, v2);
bro_int_t i1 = 0, i2 = 0, i3 = 0;
bro_uint_t u1 = 0, u2 = 0, u3 = 0;
double d1 = 0.0, d2 = 0.0, d3 = 0.0;
int is_integral = 0;
int is_unsigned = 0;
if ( it == TYPE_INTERNAL_INT )
{
i1 = v1->InternalInt();
i2 = v2->InternalInt();
++is_integral;
}
else if ( it == TYPE_INTERNAL_UNSIGNED )
{
u1 = v1->InternalUnsigned();
u2 = v2->InternalUnsigned();
++is_unsigned;
}
else if ( it == TYPE_INTERNAL_DOUBLE )
{
d1 = v1->InternalDouble();
d2 = v2->InternalDouble();
}
else
Internal("bad type in BinaryExpr::Fold");
switch ( tag ) {
#define DO_INT_FOLD(op) \
if ( is_integral ) \
i3 = i1 op i2; \
else if ( is_unsigned ) \
u3 = u1 op u2; \
else \
Internal("bad type in BinaryExpr::Fold");
#define DO_FOLD(op) \
if ( is_integral ) \
i3 = i1 op i2; \
else if ( is_unsigned ) \
u3 = u1 op u2; \
else \
d3 = d1 op d2;
#define DO_INT_VAL_FOLD(op) \
if ( is_integral ) \
i3 = i1 op i2; \
else if ( is_unsigned ) \
i3 = u1 op u2; \
else \
i3 = d1 op d2;
case EXPR_ADD: DO_FOLD(+); break;
case EXPR_ADD_TO: DO_FOLD(+); break;
case EXPR_SUB: DO_FOLD(-); break;
case EXPR_REMOVE_FROM: DO_FOLD(-); break;
case EXPR_TIMES: DO_FOLD(*); break;
case EXPR_DIVIDE:
{
if ( is_integral )
{
if ( i2 == 0 )
reporter->ExprRuntimeError(this, "division by zero");
i3 = i1 / i2;
}
else if ( is_unsigned )
{
if ( u2 == 0 )
reporter->ExprRuntimeError(this, "division by zero");
u3 = u1 / u2;
}
else
{
if ( d2 == 0 )
reporter->ExprRuntimeError(this, "division by zero");
d3 = d1 / d2;
}
}
break;
case EXPR_MOD:
{
if ( is_integral )
{
if ( i2 == 0 )
reporter->ExprRuntimeError(this, "modulo by zero");
i3 = i1 % i2;
}
else if ( is_unsigned )
{
if ( u2 == 0 )
reporter->ExprRuntimeError(this, "modulo by zero");
u3 = u1 % u2;
}
else
Internal("bad type in BinaryExpr::Fold");
}
break;
case EXPR_AND: DO_INT_FOLD(&&); break;
case EXPR_OR: DO_INT_FOLD(||); break;
case EXPR_LT: DO_INT_VAL_FOLD(<); break;
case EXPR_LE: DO_INT_VAL_FOLD(<=); break;
case EXPR_EQ: DO_INT_VAL_FOLD(==); break;
case EXPR_NE: DO_INT_VAL_FOLD(!=); break;
case EXPR_GE: DO_INT_VAL_FOLD(>=); break;
case EXPR_GT: DO_INT_VAL_FOLD(>); break;
default:
BadTag("BinaryExpr::Fold", expr_name(tag));
}
BroType* ret_type = type;
if ( IsVector(ret_type->Tag()) )
ret_type = ret_type->YieldType();
if ( ret_type->Tag() == TYPE_INTERVAL )
return new IntervalVal(d3, 1.0);
else if ( ret_type->InternalType() == TYPE_INTERNAL_DOUBLE )
return new Val(d3, ret_type->Tag());
else if ( ret_type->InternalType() == TYPE_INTERNAL_UNSIGNED )
return new Val(u3, ret_type->Tag());
else
return new Val(i3, ret_type->Tag());
}
Val* BinaryExpr::StringFold(Val* v1, Val* v2) const
{
const BroString* s1 = v1->AsString();
const BroString* s2 = v2->AsString();
int result = 0;
switch ( tag ) {
#undef DO_FOLD
#define DO_FOLD(sense) { result = Bstr_cmp(s1, s2) sense 0; break; }
case EXPR_LT: DO_FOLD(<)
case EXPR_LE: DO_FOLD(<=)
case EXPR_EQ: DO_FOLD(==)
case EXPR_NE: DO_FOLD(!=)
case EXPR_GE: DO_FOLD(>=)
case EXPR_GT: DO_FOLD(>)
case EXPR_ADD:
case EXPR_ADD_TO:
{
vector<const BroString*> strings;
strings.push_back(s1);
strings.push_back(s2);
return new StringVal(concatenate(strings));
}
default:
BadTag("BinaryExpr::StringFold", expr_name(tag));
}
return new Val(result, TYPE_BOOL);
}
Val* BinaryExpr::AddrFold(Val* v1, Val* v2) const
{
IPAddr a1 = v1->AsAddr();
IPAddr a2 = v2->AsAddr();
int result = 0;
switch ( tag ) {
case EXPR_LT:
result = a1 < a2;
break;
case EXPR_LE:
result = a1 < a2 || a1 == a2;
break;
case EXPR_EQ:
result = a1 == a2;
break;
case EXPR_NE:
result = a1 != a2;
break;
case EXPR_GE:
result = ! ( a1 < a2 );
break;
case EXPR_GT:
result = ( ! ( a1 < a2 ) ) && ( a1 != a2 );
break;
default:
BadTag("BinaryExpr::AddrFold", expr_name(tag));
}
return new Val(result, TYPE_BOOL);
}
Val* BinaryExpr::SubNetFold(Val* v1, Val* v2) const
{
const IPPrefix& n1 = v1->AsSubNet();
const IPPrefix& n2 = v2->AsSubNet();
bool result = ( n1 == n2 ) ? true : false;
if ( tag == EXPR_NE )
result = ! result;
return new Val(result, TYPE_BOOL);
}
void BinaryExpr::SwapOps()
{
// We could check here whether the operator is commutative.
Expr* t = op1;
op1 = op2;
op2 = t;
}
void BinaryExpr::PromoteOps(TypeTag t)
{
TypeTag bt1 = op1->Type()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( IsVector(bt1) )
bt1 = op1->Type()->AsVectorType()->YieldType()->Tag();
if ( IsVector(bt2) )
bt2 = op2->Type()->AsVectorType()->YieldType()->Tag();
if ( bt1 != t )
op1 = new ArithCoerceExpr(op1, t);
if ( bt2 != t )
op2 = new ArithCoerceExpr(op2, t);
}
void BinaryExpr::PromoteType(TypeTag t, bool is_vector)
{
PromoteOps(t);
SetType(is_vector ? new VectorType(base_type(t)) : base_type(t));
}
IMPLEMENT_SERIAL(BinaryExpr, SER_BINARY_EXPR);
bool BinaryExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_BINARY_EXPR, Expr);
return op1->Serialize(info) && op2->Serialize(info);
}
bool BinaryExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(Expr);
op1 = Expr::Unserialize(info);
if ( ! op1 )
return false;
op2 = Expr::Unserialize(info);
return op2 != 0;
}
CloneExpr::CloneExpr(Expr* arg_op) : UnaryExpr(EXPR_CLONE, arg_op)
{
if ( IsError() )
return;
BroType* t = op->Type();
SetType(t->Ref());
}
Val* CloneExpr::Eval(Frame* f) const
{
if ( IsError() )
return 0;
Val* v = op->Eval(f);
if ( ! v )
return 0;
Val* result = Fold(v);
Unref(v);
return result;
}
Val* CloneExpr::Fold(Val* v) const
{
return v->Clone();
}
IMPLEMENT_SERIAL(CloneExpr, SER_CLONE_EXPR);
bool CloneExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_CLONE_EXPR, UnaryExpr);
return true;
}
bool CloneExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
IncrExpr::IncrExpr(BroExprTag arg_tag, Expr* arg_op)
: UnaryExpr(arg_tag, arg_op->MakeLvalue())
{
if ( IsError() )
return;
BroType* t = op->Type();
if ( IsVector(t->Tag()) )
{
if ( ! IsIntegral(t->AsVectorType()->YieldType()->Tag()) )
ExprError("vector elements must be integral for increment operator");
else
SetType(t->Ref());
}
else
{
if ( ! IsIntegral(t->Tag()) )
ExprError("requires an integral operand");
else
SetType(t->Ref());
}
}
Val* IncrExpr::DoSingleEval(Frame* f, Val* v) const
{
bro_int_t k = v->CoerceToInt();
if ( Tag() == EXPR_INCR )
++k;
else
{
--k;
if ( k < 0 &&
v->Type()->InternalType() == TYPE_INTERNAL_UNSIGNED )
Error("count underflow");
}
BroType* ret_type = Type();
if ( IsVector(ret_type->Tag()) )
ret_type = Type()->YieldType();
return new Val(k, ret_type->Tag());
}
Val* IncrExpr::Eval(Frame* f) const
{
Val* v = op->Eval(f);
if ( ! v )
return 0;
if ( is_vector(v) )
{
VectorVal* v_vec = v->AsVectorVal();
for ( unsigned int i = 0; i < v_vec->Size(); ++i )
{
Val* elt = v_vec->Lookup(i);
if ( elt )
{
Val* new_elt = DoSingleEval(f, elt);
v_vec->Assign(i, new_elt, OP_INCR);
}
else
v_vec->Assign(i, 0, OP_INCR);
}
op->Assign(f, v_vec, OP_INCR);
}
else
{
Val* old_v = v;
op->Assign(f, v = DoSingleEval(f, old_v), OP_INCR);
Unref(old_v);
}
return v->Ref();
}
int IncrExpr::IsPure() const
{
return 0;
}
IMPLEMENT_SERIAL(IncrExpr, SER_INCR_EXPR);
bool IncrExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_INCR_EXPR, UnaryExpr);
return true;
}
bool IncrExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
NotExpr::NotExpr(Expr* arg_op) : UnaryExpr(EXPR_NOT, arg_op)
{
if ( IsError() )
return;
BroType* t = op->Type();
TypeTag bt = t->Tag();
if ( ! IsIntegral(bt) && bt != TYPE_BOOL )
ExprError("requires an integral or boolean operand");
else
SetType(base_type(TYPE_BOOL));
}
Expr* NotExpr::DoSimplify()
{
op = simplify_expr(op, SIMPLIFY_GENERAL);
Canonicize();
if ( op->Tag() == EXPR_NOT )
// !!x == x
return ((NotExpr*) op)->Op()->Ref();
if ( op->IsConst() )
return new ConstExpr(Fold(op->ExprVal()));
return this;
}
Val* NotExpr::Fold(Val* v) const
{
return new Val(! v->InternalInt(), type->Tag());
}
IMPLEMENT_SERIAL(NotExpr, SER_NOT_EXPR);
bool NotExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_NOT_EXPR, UnaryExpr);
return true;
}
bool NotExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
PosExpr::PosExpr(Expr* arg_op) : UnaryExpr(EXPR_POSITIVE, arg_op)
{
if ( IsError() )
return;
BroType* t = op->Type();
if ( IsVector(t->Tag()) )
t = t->AsVectorType()->YieldType();
TypeTag bt = t->Tag();
BroType* base_result_type = 0;
if ( IsIntegral(bt) )
// Promote count and counter to int.
base_result_type = base_type(TYPE_INT);
else if ( bt == TYPE_INTERVAL || bt == TYPE_DOUBLE )
base_result_type = t->Ref();
else
ExprError("requires an integral or double operand");
if ( is_vector(op) )
SetType(new VectorType(base_result_type));
else
SetType(base_result_type);
}
Expr* PosExpr::DoSimplify()
{
op = simplify_expr(op, SIMPLIFY_GENERAL);
Canonicize();
TypeTag t = op->Type()->Tag();
if ( t == TYPE_DOUBLE || t == TYPE_INTERVAL || t == TYPE_INT )
return op->Ref();
if ( op->IsConst() && ! is_vector(op->ExprVal()) )
return new ConstExpr(Fold(op->ExprVal()));
return this;
}
Val* PosExpr::Fold(Val* v) const
{
TypeTag t = v->Type()->Tag();
if ( t == TYPE_DOUBLE || t == TYPE_INTERVAL || t == TYPE_INT )
return v->Ref();
else
return new Val(v->CoerceToInt(), type->Tag());
}
IMPLEMENT_SERIAL(PosExpr, SER_POS_EXPR);
bool PosExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_POS_EXPR, UnaryExpr);
return true;
}
bool PosExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
NegExpr::NegExpr(Expr* arg_op) : UnaryExpr(EXPR_NEGATE, arg_op)
{
if ( IsError() )
return;
BroType* t = op->Type();
if ( IsVector(t->Tag()) )
t = t->AsVectorType()->YieldType();
TypeTag bt = t->Tag();
BroType* base_result_type = 0;
if ( IsIntegral(bt) )
// Promote count and counter to int.
base_result_type = base_type(TYPE_INT);
else if ( bt == TYPE_INTERVAL || bt == TYPE_DOUBLE )
base_result_type = t->Ref();
else
ExprError("requires an integral or double operand");
if ( is_vector(op) )
SetType(new VectorType(base_result_type));
else
SetType(base_result_type);
}
Expr* NegExpr::DoSimplify()
{
op = simplify_expr(op, SIMPLIFY_GENERAL);
Canonicize();
if ( op->Tag() == EXPR_NEGATE )
// -(-x) == x
return ((NegExpr*) op)->Op()->Ref();
if ( op->IsConst() && ! is_vector(op->ExprVal()) )
return new ConstExpr(Fold(op->ExprVal()));
if ( op->Tag() == EXPR_SUB )
{ // -(a-b) == b-a
SubExpr* s = (SubExpr*) op;
return new SubExpr(s->Op2()->Ref(), s->Op1()->Ref());
}
return this;
}
Val* NegExpr::Fold(Val* v) const
{
if ( v->Type()->Tag() == TYPE_DOUBLE )
return new Val(- v->InternalDouble(), v->Type()->Tag());
else if ( v->Type()->Tag() == TYPE_INTERVAL )
return new IntervalVal(- v->InternalDouble(), 1.0);
else
return new Val(- v->CoerceToInt(), TYPE_INT);
}
IMPLEMENT_SERIAL(NegExpr, SER_NEG_EXPR);
bool NegExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_NEG_EXPR, UnaryExpr);
return true;
}
bool NegExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
SizeExpr::SizeExpr(Expr* arg_op) : UnaryExpr(EXPR_SIZE, arg_op)
{
if ( IsError() )
return;
SetType(base_type(TYPE_COUNT));
}
Val* SizeExpr::Eval(Frame* f) const
{
Val* v = op->Eval(f);
if ( ! v )
return 0;
Val* result = Fold(v);
Unref(v);
return result;
}
Val* SizeExpr::Fold(Val* v) const
{
return v->SizeVal();
}
IMPLEMENT_SERIAL(SizeExpr, SER_SIZE_EXPR);
bool SizeExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_SIZE_EXPR, UnaryExpr);
return true;
}
bool SizeExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
AddExpr::AddExpr(Expr* arg_op1, Expr* arg_op2)
: BinaryExpr(EXPR_ADD, arg_op1, arg_op2)
{
if ( IsError() )
return;
TypeTag bt1 = op1->Type()->Tag();
if ( IsVector(bt1) )
bt1 = op1->Type()->AsVectorType()->YieldType()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( IsVector(bt2) )
bt2 = op2->Type()->AsVectorType()->YieldType()->Tag();
BroType* base_result_type = 0;
if ( bt1 == TYPE_TIME && bt2 == TYPE_INTERVAL )
base_result_type = base_type(bt1);
else if ( bt2 == TYPE_TIME && bt1 == TYPE_INTERVAL )
base_result_type = base_type(bt2);
else if ( bt1 == TYPE_INTERVAL && bt2 == TYPE_INTERVAL )
base_result_type = base_type(bt1);
else if ( BothArithmetic(bt1, bt2) )
PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2));
else if ( BothString(bt1, bt2) )
base_result_type = base_type(bt1);
else
ExprError("requires arithmetic operands");
if ( base_result_type )
{
if ( is_vector(op1) || is_vector(op2) )
SetType(new VectorType(base_result_type));
else
SetType(base_result_type);
}
}
Expr* AddExpr::DoSimplify()
{
// If there's a constant, then it's in op1, since Canonicize()
// makes sure of that.
if ( op1->IsZero() )
return op2->Ref();
else if ( op1->Tag() == EXPR_NEGATE )
// (-a)+b = b-a
return new AddExpr(op2->Ref(), ((NegExpr*) op1)->Op()->Ref());
else if ( op2->Tag() == EXPR_NEGATE )
// a+(-b) == a-b
return new SubExpr(op1->Ref(), ((NegExpr*) op2)->Op()->Ref());
return this;
}
void AddExpr::Canonicize()
{
if ( expr_greater(op2, op1) ||
(op1->Type()->Tag() == TYPE_INTERVAL &&
op2->Type()->Tag() == TYPE_TIME) ||
(op2->IsConst() && ! is_vector(op2->ExprVal()) && ! op1->IsConst()))
SwapOps();
}
IMPLEMENT_SERIAL(AddExpr, SER_ADD_EXPR);
bool AddExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_ADD_EXPR, BinaryExpr);
return true;
}
bool AddExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
AddToExpr::AddToExpr(Expr* arg_op1, Expr* arg_op2)
: BinaryExpr(EXPR_ADD_TO, arg_op1->MakeLvalue(), arg_op2)
{
if ( IsError() )
return;
TypeTag bt1 = op1->Type()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( BothArithmetic(bt1, bt2) )
PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2));
else if ( BothString(bt1, bt2) )
SetType(base_type(bt1));
else if ( BothInterval(bt1, bt2) )
SetType(base_type(bt1));
else
ExprError("requires two arithmetic or two string operands");
}
Val* AddToExpr::Eval(Frame* f) const
{
Val* v1 = op1->Eval(f);
if ( ! v1 )
return 0;
Val* v2 = op2->Eval(f);
if ( ! v2 )
{
Unref(v1);
return 0;
}
Val* result = Fold(v1, v2);
Unref(v1);
Unref(v2);
if ( result )
{
op1->Assign(f, result);
return result->Ref();
}
else
return 0;
}
IMPLEMENT_SERIAL(AddToExpr, SER_ADD_TO_EXPR);
bool AddToExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_ADD_TO_EXPR, BinaryExpr);
return true;
}
bool AddToExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
SubExpr::SubExpr(Expr* arg_op1, Expr* arg_op2)
: BinaryExpr(EXPR_SUB, arg_op1, arg_op2)
{
if ( IsError() )
return;
TypeTag bt1 = op1->Type()->Tag();
if ( IsVector(bt1) )
bt1 = op1->Type()->AsVectorType()->YieldType()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( IsVector(bt2) )
bt2 = op2->Type()->AsVectorType()->YieldType()->Tag();
BroType* base_result_type = 0;
if ( bt1 == TYPE_TIME && bt2 == TYPE_INTERVAL )
base_result_type = base_type(bt1);
else if ( bt1 == TYPE_TIME && bt2 == TYPE_TIME )
SetType(base_type(TYPE_INTERVAL));
else if ( bt1 == TYPE_INTERVAL && bt2 == TYPE_INTERVAL )
base_result_type = base_type(bt1);
else if ( BothArithmetic(bt1, bt2) )
PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2));
else
ExprError("requires arithmetic operands");
if ( base_result_type )
{
if ( is_vector(op1) || is_vector(op2) )
SetType(new VectorType(base_result_type));
else
SetType(base_result_type);
}
}
Expr* SubExpr::DoSimplify()
{
if ( op1->IsZero() )
return new NegExpr(op2->Ref());
else if ( op2->IsZero() )
return op1->Ref();
else if ( op2->Tag() == EXPR_NEGATE )
// a-(-b) = a+b
return new AddExpr(op1->Ref(), ((NegExpr*) op2)->Op()->Ref());
return this;
}
IMPLEMENT_SERIAL(SubExpr, SER_SUB_EXPR);
bool SubExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_SUB_EXPR, BinaryExpr);
return true;
}
bool SubExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
RemoveFromExpr::RemoveFromExpr(Expr* arg_op1, Expr* arg_op2)
: BinaryExpr(EXPR_REMOVE_FROM, arg_op1->MakeLvalue(), arg_op2)
{
if ( IsError() )
return;
TypeTag bt1 = op1->Type()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( BothArithmetic(bt1, bt2) )
PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2));
else if ( BothInterval(bt1, bt2) )
SetType(base_type(bt1));
else
ExprError("requires two arithmetic operands");
}
Val* RemoveFromExpr::Eval(Frame* f) const
{
Val* v1 = op1->Eval(f);
if ( ! v1 )
return 0;
Val* v2 = op2->Eval(f);
if ( ! v2 )
{
Unref(v1);
return 0;
}
Val* result = Fold(v1, v2);
Unref(v1);
Unref(v2);
if ( result )
{
op1->Assign(f, result);
return result->Ref();
}
else
return 0;
}
IMPLEMENT_SERIAL(RemoveFromExpr, SER_REMOVE_FROM_EXPR);
bool RemoveFromExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_REMOVE_FROM_EXPR, BinaryExpr);
return true;
}
bool RemoveFromExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
TimesExpr::TimesExpr(Expr* arg_op1, Expr* arg_op2)
: BinaryExpr(EXPR_TIMES, arg_op1, arg_op2)
{
if ( IsError() )
return;
Canonicize();
TypeTag bt1 = op1->Type()->Tag();
if ( IsVector(bt1) )
bt1 = op1->Type()->AsVectorType()->YieldType()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( IsVector(bt2) )
bt2 = op2->Type()->AsVectorType()->YieldType()->Tag();
if ( bt1 == TYPE_INTERVAL || bt2 == TYPE_INTERVAL )
{
if ( IsArithmetic(bt1) || IsArithmetic(bt2) )
PromoteType(TYPE_INTERVAL, is_vector(op1) || is_vector(op2) );
else
ExprError("multiplication with interval requires arithmetic operand");
}
else if ( BothArithmetic(bt1, bt2) )
PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2));
else
ExprError("requires arithmetic operands");
}
Expr* TimesExpr::DoSimplify()
{
// If there's a constant, then it's in op1, since Canonicize()
// makes sure of that.
if ( op1->IsConst() )
{
if ( op1->IsZero() )
{
if ( IsVector(op2->Type()->Tag()) )
return this;
else
return make_zero(type);
}
else if ( op1->IsOne() )
return op2->Ref();
}
return this;
}
void TimesExpr::Canonicize()
{
if ( expr_greater(op2, op1) || op2->Type()->Tag() == TYPE_INTERVAL ||
(op2->IsConst() && ! is_vector(op2->ExprVal()) && ! op1->IsConst()) )
SwapOps();
}
IMPLEMENT_SERIAL(TimesExpr, SER_TIMES_EXPR);
bool TimesExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_TIMES_EXPR, BinaryExpr);
return true;
}
bool TimesExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
DivideExpr::DivideExpr(Expr* arg_op1, Expr* arg_op2)
: BinaryExpr(EXPR_DIVIDE, arg_op1, arg_op2)
{
if ( IsError() )
return;
TypeTag bt1 = op1->Type()->Tag();
if ( IsVector(bt1) )
bt1 = op1->Type()->AsVectorType()->YieldType()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( IsVector(bt2) )
bt2 = op2->Type()->AsVectorType()->YieldType()->Tag();
if ( bt1 == TYPE_INTERVAL || bt2 == TYPE_INTERVAL )
{
if ( IsArithmetic(bt1) || IsArithmetic(bt2) )
PromoteType(TYPE_INTERVAL, is_vector(op1) || is_vector(op2));
else if ( bt1 == TYPE_INTERVAL && bt2 == TYPE_INTERVAL )
{
if ( is_vector(op1) || is_vector(op2) )
SetType(new VectorType(base_type(TYPE_DOUBLE)));
else
SetType(base_type(TYPE_DOUBLE));
}
else
ExprError("division of interval requires arithmetic operand");
}
else if ( BothArithmetic(bt1, bt2) )
PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2));
else if ( bt1 == TYPE_ADDR && ! is_vector(op2) &&
(bt2 == TYPE_COUNT || bt2 == TYPE_INT) )
SetType(base_type(TYPE_SUBNET));
else
ExprError("requires arithmetic operands");
}
Val* DivideExpr::AddrFold(Val* v1, Val* v2) const
{
uint32 mask;
if ( v2->Type()->Tag() == TYPE_COUNT )
mask = static_cast<uint32>(v2->InternalUnsigned());
else
mask = static_cast<uint32>(v2->InternalInt());
return new SubNetVal(v1->AsAddr(), mask);
}
Expr* DivideExpr::DoSimplify()
{
if ( IsError() )
return this;
if ( op1->Type()->Tag() == TYPE_ADDR )
return this;
if ( is_vector(op1) || is_vector(op2) )
return this;
if ( op2->IsConst() )
{
if ( op2->IsOne() )
return op1->Ref();
else if ( op2->IsZero() )
Error("zero divisor");
}
else if ( same_expr(op1, op2) )
return make_one(type);
return this;
}
IMPLEMENT_SERIAL(DivideExpr, SER_DIVIDE_EXPR);
bool DivideExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_DIVIDE_EXPR, BinaryExpr);
return true;
}
bool DivideExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
ModExpr::ModExpr(Expr* arg_op1, Expr* arg_op2)
: BinaryExpr(EXPR_MOD, arg_op1, arg_op2)
{
if ( IsError() )
return;
TypeTag bt1 = op1->Type()->Tag();
if ( IsVector(bt1) )
bt1 = op1->Type()->AsVectorType()->YieldType()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( IsVector(bt2) )
bt2 = op2->Type()->AsVectorType()->YieldType()->Tag();
if ( BothIntegral(bt1, bt2) )
PromoteType(max_type(bt1, bt2), is_vector(op1) || is_vector(op2));
else
ExprError("requires integral operands");
}
Expr* ModExpr::DoSimplify()
{
if ( IsError() )
return this;
TypeTag bt1 = op1->Type()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( IsVector(bt1) || IsVector(bt2) )
return this;
if ( op2->IsConst() )
{
if ( op2->IsOne() )
return make_zero(type);
else if ( op2->IsZero() )
Error("zero modulus");
}
else if ( same_expr(op1, op2) )
return make_zero(type);
return this;
}
IMPLEMENT_SERIAL(ModExpr, SER_MOD_EXPR);
bool ModExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_MOD_EXPR, BinaryExpr);
return true;
}
bool ModExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
BoolExpr::BoolExpr(BroExprTag arg_tag, Expr* arg_op1, Expr* arg_op2)
: BinaryExpr(arg_tag, arg_op1, arg_op2)
{
if ( IsError() )
return;
TypeTag bt1 = op1->Type()->Tag();
if ( IsVector(bt1) )
bt1 = op1->Type()->AsVectorType()->YieldType()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( IsVector(bt2) )
bt2 = op2->Type()->AsVectorType()->YieldType()->Tag();
if ( BothBool(bt1, bt2) )
{
if ( is_vector(op1) || is_vector(op2) )
SetType(new VectorType(base_type(TYPE_BOOL)));
else
SetType(base_type(TYPE_BOOL));
}
else if ( bt1 == TYPE_PATTERN && bt2 == bt1 )
SetType(base_type(TYPE_PATTERN));
else
ExprError("requires boolean operands");
}
Val* BoolExpr::DoSingleEval(Frame* f, Val* v1, Expr* op2) const
{
if ( ! v1 )
return 0;
if ( Type()->Tag() == TYPE_PATTERN )
{
Val* v2 = op2->Eval(f);
if ( ! v2 )
return 0;
RE_Matcher* re1 = v1->AsPattern();
RE_Matcher* re2 = v2->AsPattern();
RE_Matcher* res = tag == EXPR_AND ?
RE_Matcher_conjunction(re1, re2) :
RE_Matcher_disjunction(re1, re2);
return new PatternVal(res);
}
if ( tag == EXPR_AND )
{
if ( v1->IsZero() )
return v1;
else
{
Unref(v1);
return op2->Eval(f);
}
}
else
{
if ( v1->IsZero() )
{
Unref(v1);
return op2->Eval(f);
}
else
return v1;
}
}
Val* BoolExpr::Eval(Frame* f) const
{
if ( IsError() )
return 0;
Val* v1 = op1->Eval(f);
if ( ! v1 )
return 0;
int is_vec1 = is_vector(op1);
int is_vec2 = is_vector(op2);
// Handle scalar op scalar
if ( ! is_vec1 && ! is_vec2 )
return DoSingleEval(f, v1, op2);
// Handle scalar op vector or vector op scalar
// We can't short-circuit everything since we need to eval
// a vector in order to find out its length.
if ( ! (is_vec1 && is_vec2) )
{ // Only one is a vector.
Val* scalar_v = 0;
VectorVal* vector_v = 0;
if ( is_vec1 )
{
scalar_v = op2->Eval(f);
vector_v = v1->AsVectorVal();
}
else
{
scalar_v = v1;
vector_v = op2->Eval(f)->AsVectorVal();
}
if ( ! scalar_v || ! vector_v )
return 0;
VectorVal* result = 0;
// It's either and EXPR_AND or an EXPR_OR.
bool is_and = (tag == EXPR_AND);
if ( scalar_v->IsZero() == is_and )
{
result = new VectorVal(Type()->AsVectorType());
result->Resize(vector_v->Size());
result->AssignRepeat(0, result->Size(),
scalar_v);
}
else
result = vector_v->Ref()->AsVectorVal();
Unref(scalar_v);
Unref(vector_v);
return result;
}
// Only case remaining: both are vectors.
Val* v2 = op2->Eval(f);
if ( ! v2 )
return 0;
VectorVal* vec_v1 = v1->AsVectorVal();
VectorVal* vec_v2 = v2->AsVectorVal();
if ( vec_v1->Size() != vec_v2->Size() )
{
Error("vector operands have different sizes");
return 0;
}
VectorVal* result = new VectorVal(Type()->AsVectorType());
result->Resize(vec_v1->Size());
for ( unsigned int i = 0; i < vec_v1->Size(); ++i )
{
Val* op1 = vec_v1->Lookup(i);
Val* op2 = vec_v2->Lookup(i);
if ( op1 && op2 )
{
bool local_result = (tag == EXPR_AND) ?
(! op1->IsZero() && ! op2->IsZero()) :
(! op1->IsZero() || ! op2->IsZero());
result->Assign(i, new Val(local_result, TYPE_BOOL));
}
else
result->Assign(i, 0);
}
Unref(v1);
Unref(v2);
return result;
}
Expr* BoolExpr::DoSimplify()
{
if ( op1->IsConst() && ! is_vector(op1) )
{
if ( op1->IsZero() )
// F && x or F || x
return (tag == EXPR_AND) ? make_zero(type) : op2->Ref();
else
// T && x or T || x
return (tag == EXPR_AND) ? op2->Ref() : make_one(type);
}
else if ( op2->IsConst() && ! is_vector(op2) )
{
if ( op1->IsZero() )
// x && F or x || F
return (tag == EXPR_AND) ? make_zero(type) : op1->Ref();
else
// x && T or x || T
return (tag == EXPR_AND) ? op1->Ref() : make_one(type);
}
else if ( same_expr(op1, op2) )
{
Warn("redundant boolean operation");
return op1->Ref();
}
return this;
}
IMPLEMENT_SERIAL(BoolExpr, SER_BOOL_EXPR);
bool BoolExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_BOOL_EXPR, BinaryExpr);
return true;
}
bool BoolExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
EqExpr::EqExpr(BroExprTag arg_tag, Expr* arg_op1, Expr* arg_op2)
: BinaryExpr(arg_tag, arg_op1, arg_op2)
{
if ( IsError() )
return;
Canonicize();
TypeTag bt1 = op1->Type()->Tag();
if ( IsVector(bt1) )
bt1 = op1->Type()->AsVectorType()->YieldType()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( IsVector(bt2) )
bt2 = op2->Type()->AsVectorType()->YieldType()->Tag();
if ( is_vector(op1) || is_vector(op2) )
SetType(new VectorType(base_type(TYPE_BOOL)));
else
SetType(base_type(TYPE_BOOL));
if ( BothArithmetic(bt1, bt2) )
PromoteOps(max_type(bt1, bt2));
else if ( EitherArithmetic(bt1, bt2) &&
// Allow comparisons with zero.
((bt1 == TYPE_TIME && op2->IsZero()) ||
(bt2 == TYPE_TIME && op1->IsZero())) )
PromoteOps(TYPE_TIME);
else if ( bt1 == bt2 )
{
switch ( bt1 ) {
case TYPE_BOOL:
case TYPE_TIME:
case TYPE_INTERVAL:
case TYPE_STRING:
case TYPE_PORT:
case TYPE_ADDR:
case TYPE_SUBNET:
case TYPE_ERROR:
break;
case TYPE_ENUM:
if ( ! same_type(op1->Type(), op2->Type()) )
ExprError("illegal enum comparison");
break;
default:
ExprError("illegal comparison");
}
}
else if ( bt1 == TYPE_PATTERN && bt2 == TYPE_STRING )
;
else
ExprError("type clash in comparison");
}
void EqExpr::Canonicize()
{
if ( op2->Type()->Tag() == TYPE_PATTERN )
SwapOps();
else if ( op1->Type()->Tag() == TYPE_PATTERN )
;
else if ( expr_greater(op2, op1) )
SwapOps();
}
Expr* EqExpr::DoSimplify()
{
if ( same_expr(op1, op2) && ! is_vector(op1) )
{
if ( ! optimize )
Warn("redundant comparison");
if ( tag == EXPR_EQ )
return make_one(type);
else
return make_zero(type);
}
return this;
}
Val* EqExpr::Fold(Val* v1, Val* v2) const
{
if ( op1->Type()->Tag() == TYPE_PATTERN )
{
RE_Matcher* re = v1->AsPattern();
const BroString* s = v2->AsString();
if ( tag == EXPR_EQ )
return new Val(re->MatchExactly(s), TYPE_BOOL);
else
return new Val(! re->MatchExactly(s), TYPE_BOOL);
}
else
return BinaryExpr::Fold(v1, v2);
}
IMPLEMENT_SERIAL(EqExpr, SER_EQ_EXPR);
bool EqExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_EQ_EXPR, BinaryExpr);
return true;
}
bool EqExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
RelExpr::RelExpr(BroExprTag arg_tag, Expr* arg_op1, Expr* arg_op2)
: BinaryExpr(arg_tag, arg_op1, arg_op2)
{
if ( IsError() )
return;
Canonicize();
TypeTag bt1 = op1->Type()->Tag();
if ( IsVector(bt1) )
bt1 = op1->Type()->AsVectorType()->YieldType()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( IsVector(bt2) )
bt2 = op2->Type()->AsVectorType()->YieldType()->Tag();
if ( is_vector(op1) || is_vector(op2) )
SetType(new VectorType(base_type(TYPE_BOOL)));
else
SetType(base_type(TYPE_BOOL));
if ( BothArithmetic(bt1, bt2) )
PromoteOps(max_type(bt1, bt2));
else if ( bt1 != bt2 )
ExprError("operands must be of the same type");
else if ( bt1 != TYPE_TIME && bt1 != TYPE_INTERVAL &&
bt1 != TYPE_PORT && bt1 != TYPE_ADDR &&
bt1 != TYPE_STRING )
ExprError("illegal comparison");
}
Expr* RelExpr::DoSimplify()
{
if ( same_expr(op1, op2) )
{
Warn("redundant comparison");
// Here we use the fact that the canonical form of
// a RelExpr only uses EXPR_LE or EXPR_LT.
if ( tag == EXPR_LE )
return make_one(type);
else
return make_zero(type);
}
return this;
}
void RelExpr::Canonicize()
{
if ( tag == EXPR_GT )
{
SwapOps();
tag = EXPR_LT;
}
else if ( tag == EXPR_GE )
{
SwapOps();
tag = EXPR_LE;
}
}
IMPLEMENT_SERIAL(RelExpr, SER_REL_EXPR);
bool RelExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_REL_EXPR, BinaryExpr);
return true;
}
bool RelExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
CondExpr::CondExpr(Expr* arg_op1, Expr* arg_op2, Expr* arg_op3)
: Expr(EXPR_COND)
{
op1 = arg_op1;
op2 = arg_op2;
op3 = arg_op3;
TypeTag bt1 = op1->Type()->Tag();
if ( IsVector(bt1) )
bt1 = op1->Type()->AsVectorType()->YieldType()->Tag();
if ( op1->IsError() || op2->IsError() || op3->IsError() )
SetError();
else if ( bt1 != TYPE_BOOL )
ExprError("requires boolean conditional");
else
{
TypeTag bt2 = op2->Type()->Tag();
if ( is_vector(op2) )
bt2 = op2->Type()->AsVectorType()->YieldType()->Tag();
TypeTag bt3 = op3->Type()->Tag();
if ( IsVector(bt3) )
bt3 = op3->Type()->AsVectorType()->YieldType()->Tag();
if ( is_vector(op1) && ! (is_vector(op2) && is_vector(op3)) )
{
ExprError("vector conditional requires vector alternatives");
return;
}
if ( BothArithmetic(bt2, bt3) )
{
TypeTag t = max_type(bt2, bt3);
if ( bt2 != t )
op2 = new ArithCoerceExpr(op2, t);
if ( bt3 != t )
op3 = new ArithCoerceExpr(op3, t);
if ( is_vector(op2) )
SetType(new VectorType(base_type(t)));
else
SetType(base_type(t));
}
else if ( bt2 != bt3 )
ExprError("operands must be of the same type");
else
SetType(op2->Type()->Ref());
}
}
CondExpr::~CondExpr()
{
Unref(op1);
Unref(op2);
Unref(op3);
}
Expr* CondExpr::Simplify(SimplifyType /* simp_type */)
{
op1 = simplify_expr(op1, SIMPLIFY_GENERAL);
op2 = simplify_expr(op2, SIMPLIFY_GENERAL);
op3 = simplify_expr(op3, SIMPLIFY_GENERAL);
if ( op1->IsConst() && ! is_vector(op1) )
{
Val* v = op1->ExprVal();
return (v->IsZero() ? op3 : op2)->Ref();
}
if ( op1->Tag() == EXPR_NOT )
return new CondExpr(((NotExpr*) op1)->Op()->Ref(),
op3->Ref(), op2->Ref());
return this;
}
Val* CondExpr::Eval(Frame* f) const
{
if ( ! is_vector(op1) )
{ // scalar is easy
Val* v = op1->Eval(f);
int false_eval = v->IsZero();
Unref(v);
return (false_eval ? op3 : op2)->Eval(f);
}
// Vector case: no mixed scalar/vector cases allowed
Val* v1 = op1->Eval(f);
if ( ! v1 )
return 0;
Val* v2 = op2->Eval(f);
if ( ! v2 )
return 0;
Val* v3 = op3->Eval(f);
if ( ! v3 )
return 0;
VectorVal* cond = v1->AsVectorVal();
VectorVal* a = v2->AsVectorVal();
VectorVal* b = v3->AsVectorVal();
if ( cond->Size() != a->Size() || a->Size() != b->Size() )
{
Error("vectors in conditional expression have different sizes");
return 0;
}
VectorVal* result = new VectorVal(Type()->AsVectorType());
result->Resize(cond->Size());
for ( unsigned int i = 0; i < cond->Size(); ++i )
{
Val* local_cond = cond->Lookup(i);
if ( local_cond )
result->Assign(i,
local_cond->IsZero() ?
b->Lookup(i) : a->Lookup(i));
else
result->Assign(i, 0);
}
return result;
}
int CondExpr::IsPure() const
{
return op1->IsPure() && op2->IsPure() && op3->IsPure();
}
TraversalCode CondExpr::Traverse(TraversalCallback* cb) const
{
TraversalCode tc = cb->PreExpr(this);
HANDLE_TC_EXPR_PRE(tc);
tc = op1->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = op2->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = op3->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = cb->PostExpr(this);
HANDLE_TC_EXPR_POST(tc);
}
void CondExpr::ExprDescribe(ODesc* d) const
{
op1->Describe(d);
d->AddSP(" ?");
op2->Describe(d);
d->AddSP(" :");
op3->Describe(d);
}
IMPLEMENT_SERIAL(CondExpr, SER_COND_EXPR);
bool CondExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_COND_EXPR, Expr);
return op1->Serialize(info) && op2->Serialize(info)
&& op3->Serialize(info);
}
bool CondExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(Expr);
op1 = Expr::Unserialize(info);
if ( ! op1 )
return false;
op2 = Expr::Unserialize(info);
if ( ! op2 )
return false;
op3 = Expr::Unserialize(info);
return op3 != 0;
}
RefExpr::RefExpr(Expr* arg_op) : UnaryExpr(EXPR_REF, arg_op)
{
if ( IsError() )
return;
if ( ! ::is_assignable(op->Type()) )
ExprError("illegal assignment target");
else
SetType(op->Type()->Ref());
}
Expr* RefExpr::MakeLvalue()
{
return this;
}
void RefExpr::Assign(Frame* f, Val* v, Opcode opcode)
{
op->Assign(f, v, opcode);
}
IMPLEMENT_SERIAL(RefExpr, SER_REF_EXPR);
bool RefExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_REF_EXPR, UnaryExpr);
return true;
}
bool RefExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
AssignExpr::AssignExpr(Expr* arg_op1, Expr* arg_op2, int arg_is_init,
Val* arg_val, attr_list* arg_attrs)
: BinaryExpr(EXPR_ASSIGN,
arg_is_init ? arg_op1 : arg_op1->MakeLvalue(), arg_op2)
{
val = 0;
is_init = arg_is_init;
if ( IsError() )
return;
SetType(arg_val ? arg_val->Type()->Ref() : op1->Type()->Ref());
if ( is_init )
{
SetLocationInfo(arg_op1->GetLocationInfo(),
arg_op2->GetLocationInfo());
return;
}
// We discard the status from TypeCheck since it has already
// generated error messages.
(void) TypeCheck(arg_attrs);
val = arg_val ? arg_val->Ref() : 0;
SetLocationInfo(arg_op1->GetLocationInfo(), arg_op2->GetLocationInfo());
}
bool AssignExpr::TypeCheck(attr_list* attrs)
{
TypeTag bt1 = op1->Type()->Tag();
TypeTag bt2 = op2->Type()->Tag();
if ( bt1 == TYPE_LIST && bt2 == TYPE_ANY )
// This is ok because we cannot explicitly declare lists on
// the script level.
return true;
if ( ((bt1 == TYPE_ENUM) ^ (bt2 == TYPE_ENUM)) )
{
ExprError("can't convert to/from enumerated type");
return false;
}
if ( IsArithmetic(bt1) )
return TypeCheckArithmetics(bt1, bt2);
if ( bt1 == TYPE_TIME && IsArithmetic(bt2) && op2->IsZero() )
{ // Allow assignments to zero as a special case.
op2 = new ArithCoerceExpr(op2, bt1);
return true;
}
if ( bt1 == TYPE_TABLE && bt2 == bt1 &&
op2->Type()->AsTableType()->IsUnspecifiedTable() )
{
op2 = new TableCoerceExpr(op2, op1->Type()->AsTableType());
return true;
}
if ( bt1 == TYPE_TABLE && op2->Tag() == EXPR_LIST )
{
attr_list* attr_copy = 0;
if ( attrs )
{
attr_copy = new attr_list;
loop_over_list(*attrs, i)
attr_copy->append((*attrs)[i]);
}
if ( op1->Type()->IsSet() )
op2 = new SetConstructorExpr(op2->AsListExpr(), attr_copy);
else
op2 = new TableConstructorExpr(op2->AsListExpr(), attr_copy);
return true;
}
if ( bt1 == TYPE_VECTOR )
{
if ( bt2 == bt1 && op2->Type()->AsVectorType()->IsUnspecifiedVector() )
{
op2 = new VectorCoerceExpr(op2, op1->Type()->AsVectorType());
return true;
}
if ( op2->Tag() == EXPR_LIST )
{
op2 = new VectorConstructorExpr(op2->AsListExpr());
return true;
}
}
if ( op1->Type()->Tag() == TYPE_RECORD &&
op2->Type()->Tag() == TYPE_RECORD )
{
if ( same_type(op1->Type(), op2->Type()) )
{
RecordType* rt1 = op1->Type()->AsRecordType();
RecordType* rt2 = op2->Type()->AsRecordType();
// Make sure the attributes match as well.
for ( int i = 0; i < rt1->NumFields(); ++i )
{
const TypeDecl* td1 = rt1->FieldDecl(i);
const TypeDecl* td2 = rt2->FieldDecl(i);
if ( same_attrs(td1->attrs, td2->attrs) )
// Everything matches.
return true;
}
}
// Need to coerce.
op2 = new RecordCoerceExpr(op2, op1->Type()->AsRecordType());
return true;
}
if ( ! same_type(op1->Type(), op2->Type()) )
{
ExprError("type clash in assignment");
return false;
}
return true;
}
bool AssignExpr::TypeCheckArithmetics(TypeTag bt1, TypeTag bt2)
{
if ( ! IsArithmetic(bt2) )
{
char err[512];
snprintf(err, sizeof(err),
"assignment of non-arithmetic value to arithmetic (%s/%s)",
type_name(bt1), type_name(bt2));
ExprError(err);
return false;
}
if ( bt1 == TYPE_DOUBLE )
{
PromoteOps(TYPE_DOUBLE);
return true;
}
if ( bt2 == TYPE_DOUBLE )
{
Warn("dangerous assignment of double to integral");
op2 = new ArithCoerceExpr(op2, bt1);
bt2 = op2->Type()->Tag();
}
if ( bt1 == TYPE_INT )
PromoteOps(TYPE_INT);
else
{
if ( bt2 == TYPE_INT )
{
Warn("dangerous assignment of integer to count");
op2 = new ArithCoerceExpr(op2, bt1);
bt2 = op2->Type()->Tag();
}
// Assignment of count to counter or vice
// versa is allowed, and requires no
// coercion.
}
return true;
}
Expr* AssignExpr::Simplify(SimplifyType /* simp_type */)
{
op1 = simplify_expr(op1, SIMPLIFY_LHS);
op2 = simplify_expr(op2, SIMPLIFY_GENERAL);
return this;
}
Val* AssignExpr::Eval(Frame* f) const
{
if ( is_init )
{
Error("illegal assignment in initialization");
return 0;
}
Val* v = op2->Eval(f);
if ( v )
{
op1->Assign(f, v);
return val ? val->Ref() : v->Ref();
}
else
return 0;
}
BroType* AssignExpr::InitType() const
{
if ( op1->Tag() != EXPR_LIST )
{
Error("bad initializer");
return 0;
}
BroType* tl = op1->Type();
if ( tl->Tag() != TYPE_LIST )
Internal("inconsistent list expr in AssignExpr::InitType");
return new TableType(tl->Ref()->AsTypeList(), op2->Type()->Ref());
}
void AssignExpr::EvalIntoAggregate(const BroType* t, Val* aggr, Frame* f) const
{
if ( IsError() )
return;
TypeDecl td(0, 0);
if ( IsRecordElement(&td) )
{
if ( t->Tag() != TYPE_RECORD )
{
Error("not a record initializer", t);
return;
}
const RecordType* rt = t->AsRecordType();
int field = rt->FieldOffset(td.id);
if ( field < 0 )
{
Error("no such field");
return;
}
RecordVal* aggr_r = aggr->AsRecordVal();
Val* v = op2->Eval(f);
if ( v )
aggr_r->Assign(field, v);
return;
}
if ( op1->Tag() != EXPR_LIST )
Error("bad table insertion");
TableVal* tv = aggr->AsTableVal();
Val* index = op1->Eval(f);
Val* v = check_and_promote(op2->Eval(f), t->YieldType(), 1);
if ( ! index || ! v )
return;
if ( ! tv->Assign(index, v) )
Error("type clash in table assignment");
Unref(index);
}
Val* AssignExpr::InitVal(const BroType* t, Val* aggr) const
{
if ( ! aggr )
{
Error("assignment in initialization");
return 0;
}
if ( IsError() )
return 0;
TypeDecl td(0, 0);
if ( IsRecordElement(&td) )
{
if ( t->Tag() != TYPE_RECORD )
{
Error("not a record initializer", t);
return 0;
}
const RecordType* rt = t->AsRecordType();
int field = rt->FieldOffset(td.id);
if ( field < 0 )
{
Error("no such field");
return 0;
}
if ( aggr->Type()->Tag() != TYPE_RECORD )
Internal("bad aggregate in AssignExpr::InitVal");
RecordVal* aggr_r = aggr->AsRecordVal();
Val* v = op2->InitVal(rt->FieldType(td.id), 0);
if ( ! v )
return 0;
aggr_r->Assign(field, v);
return v;
}
else if ( op1->Tag() == EXPR_LIST )
{
if ( t->Tag() != TYPE_TABLE )
{
Error("not a table initialization", t);
return 0;
}
if ( aggr->Type()->Tag() != TYPE_TABLE )
Internal("bad aggregate in AssignExpr::InitVal");
TableVal* tv = aggr->AsTableVal();
const TableType* tt = tv->Type()->AsTableType();
const BroType* yt = tv->Type()->YieldType();
Val* index = op1->InitVal(tt->Indices(), 0);
Val* v = op2->InitVal(yt, 0);
if ( ! index || ! v )
return 0;
if ( ! tv->ExpandAndInit(index, v) )
{
Unref(index);
Unref(tv);
return 0;
}
Unref(index);
return tv;
}
else
{
Error("illegal initializer");
return 0;
}
}
int AssignExpr::IsRecordElement(TypeDecl* td) const
{
if ( op1->Tag() == EXPR_NAME )
{
if ( td )
{
const NameExpr* n = (const NameExpr*) op1;
td->type = op2->Type()->Ref();
td->id = copy_string(n->Id()->Name());
}
return 1;
}
else
return 0;
}
int AssignExpr::IsPure() const
{
return 0;
}
IMPLEMENT_SERIAL(AssignExpr, SER_ASSIGN_EXPR);
bool AssignExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_ASSIGN_EXPR, BinaryExpr);
SERIALIZE_OPTIONAL(val);
return SERIALIZE(is_init);
}
bool AssignExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
UNSERIALIZE_OPTIONAL(val, Val::Unserialize(info));
return UNSERIALIZE(&is_init);
}
IndexExpr::IndexExpr(Expr* arg_op1, ListExpr* arg_op2, bool is_slice)
: BinaryExpr(EXPR_INDEX, arg_op1, arg_op2)
{
if ( IsError() )
return;
if ( is_slice )
{
if ( ! IsString(op1->Type()->Tag()) )
ExprError("slice notation indexing only supported for strings currently");
}
else if ( IsString(op1->Type()->Tag()) )
{
if ( arg_op2->Exprs().length() != 1 )
ExprError("invalid string index expression");
}
if ( IsError() )
return;
int match_type = op1->Type()->MatchesIndex(arg_op2);
if ( match_type == DOES_NOT_MATCH_INDEX )
SetError("not an index type");
else if ( ! op1->Type()->YieldType() )
{
if ( IsString(op1->Type()->Tag()) &&
match_type == MATCHES_INDEX_SCALAR )
SetType(base_type(TYPE_STRING));
else
// It's a set - so indexing it yields void. We don't
// directly generate an error message, though, since this
// expression might be part of an add/delete statement,
// rather than yielding a value.
SetType(base_type(TYPE_VOID));
}
else if ( match_type == MATCHES_INDEX_SCALAR )
SetType(op1->Type()->YieldType()->Ref());
else if ( match_type == MATCHES_INDEX_VECTOR )
SetType(new VectorType(op1->Type()->YieldType()->Ref()));
else
ExprError("Unknown MatchesIndex() return value");
}
int IndexExpr::CanAdd() const
{
if ( IsError() )
return 1; // avoid cascading the error report
// "add" only allowed if our type is "set".
return op1->Type()->IsSet();
}
int IndexExpr::CanDel() const
{
if ( IsError() )
return 1; // avoid cascading the error report
return op1->Type()->Tag() == TYPE_TABLE;
}
void IndexExpr::Add(Frame* f)
{
if ( IsError() )
return;
Val* v1 = op1->Eval(f);
if ( ! v1 )
return;
Val* v2 = op2->Eval(f);
if ( ! v2 )
{
Unref(v1);
return;
}
v1->AsTableVal()->Assign(v2, 0);
Unref(v1);
Unref(v2);
}
void IndexExpr::Delete(Frame* f)
{
if ( IsError() )
return;
Val* v1 = op1->Eval(f);
if ( ! v1 )
return;
Val* v2 = op2->Eval(f);
if ( ! v2 )
{
Unref(v1);
return;
}
Unref(v1->AsTableVal()->Delete(v2));
Unref(v1);
Unref(v2);
}
Expr* IndexExpr::MakeLvalue()
{
if ( IsString(op1->Type()->Tag()) )
ExprError("cannot assign to string index expression");
return new RefExpr(this);
}
Expr* IndexExpr::Simplify(SimplifyType simp_type)
{
op1 = simplify_expr(op1, simp_type);
op2 = simplify_expr(op2, SIMPLIFY_GENERAL);
return this;
}
Val* IndexExpr::Eval(Frame* f) const
{
Val* v1 = op1->Eval(f);
if ( ! v1 )
return 0;
Val* v2 = op2->Eval(f);
if ( ! v2 )
{
Unref(v1);
return 0;
}
Val* result;
Val* indv = v2->AsListVal()->Index(0);
if ( is_vector(indv) )
{
VectorVal* v_v1 = v1->AsVectorVal();
VectorVal* v_v2 = indv->AsVectorVal();
VectorVal* v_result = new VectorVal(Type()->AsVectorType());
result = v_result;
// Booleans select each element (or not).
if ( IsBool(v_v2->Type()->YieldType()->Tag()) )
{
if ( v_v1->Size() != v_v2->Size() )
{
Error("size mismatch, boolean index and vector");
Unref(v_result);
return 0;
}
for ( unsigned int i = 0; i < v_v2->Size(); ++i )
{
if ( v_v2->Lookup(i)->AsBool() )
v_result->Assign(v_result->Size() + 1, v_v1->Lookup(i));
}
}
else
{ // The elements are indices.
// ### Should handle negative indices here like
// S does, i.e., by excluding those elements.
// Probably only do this if *all* are negative.
v_result->Resize(v_v2->Size());
for ( unsigned int i = 0; i < v_v2->Size(); ++i )
v_result->Assign(i, v_v1->Lookup(v_v2->Lookup(i)->CoerceToInt()));
}
}
else
result = Fold(v1, v2);
Unref(v1);
Unref(v2);
return result;
}
static int get_slice_index(int idx, int len)
{
if ( abs(idx) > len )
idx = idx > 0 ? len : 0; // Clamp maximum positive/negative indices.
else if ( idx < 0 )
idx += len; // Map to a positive index.
return idx;
}
Val* IndexExpr::Fold(Val* v1, Val* v2) const
{
if ( IsError() )
return 0;
Val* v = 0;
switch ( v1->Type()->Tag() ) {
case TYPE_VECTOR:
v = v1->AsVectorVal()->Lookup(v2);
break;
case TYPE_TABLE:
v = v1->AsTableVal()->Lookup(v2);
break;
case TYPE_STRING:
{
const ListVal* lv = v2->AsListVal();
const BroString* s = v1->AsString();
int len = s->Len();
BroString* substring = 0;
if ( lv->Length() == 1 )
{
bro_int_t idx = lv->Index(0)->AsInt();
if ( idx < 0 )
idx += len;
// Out-of-range index will return null pointer.
substring = s->GetSubstring(idx, 1);
}
else
{
bro_int_t first = get_slice_index(lv->Index(0)->AsInt(), len);
bro_int_t last = get_slice_index(lv->Index(1)->AsInt(), len);
int substring_len = last - first;
if ( substring_len < 0 )
substring = 0;
else
substring = s->GetSubstring(first, substring_len);
}
return new StringVal(substring ? substring : new BroString(""));
}
default:
Error("type cannot be indexed");
break;
}
if ( v )
return v->Ref();
Error("no such index");
return 0;
}
void IndexExpr::Assign(Frame* f, Val* v, Opcode op)
{
if ( IsError() )
return;
Val* v1 = op1->Eval(f);
if ( ! v1 )
return;
Val* v2 = op2->Eval(f);
if ( ! v1 || ! v2 )
{
Unref(v1);
Unref(v2);
return;
}
switch ( v1->Type()->Tag() ) {
case TYPE_VECTOR:
if ( ! v1->AsVectorVal()->Assign(v2, v, op) )
Internal("assignment failed");
break;
case TYPE_TABLE:
if ( ! v1->AsTableVal()->Assign(v2, v, op) )
Internal("assignment failed");
break;
case TYPE_STRING:
Internal("assignment via string index accessor not allowed");
break;
default:
Internal("bad index expression type in assignment");
break;
}
Unref(v1);
Unref(v2);
}
void IndexExpr::ExprDescribe(ODesc* d) const
{
op1->Describe(d);
if ( d->IsReadable() )
d->Add("[");
op2->Describe(d);
if ( d->IsReadable() )
d->Add("]");
}
TraversalCode IndexExpr::Traverse(TraversalCallback* cb) const
{
TraversalCode tc = cb->PreExpr(this);
HANDLE_TC_EXPR_PRE(tc);
tc = op1->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = op2->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = cb->PostExpr(this);
HANDLE_TC_EXPR_POST(tc);
}
IMPLEMENT_SERIAL(IndexExpr, SER_INDEX_EXPR);
bool IndexExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_INDEX_EXPR, BinaryExpr);
return true;
}
bool IndexExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
FieldExpr::FieldExpr(Expr* arg_op, const char* arg_field_name)
: UnaryExpr(EXPR_FIELD, arg_op)
{
field_name = copy_string(arg_field_name);
td = 0;
field = 0;
if ( IsError() )
return;
if ( ! IsRecord(op->Type()->Tag()) )
ExprError("not a record");
else
{
RecordType* rt = op->Type()->AsRecordType();
field = rt->FieldOffset(field_name);
if ( field < 0 )
ExprError("no such field in record");
else
{
SetType(rt->FieldType(field)->Ref());
td = rt->FieldDecl(field);
if ( td->FindAttr(ATTR_DEPRECATED) )
reporter->Warning("deprecated (%s$%s)", rt->GetName().c_str(),
field_name);
}
}
}
FieldExpr::~FieldExpr()
{
delete [] field_name;
}
Expr* FieldExpr::MakeLvalue()
{
return new RefExpr(this);
}
Expr* FieldExpr::Simplify(SimplifyType simp_type)
{
op = simplify_expr(op, simp_type);
return this;
}
int FieldExpr::CanDel() const
{
return td->FindAttr(ATTR_DEFAULT) || td->FindAttr(ATTR_OPTIONAL);
}
void FieldExpr::Assign(Frame* f, Val* v, Opcode opcode)
{
if ( IsError() )
return;
if ( field < 0 )
ExprError("no such field in record");
Val* op_v = op->Eval(f);
if ( op_v )
{
RecordVal* r = op_v->AsRecordVal();
r->Assign(field, v, opcode);
Unref(r);
}
}
void FieldExpr::Delete(Frame* f)
{
Assign(f, 0, OP_ASSIGN_IDX);
}
Val* FieldExpr::Fold(Val* v) const
{
Val* result = v->AsRecordVal()->Lookup(field);
if ( result )
return result->Ref();
// Check for &default.
const Attr* def_attr = td ? td->FindAttr(ATTR_DEFAULT) : 0;
if ( def_attr )
return def_attr->AttrExpr()->Eval(0);
else
{
reporter->ExprRuntimeError(this, "field value missing");
assert(false);
return 0; // Will never get here, but compiler can't tell.
}
}
void FieldExpr::ExprDescribe(ODesc* d) const
{
op->Describe(d);
if ( d->IsReadable() )
d->Add("$");
if ( IsError() )
d->Add("<error>");
else if ( d->IsReadable() )
d->Add(field_name);
else
d->Add(field);
}
IMPLEMENT_SERIAL(FieldExpr, SER_FIELD_EXPR);
bool FieldExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_FIELD_EXPR, UnaryExpr);
if ( ! (SERIALIZE(field_name) && SERIALIZE(field) ) )
return false;
return td->Serialize(info);
}
bool FieldExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
if ( ! (UNSERIALIZE_STR(&field_name, 0) && UNSERIALIZE(&field) ) )
return false;
td = TypeDecl::Unserialize(info);
return td != 0;
}
HasFieldExpr::HasFieldExpr(Expr* arg_op, const char* arg_field_name)
: UnaryExpr(EXPR_HAS_FIELD, arg_op)
{
field_name = arg_field_name;
field = 0;
if ( IsError() )
return;
if ( ! IsRecord(op->Type()->Tag()) )
ExprError("not a record");
else
{
RecordType* rt = op->Type()->AsRecordType();
field = rt->FieldOffset(field_name);
if ( field < 0 )
ExprError("no such field in record");
else if ( rt->FieldDecl(field)->FindAttr(ATTR_DEPRECATED) )
reporter->Warning("deprecated (%s?$%s)", rt->GetName().c_str(),
field_name);
SetType(base_type(TYPE_BOOL));
}
}
HasFieldExpr::~HasFieldExpr()
{
delete field_name;
}
Val* HasFieldExpr::Fold(Val* v) const
{
RecordVal* rec_to_look_at;
rec_to_look_at = v->AsRecordVal();
if ( ! rec_to_look_at )
return new Val(0, TYPE_BOOL);
RecordVal* r = rec_to_look_at->Ref()->AsRecordVal();
Val* ret = new Val(r->Lookup(field) != 0, TYPE_BOOL);
Unref(r);
return ret;
}
void HasFieldExpr::ExprDescribe(ODesc* d) const
{
op->Describe(d);
if ( d->IsReadable() )
d->Add("?$");
if ( IsError() )
d->Add("<error>");
else if ( d->IsReadable() )
d->Add(field_name);
else
d->Add(field);
}
IMPLEMENT_SERIAL(HasFieldExpr, SER_HAS_FIELD_EXPR);
bool HasFieldExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_HAS_FIELD_EXPR, UnaryExpr);
// Serialize former "bool is_attr" member first for backwards compatibility.
return SERIALIZE(false) && SERIALIZE(field_name) && SERIALIZE(field);
}
bool HasFieldExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
// Unserialize former "bool is_attr" member for backwards compatibility.
bool not_used;
return UNSERIALIZE(&not_used) && UNSERIALIZE_STR(&field_name, 0) && UNSERIALIZE(&field);
}
RecordConstructorExpr::RecordConstructorExpr(ListExpr* constructor_list)
: UnaryExpr(EXPR_RECORD_CONSTRUCTOR, constructor_list)
{
if ( IsError() )
return;
// Spin through the list, which should be comprised only of
// record-field-assign expressions, and build up a
// record type to associate with this constructor.
type_decl_list* record_types = new type_decl_list;
const expr_list& exprs = constructor_list->Exprs();
loop_over_list(exprs, i)
{
Expr* e = exprs[i];
if ( e->Tag() != EXPR_FIELD_ASSIGN )
{
Error("bad type in record constructor", e);
SetError();
continue;
}
FieldAssignExpr* field = (FieldAssignExpr*) e;
BroType* field_type = field->Type()->Ref();
char* field_name = copy_string(field->FieldName());
record_types->append(new TypeDecl(field_type, field_name));
}
SetType(new RecordType(record_types));
}
RecordConstructorExpr::~RecordConstructorExpr()
{
}
Val* RecordConstructorExpr::InitVal(const BroType* t, Val* aggr) const
{
Val* v = Eval(0);
if ( v )
{
RecordVal* rv = v->AsRecordVal();
RecordVal* ar = rv->CoerceTo(t->AsRecordType(), aggr);
if ( ar )
{
Unref(rv);
return ar;
}
}
Error("bad record initializer");
return 0;
}
Val* RecordConstructorExpr::Fold(Val* v) const
{
ListVal* lv = v->AsListVal();
RecordType* rt = type->AsRecordType();
if ( lv->Length() != rt->NumFields() )
Internal("inconsistency evaluating record constructor");
RecordVal* rv = new RecordVal(rt);
for ( int i = 0; i < lv->Length(); ++i )
rv->Assign(i, lv->Index(i)->Ref());
return rv;
}
void RecordConstructorExpr::ExprDescribe(ODesc* d) const
{
d->Add("[");
op->Describe(d);
d->Add("]");
}
IMPLEMENT_SERIAL(RecordConstructorExpr, SER_RECORD_CONSTRUCTOR_EXPR);
bool RecordConstructorExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_RECORD_CONSTRUCTOR_EXPR, UnaryExpr);
return true;
}
bool RecordConstructorExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
TableConstructorExpr::TableConstructorExpr(ListExpr* constructor_list,
attr_list* arg_attrs, BroType* arg_type)
: UnaryExpr(EXPR_TABLE_CONSTRUCTOR, constructor_list)
{
attrs = 0;
if ( IsError() )
return;
if ( arg_type )
{
if ( ! arg_type->IsTable() )
{
Error("bad table constructor type", arg_type);
SetError();
return;
}
SetType(arg_type->Ref());
}
else
{
if ( constructor_list->Exprs().length() == 0 )
SetType(new TableType(new TypeList(base_type(TYPE_ANY)), 0));
else
{
SetType(init_type(constructor_list));
if ( ! type )
SetError();
else if ( type->Tag() != TYPE_TABLE ||
type->AsTableType()->IsSet() )
SetError("values in table(...) constructor do not specify a table");
}
}
attrs = arg_attrs ? new Attributes(arg_attrs, type, false) : 0;
type_list* indices = type->AsTableType()->Indices()->Types();
const expr_list& cle = constructor_list->Exprs();
// check and promote all index expressions in ctor list
loop_over_list(cle, i)
{
if ( cle[i]->Tag() != EXPR_ASSIGN )
continue;
Expr* idx_expr = cle[i]->AsAssignExpr()->Op1();
if ( idx_expr->Tag() != EXPR_LIST )
continue;
expr_list& idx_exprs = idx_expr->AsListExpr()->Exprs();
if ( idx_exprs.length() != indices->length() )
continue;
loop_over_list(idx_exprs, j)
{
Expr* idx = idx_exprs[j];
if ( check_and_promote_expr(idx, (*indices)[j]) )
{
if ( idx != idx_exprs[j] )
idx_exprs.replace(j, idx);
continue;
}
ExprError("inconsistent types in table constructor");
}
}
}
Val* TableConstructorExpr::Eval(Frame* f) const
{
if ( IsError() )
return 0;
Val* aggr = new TableVal(Type()->AsTableType(), attrs);
const expr_list& exprs = op->AsListExpr()->Exprs();
loop_over_list(exprs, i)
exprs[i]->EvalIntoAggregate(type, aggr, f);
return aggr;
}
Val* TableConstructorExpr::InitVal(const BroType* t, Val* aggr) const
{
if ( IsError() )
return 0;
TableType* tt = Type()->AsTableType();
TableVal* tval = aggr ? aggr->AsTableVal() : new TableVal(tt, attrs);
const expr_list& exprs = op->AsListExpr()->Exprs();
loop_over_list(exprs, i)
exprs[i]->EvalIntoAggregate(t, tval, 0);
return tval;
}
void TableConstructorExpr::ExprDescribe(ODesc* d) const
{
d->Add("table(");
op->Describe(d);
d->Add(")");
}
IMPLEMENT_SERIAL(TableConstructorExpr, SER_TABLE_CONSTRUCTOR_EXPR);
bool TableConstructorExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_TABLE_CONSTRUCTOR_EXPR, UnaryExpr);
SERIALIZE_OPTIONAL(attrs);
return true;
}
bool TableConstructorExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
UNSERIALIZE_OPTIONAL(attrs, Attributes::Unserialize(info));
return true;
}
SetConstructorExpr::SetConstructorExpr(ListExpr* constructor_list,
attr_list* arg_attrs, BroType* arg_type)
: UnaryExpr(EXPR_SET_CONSTRUCTOR, constructor_list)
{
attrs = 0;
if ( IsError() )
return;
if ( arg_type )
{
if ( ! arg_type->IsSet() )
{
Error("bad set constructor type", arg_type);
SetError();
return;
}
SetType(arg_type->Ref());
}
else
{
if ( constructor_list->Exprs().length() == 0 )
SetType(new ::SetType(new TypeList(base_type(TYPE_ANY)), 0));
else
SetType(init_type(constructor_list));
}
if ( ! type )
SetError();
else if ( type->Tag() != TYPE_TABLE || ! type->AsTableType()->IsSet() )
SetError("values in set(...) constructor do not specify a set");
attrs = arg_attrs ? new Attributes(arg_attrs, type, false) : 0;
type_list* indices = type->AsTableType()->Indices()->Types();
expr_list& cle = constructor_list->Exprs();
if ( indices->length() == 1 )
{
if ( ! check_and_promote_exprs_to_type(constructor_list,
(*indices)[0]) )
ExprError("inconsistent type in set constructor");
}
else if ( indices->length() > 1 )
{
// Check/promote each expression in composite index.
loop_over_list(cle, i)
{
Expr* ce = cle[i];
ListExpr* le = ce->AsListExpr();
if ( ce->Tag() == EXPR_LIST &&
check_and_promote_exprs(le, type->AsTableType()->Indices()) )
{
if ( le != cle[i] )
cle.replace(i, le);
continue;
}
ExprError("inconsistent types in set constructor");
}
}
}
Val* SetConstructorExpr::Eval(Frame* f) const
{
if ( IsError() )
return 0;
TableVal* aggr = new TableVal(type->AsTableType(), attrs);
const expr_list& exprs = op->AsListExpr()->Exprs();
loop_over_list(exprs, i)
{
Val* element = exprs[i]->Eval(f);
aggr->Assign(element, 0);
Unref(element);
}
return aggr;
}
Val* SetConstructorExpr::InitVal(const BroType* t, Val* aggr) const
{
if ( IsError() )
return 0;
const BroType* index_type = t->AsTableType()->Indices();
TableType* tt = Type()->AsTableType();
TableVal* tval = aggr ? aggr->AsTableVal() : new TableVal(tt, attrs);
const expr_list& exprs = op->AsListExpr()->Exprs();
loop_over_list(exprs, i)
{
Expr* e = exprs[i];
Val* element = check_and_promote(e->Eval(0), index_type, 1);
if ( ! element || ! tval->Assign(element, 0) )
{
Error(fmt("initialization type mismatch in set"), e);
return 0;
}
Unref(element);
}
return tval;
}
void SetConstructorExpr::ExprDescribe(ODesc* d) const
{
d->Add("set(");
op->Describe(d);
d->Add(")");
}
IMPLEMENT_SERIAL(SetConstructorExpr, SER_SET_CONSTRUCTOR_EXPR);
bool SetConstructorExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_SET_CONSTRUCTOR_EXPR, UnaryExpr);
SERIALIZE_OPTIONAL(attrs);
return true;
}
bool SetConstructorExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
UNSERIALIZE_OPTIONAL(attrs, Attributes::Unserialize(info));
return true;
}
VectorConstructorExpr::VectorConstructorExpr(ListExpr* constructor_list,
BroType* arg_type)
: UnaryExpr(EXPR_VECTOR_CONSTRUCTOR, constructor_list)
{
if ( IsError() )
return;
if ( arg_type )
{
if ( arg_type->Tag() != TYPE_VECTOR )
{
Error("bad vector constructor type", arg_type);
SetError();
return;
}
SetType(arg_type->Ref());
}
else
{
if ( constructor_list->Exprs().length() == 0 )
{
// vector().
// By default, assign VOID type here. A vector with
// void type set is seen as an unspecified vector.
SetType(new ::VectorType(base_type(TYPE_VOID)));
return;
}
BroType* t = merge_type_list(constructor_list);
if ( t )
{
SetType(new VectorType(t->Ref()));
Unref(t);
}
else
{
SetError();
return;
}
}
if ( ! check_and_promote_exprs_to_type(constructor_list,
type->AsVectorType()->YieldType()) )
ExprError("inconsistent types in vector constructor");
}
Val* VectorConstructorExpr::Eval(Frame* f) const
{
if ( IsError() )
return 0;
VectorVal* vec = new VectorVal(Type()->AsVectorType());
const expr_list& exprs = op->AsListExpr()->Exprs();
loop_over_list(exprs, i)
{
Expr* e = exprs[i];
Val* v = e->Eval(f);
if ( ! vec->Assign(i, v) )
{
Error(fmt("type mismatch at index %d", i), e);
return 0;
}
}
return vec;
}
Val* VectorConstructorExpr::InitVal(const BroType* t, Val* aggr) const
{
if ( IsError() )
return 0;
VectorType* vt = Type()->AsVectorType();
VectorVal* vec = aggr ? aggr->AsVectorVal() : new VectorVal(vt);
const expr_list& exprs = op->AsListExpr()->Exprs();
loop_over_list(exprs, i)
{
Expr* e = exprs[i];
Val* v = check_and_promote(e->Eval(0), t->YieldType(), 1);
if ( ! v || ! vec->Assign(i, v) )
{
Error(fmt("initialization type mismatch at index %d", i), e);
if ( ! aggr )
Unref(vec);
return 0;
}
}
return vec;
}
void VectorConstructorExpr::ExprDescribe(ODesc* d) const
{
d->Add("vector(");
op->Describe(d);
d->Add(")");
}
IMPLEMENT_SERIAL(VectorConstructorExpr, SER_VECTOR_CONSTRUCTOR_EXPR);
bool VectorConstructorExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_VECTOR_CONSTRUCTOR_EXPR, UnaryExpr);
return true;
}
bool VectorConstructorExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
FieldAssignExpr::FieldAssignExpr(const char* arg_field_name, Expr* value)
: UnaryExpr(EXPR_FIELD_ASSIGN, value), field_name(arg_field_name)
{
op->Ref();
SetType(value->Type()->Ref());
}
void FieldAssignExpr::EvalIntoAggregate(const BroType* t, Val* aggr, Frame* f)
const
{
if ( IsError() )
return;
RecordVal* rec = aggr->AsRecordVal();
const RecordType* rt = t->AsRecordType();
Val* v = op->Eval(f);
if ( v )
{
int idx = rt->FieldOffset(field_name.c_str());
if ( idx < 0 )
reporter->InternalError("Missing record field: %s",
field_name.c_str());
rec->Assign(idx, v);
}
}
int FieldAssignExpr::IsRecordElement(TypeDecl* td) const
{
if ( td )
{
td->type = op->Type()->Ref();
td->id = copy_string(field_name.c_str());
}
return 1;
}
void FieldAssignExpr::ExprDescribe(ODesc* d) const
{
d->Add("$");
d->Add(FieldName());
d->Add("=");
op->Describe(d);
}
IMPLEMENT_SERIAL(FieldAssignExpr, SER_FIELD_ASSIGN_EXPR);
bool FieldAssignExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_FIELD_ASSIGN_EXPR, UnaryExpr);
return true;
}
bool FieldAssignExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
ArithCoerceExpr::ArithCoerceExpr(Expr* arg_op, TypeTag t)
: UnaryExpr(EXPR_ARITH_COERCE, arg_op)
{
if ( IsError() )
return;
TypeTag bt = op->Type()->Tag();
TypeTag vbt = bt;
if ( IsVector(bt) )
{
SetType(new VectorType(base_type(t)));
vbt = op->Type()->AsVectorType()->YieldType()->Tag();
}
else
SetType(base_type(t));
if ( (bt == TYPE_ENUM) != (t == TYPE_ENUM) )
ExprError("can't convert to/from enumerated type");
else if ( ! IsArithmetic(t) && ! IsBool(t) &&
t != TYPE_TIME && t != TYPE_INTERVAL )
ExprError("bad coercion");
else if ( ! IsArithmetic(bt) && ! IsBool(bt) &&
! IsArithmetic(vbt) && ! IsBool(vbt) )
ExprError("bad coercion value");
}
Expr* ArithCoerceExpr::DoSimplify()
{
if ( is_vector(op) )
return this;
InternalTypeTag my_int = type->InternalType();
InternalTypeTag op_int = op->Type()->InternalType();
if ( my_int == TYPE_INTERNAL_UNSIGNED )
my_int = TYPE_INTERNAL_INT;
if ( op_int == TYPE_INTERNAL_UNSIGNED )
op_int = TYPE_INTERNAL_INT;
if ( my_int == op_int )
return op->Ref();
if ( op->IsConst() )
{
if ( my_int == TYPE_INTERNAL_INT )
{
if ( op_int != TYPE_INTERNAL_DOUBLE )
Internal("bad coercion in CoerceExpr::DoSimplify");
double d = op->ExprVal()->InternalDouble();
bro_int_t i = bro_int_t(d);
if ( i < 0 &&
type->InternalType() == TYPE_INTERNAL_UNSIGNED )
Warn("coercion produces negative count value");
if ( d != double(i) )
Warn("coercion loses precision");
return new ConstExpr(new Val(i, type->Tag()));
}
if ( my_int == TYPE_INTERNAL_DOUBLE )
{
if ( op_int == TYPE_INTERNAL_INT )
{
bro_int_t i = op->ExprVal()->InternalInt();
double d = double(i);
if ( i != bro_int_t(d) )
Warn("coercion loses precision");
return new ConstExpr(new Val(d, type->Tag()));
}
if ( op_int == TYPE_INTERNAL_UNSIGNED )
{
bro_uint_t u = op->ExprVal()->InternalUnsigned();
double d = double(u);
if ( u != (bro_uint_t) (d) )
Warn("coercion loses precision");
return new ConstExpr(new Val(d, type->Tag()));
}
}
Internal("bad coercion in CoerceExpr::DoSimplify");
}
return this;
}
Val* ArithCoerceExpr::FoldSingleVal(Val* v, InternalTypeTag t) const
{
switch ( t ) {
case TYPE_INTERNAL_DOUBLE:
return new Val(v->CoerceToDouble(), TYPE_DOUBLE);
case TYPE_INTERNAL_INT:
return new Val(v->CoerceToInt(), TYPE_INT);
case TYPE_INTERNAL_UNSIGNED:
return new Val(v->CoerceToUnsigned(), TYPE_COUNT);
default:
Internal("bad type in CoerceExpr::Fold");
return 0;
}
}
Val* ArithCoerceExpr::Fold(Val* v) const
{
InternalTypeTag t = type->InternalType();
if ( ! is_vector(v) )
{
// Our result type might be vector, in which case this
// invocation is being done per-element rather than on
// the whole vector. Correct the type tag if necessary.
if ( type->Tag() == TYPE_VECTOR )
t = Type()->AsVectorType()->YieldType()->InternalType();
return FoldSingleVal(v, t);
}
t = Type()->AsVectorType()->YieldType()->InternalType();
VectorVal* vv = v->AsVectorVal();
VectorVal* result = new VectorVal(Type()->AsVectorType());
for ( unsigned int i = 0; i < vv->Size(); ++i )
{
Val* elt = vv->Lookup(i);
if ( elt )
result->Assign(i, FoldSingleVal(elt, t));
else
result->Assign(i, 0);
}
return result;
}
IMPLEMENT_SERIAL(ArithCoerceExpr, SER_ARITH_COERCE_EXPR);
bool ArithCoerceExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_ARITH_COERCE_EXPR, UnaryExpr);
return true;
}
bool ArithCoerceExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
RecordCoerceExpr::RecordCoerceExpr(Expr* op, RecordType* r)
: UnaryExpr(EXPR_RECORD_COERCE, op)
{
map_size = 0;
map = 0;
if ( IsError() )
return;
SetType(r->Ref());
if ( Type()->Tag() != TYPE_RECORD )
ExprError("coercion to non-record");
else if ( op->Type()->Tag() != TYPE_RECORD )
ExprError("coercion of non-record to record");
else
{
RecordType* t_r = type->AsRecordType();
RecordType* sub_r = op->Type()->AsRecordType();
map_size = t_r->NumFields();
map = new int[map_size];
int i;
for ( i = 0; i < map_size; ++i )
map[i] = -1; // -1 = field is not mapped
for ( i = 0; i < sub_r->NumFields(); ++i )
{
int t_i = t_r->FieldOffset(sub_r->FieldName(i));
if ( t_i < 0 )
{
ExprError(fmt("orphaned field \"%s\" in record coercion",
sub_r->FieldName(i)));
break;
}
BroType* sub_t_i = sub_r->FieldType(i);
BroType* sup_t_i = t_r->FieldType(t_i);
if ( ! same_type(sup_t_i, sub_t_i) )
{
if ( sup_t_i->Tag() != TYPE_RECORD ||
sub_t_i->Tag() != TYPE_RECORD ||
! record_promotion_compatible(sup_t_i->AsRecordType(),
sub_t_i->AsRecordType()) )
{
char buf[512];
safe_snprintf(buf, sizeof(buf),
"type clash for field \"%s\"", sub_r->FieldName(i));
Error(buf, sub_t_i);
SetError();
break;
}
}
map[t_i] = i;
}
for ( i = 0; i < map_size; ++i )
{
if ( map[i] == -1 )
{
if ( ! t_r->FieldDecl(i)->FindAttr(ATTR_OPTIONAL) )
{
char buf[512];
safe_snprintf(buf, sizeof(buf),
"non-optional field \"%s\" missing",
t_r->FieldName(i));
Error(buf);
SetError();
break;
}
}
else
{
if ( t_r->FieldDecl(i)->FindAttr(ATTR_DEPRECATED) )
reporter->Warning("deprecated (%s$%s)",
t_r->GetName().c_str(),
t_r->FieldName(i));
}
}
}
}
RecordCoerceExpr::~RecordCoerceExpr()
{
delete [] map;
}
Val* RecordCoerceExpr::InitVal(const BroType* t, Val* aggr) const
{
Val* v = Eval(0);
if ( v )
{
RecordVal* rv = v->AsRecordVal();
RecordVal* ar = rv->CoerceTo(t->AsRecordType(), aggr);
if ( ar )
{
Unref(rv);
return ar;
}
}
Error("bad record initializer");
return 0;
}
Val* RecordCoerceExpr::Fold(Val* v) const
{
RecordVal* val = new RecordVal(Type()->AsRecordType());
RecordVal* rv = v->AsRecordVal();
for ( int i = 0; i < map_size; ++i )
{
if ( map[i] >= 0 )
{
Val* rhs = rv->Lookup(map[i]);
if ( ! rhs )
{
const Attr* def = rv->Type()->AsRecordType()->FieldDecl(
map[i])->FindAttr(ATTR_DEFAULT);
if ( def )
rhs = def->AttrExpr()->Eval(0);
}
if ( rhs )
rhs = rhs->Ref();
assert(rhs || Type()->AsRecordType()->FieldDecl(i)->FindAttr(ATTR_OPTIONAL));
if ( ! rhs )
{
// Optional field is missing.
val->Assign(i, 0);
continue;
}
BroType* rhs_type = rhs->Type();
RecordType* val_type = val->Type()->AsRecordType();
BroType* field_type = val_type->FieldType(i);
if ( rhs_type->Tag() == TYPE_RECORD &&
field_type->Tag() == TYPE_RECORD &&
! same_type(rhs_type, field_type) )
{
Val* new_val = rhs->AsRecordVal()->CoerceTo(
field_type->AsRecordType());
if ( new_val )
{
Unref(rhs);
rhs = new_val;
}
}
val->Assign(i, rhs);
}
else
{
const Attr* def =
Type()->AsRecordType()->FieldDecl(i)->FindAttr(ATTR_DEFAULT);
if ( def )
{
Val* def_val = def->AttrExpr()->Eval(0);
BroType* def_type = def_val->Type();
BroType* field_type = Type()->AsRecordType()->FieldType(i);
if ( def_type->Tag() == TYPE_RECORD &&
field_type->Tag() == TYPE_RECORD &&
! same_type(def_type, field_type) )
{
Val* tmp = def_val->AsRecordVal()->CoerceTo(
field_type->AsRecordType());
if ( tmp )
{
Unref(def_val);
def_val = tmp;
}
}
val->Assign(i, def_val);
}
else
val->Assign(i, 0);
}
}
return val;
}
IMPLEMENT_SERIAL(RecordCoerceExpr, SER_RECORD_COERCE_EXPR);
bool RecordCoerceExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_RECORD_COERCE_EXPR, UnaryExpr);
if ( ! SERIALIZE(map_size) )
return false;
for ( int i = 0; i < map_size; ++i )
if ( ! SERIALIZE(map[i]) )
return false;
return true;
}
bool RecordCoerceExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
if ( ! UNSERIALIZE(&map_size) )
return false;
map = new int[map_size];
for ( int i = 0; i < map_size; ++i )
if ( ! UNSERIALIZE(&map[i]) )
return false;
return true;
}
TableCoerceExpr::TableCoerceExpr(Expr* op, TableType* r)
: UnaryExpr(EXPR_TABLE_COERCE, op)
{
if ( IsError() )
return;
SetType(r->Ref());
if ( Type()->Tag() != TYPE_TABLE )
ExprError("coercion to non-table");
else if ( op->Type()->Tag() != TYPE_TABLE )
ExprError("coercion of non-table/set to table/set");
}
TableCoerceExpr::~TableCoerceExpr()
{
}
Val* TableCoerceExpr::Fold(Val* v) const
{
TableVal* tv = v->AsTableVal();
if ( tv->Size() > 0 )
Internal("coercion of non-empty table/set");
return new TableVal(Type()->AsTableType(), tv->Attrs());
}
IMPLEMENT_SERIAL(TableCoerceExpr, SER_TABLE_COERCE_EXPR);
bool TableCoerceExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_TABLE_COERCE_EXPR, UnaryExpr);
return true;
}
bool TableCoerceExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
VectorCoerceExpr::VectorCoerceExpr(Expr* op, VectorType* v)
: UnaryExpr(EXPR_VECTOR_COERCE, op)
{
if ( IsError() )
return;
SetType(v->Ref());
if ( Type()->Tag() != TYPE_VECTOR )
ExprError("coercion to non-vector");
else if ( op->Type()->Tag() != TYPE_VECTOR )
ExprError("coercion of non-vector to vector");
}
VectorCoerceExpr::~VectorCoerceExpr()
{
}
Val* VectorCoerceExpr::Fold(Val* v) const
{
VectorVal* vv = v->AsVectorVal();
if ( vv->Size() > 0 )
Internal("coercion of non-empty vector");
return new VectorVal(Type()->Ref()->AsVectorType());
}
IMPLEMENT_SERIAL(VectorCoerceExpr, SER_VECTOR_COERCE_EXPR);
bool VectorCoerceExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_VECTOR_COERCE_EXPR, UnaryExpr);
return true;
}
bool VectorCoerceExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return true;
}
FlattenExpr::FlattenExpr(Expr* arg_op)
: UnaryExpr(EXPR_FLATTEN, arg_op)
{
if ( IsError() )
return;
BroType* t = op->Type();
if ( t->Tag() != TYPE_RECORD )
Internal("bad type in FlattenExpr::FlattenExpr");
RecordType* rt = t->AsRecordType();
num_fields = rt->NumFields();
TypeList* tl = new TypeList();
for ( int i = 0; i < num_fields; ++i )
tl->Append(rt->FieldType(i)->Ref());
Unref(rt);
SetType(tl);
}
Val* FlattenExpr::Fold(Val* v) const
{
RecordVal* rv = v->AsRecordVal();
ListVal* l = new ListVal(TYPE_ANY);
for ( int i = 0; i < num_fields; ++i )
{
Val* fv = rv->Lookup(i);
if ( fv )
{
l->Append(fv->Ref());
continue;
}
const RecordType* rv_t = rv->Type()->AsRecordType();
const Attr* fa = rv_t->FieldDecl(i)->FindAttr(ATTR_DEFAULT);
if ( fa )
l->Append(fa->AttrExpr()->Eval(0));
else
reporter->ExprRuntimeError(this, "missing field value");
}
return l;
}
IMPLEMENT_SERIAL(FlattenExpr, SER_FLATTEN_EXPR);
bool FlattenExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_FLATTEN_EXPR, UnaryExpr);
return SERIALIZE(num_fields);
}
bool FlattenExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(UnaryExpr);
return UNSERIALIZE(&num_fields);
}
ScheduleTimer::ScheduleTimer(EventHandlerPtr arg_event, val_list* arg_args,
double t, TimerMgr* arg_tmgr)
: Timer(t, TIMER_SCHEDULE)
{
event = arg_event;
args = arg_args;
tmgr = arg_tmgr;
}
ScheduleTimer::~ScheduleTimer()
{
}
void ScheduleTimer::Dispatch(double /* t */, int /* is_expire */)
{
mgr.QueueEvent(event, args, SOURCE_LOCAL, 0, tmgr);
}
ScheduleExpr::ScheduleExpr(Expr* arg_when, EventExpr* arg_event)
: Expr(EXPR_SCHEDULE)
{
when = arg_when;
event = arg_event;
if ( IsError() || when->IsError() || event->IsError() )
return;
TypeTag bt = when->Type()->Tag();
if ( bt != TYPE_TIME && bt != TYPE_INTERVAL )
ExprError("schedule expression requires a time or time interval");
else
SetType(base_type(TYPE_TIMER));
}
ScheduleExpr::~ScheduleExpr()
{
Unref(when);
Unref(event);
}
int ScheduleExpr::IsPure() const
{
return 0;
}
Expr* ScheduleExpr::Simplify(SimplifyType simp_type)
{
when = when->Simplify(simp_type);
Expr* generic_event = event->Simplify(simp_type);
if ( ! generic_event )
return 0;
if ( generic_event->Tag() != EXPR_CALL )
Internal("bad event type in ScheduleExpr::Simplify");
event = (EventExpr*) generic_event;
return this;
}
Val* ScheduleExpr::Eval(Frame* f) const
{
if ( terminating )
return 0;
Val* when_val = when->Eval(f);
if ( ! when_val )
return 0;
double dt = when_val->InternalDouble();
if ( when->Type()->Tag() == TYPE_INTERVAL )
dt += network_time;
val_list* args = eval_list(f, event->Args());
if ( args )
{
TimerMgr* tmgr = mgr.CurrentTimerMgr();
if ( ! tmgr )
tmgr = timer_mgr;
tmgr->Add(new ScheduleTimer(event->Handler(), args, dt, tmgr));
}
Unref(when_val);
return 0;
}
TraversalCode ScheduleExpr::Traverse(TraversalCallback* cb) const
{
TraversalCode tc = cb->PreExpr(this);
HANDLE_TC_EXPR_PRE(tc);
tc = when->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = event->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = cb->PostExpr(this);
HANDLE_TC_EXPR_POST(tc);
}
void ScheduleExpr::ExprDescribe(ODesc* d) const
{
if ( d->IsReadable() )
d->AddSP("schedule");
when->Describe(d);
d->SP();
if ( d->IsReadable() )
{
d->Add("{");
d->PushIndent();
event->Describe(d);
d->PopIndent();
d->Add("}");
}
else
event->Describe(d);
}
IMPLEMENT_SERIAL(ScheduleExpr, SER_SCHEDULE_EXPR);
bool ScheduleExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_SCHEDULE_EXPR, Expr);
return when->Serialize(info) && event->Serialize(info);
}
bool ScheduleExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(Expr);
when = Expr::Unserialize(info);
if ( ! when )
return false;
event = (EventExpr*) Expr::Unserialize(info, EXPR_EVENT);
return event != 0;
}
InExpr::InExpr(Expr* arg_op1, Expr* arg_op2)
: BinaryExpr(EXPR_IN, arg_op1, arg_op2)
{
if ( IsError() )
return;
if ( op1->Type()->Tag() == TYPE_PATTERN )
{
if ( op2->Type()->Tag() != TYPE_STRING )
{
op2->Type()->Error("pattern requires string index", op1);
SetError();
}
else
SetType(base_type(TYPE_BOOL));
}
else if ( op1->Type()->Tag() == TYPE_RECORD )
{
if ( op2->Type()->Tag() != TYPE_TABLE )
{
op2->Type()->Error("table/set required");
SetError();
}
else
{
const BroType* t1 = op1->Type();
const TypeList* it =
op2->Type()->AsTableType()->Indices();
if ( ! same_type(t1, it) )
{
t1->Error("indexing mismatch", op2->Type());
SetError();
}
else
SetType(base_type(TYPE_BOOL));
}
}
else if ( op1->Type()->Tag() == TYPE_STRING &&
op2->Type()->Tag() == TYPE_STRING )
SetType(base_type(TYPE_BOOL));
else
{
// Check for: <addr> in <subnet>
// <addr> in set[subnet]
// <addr> in table[subnet] of ...
if ( op1->Type()->Tag() == TYPE_ADDR )
{
if ( op2->Type()->Tag() == TYPE_SUBNET )
{
SetType(base_type(TYPE_BOOL));
return;
}
if ( op2->Type()->Tag() == TYPE_TABLE &&
op2->Type()->AsTableType()->IsSubNetIndex() )
{
SetType(base_type(TYPE_BOOL));
return;
}
}
if ( op1->Tag() != EXPR_LIST )
op1 = new ListExpr(op1);
ListExpr* lop1 = op1->AsListExpr();
if ( ! op2->Type()->MatchesIndex(lop1) )
SetError("not an index type");
else
{
op1 = lop1;
SetType(base_type(TYPE_BOOL));
}
}
}
Val* InExpr::Fold(Val* v1, Val* v2) const
{
if ( v1->Type()->Tag() == TYPE_PATTERN )
{
RE_Matcher* re = v1->AsPattern();
const BroString* s = v2->AsString();
return new Val(re->MatchAnywhere(s) != 0, TYPE_BOOL);
}
if ( v2->Type()->Tag() == TYPE_STRING )
{
const BroString* s1 = v1->AsString();
const BroString* s2 = v2->AsString();
// Could do better here - either roll our own, to deal with
// NULs, and/or Boyer-Moore if done repeatedly.
return new Val(strstr(s2->CheckString(), s1->CheckString()) != 0, TYPE_BOOL);
}
if ( v1->Type()->Tag() == TYPE_ADDR &&
v2->Type()->Tag() == TYPE_SUBNET )
return new Val(v2->AsSubNetVal()->Contains(v1->AsAddr()), TYPE_BOOL);
Val* res;
if ( is_vector(v2) )
res = v2->AsVectorVal()->Lookup(v1);
else
res = v2->AsTableVal()->Lookup(v1, false);
if ( res )
return new Val(1, TYPE_BOOL);
else
return new Val(0, TYPE_BOOL);
}
IMPLEMENT_SERIAL(InExpr, SER_IN_EXPR);
bool InExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_IN_EXPR, BinaryExpr);
return true;
}
bool InExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(BinaryExpr);
return true;
}
CallExpr::CallExpr(Expr* arg_func, ListExpr* arg_args, bool in_hook)
: Expr(EXPR_CALL)
{
func = arg_func;
args = arg_args;
if ( func->IsError() || args->IsError() )
{
SetError();
return;
}
BroType* func_type = func->Type();
if ( ! IsFunc(func_type->Tag()) )
{
func->Error("not a function");
SetError();
return;
}
if ( func_type->AsFuncType()->Flavor() == FUNC_FLAVOR_HOOK && ! in_hook )
{
func->Error("hook cannot be called directly, use hook operator");
SetError();
return;
}
if ( ! func_type->MatchesIndex(args) )
SetError("argument type mismatch in function call");
else
{
BroType* yield = func_type->YieldType();
if ( ! yield )
{
switch ( func_type->AsFuncType()->Flavor() ) {
case FUNC_FLAVOR_FUNCTION:
Error("function has no yield type");
SetError();
break;
case FUNC_FLAVOR_EVENT:
Error("event called in expression, use event statement instead");
SetError();
break;
case FUNC_FLAVOR_HOOK:
Error("hook has no yield type");
SetError();
break;
default:
Error("invalid function flavor");
SetError();
break;
}
}
else
SetType(yield->Ref());
// Check for call to built-ins that can be statically
// analyzed.
Val* func_val;
if ( func->Tag() == EXPR_NAME &&
// This is cheating, but without it processing gets
// quite confused regarding "value used but not set"
// run-time errors when we apply this analysis during
// parsing. Really we should instead do it after we've
// parsed the entire set of scripts.
streq(((NameExpr*) func)->Id()->Name(), "fmt") &&
// The following is needed because fmt might not yet
// be bound as a name.
did_builtin_init &&
(func_val = func->Eval(0)) )
{
::Func* f = func_val->AsFunc();
if ( f->GetKind() == Func::BUILTIN_FUNC &&
! check_built_in_call((BuiltinFunc*) f, this) )
SetError();
}
}
}
CallExpr::~CallExpr()
{
Unref(func);
Unref(args);
}
int CallExpr::IsPure() const
{
if ( IsError() )
return 1;
if ( ! func->IsPure() )
return 0;
Val* func_val = func->Eval(0);
if ( ! func_val )
return 0;
::Func* f = func_val->AsFunc();
// Only recurse for built-in functions, as recursing on script
// functions can lead to infinite recursion if the function being
// called here happens to be recursive (either directly
// or indirectly).
int pure = 0;
if ( f->GetKind() == Func::BUILTIN_FUNC )
pure = f->IsPure() && args->IsPure();
Unref(func_val);
return pure;
}
Expr* CallExpr::Simplify(SimplifyType /* simp_type */)
{
if ( IsError() )
return this;
func = simplify_expr(func, SIMPLIFY_GENERAL);
args = simplify_expr_list(args, SIMPLIFY_GENERAL);
if ( IsPure() )
return new ConstExpr(Eval(0));
else
return this;
}
Val* CallExpr::Eval(Frame* f) const
{
if ( IsError() )
return 0;
// If we are inside a trigger condition, we may have already been
// called, delayed, and then produced a result which is now cached.
// Check for that.
if ( f )
{
Trigger* trigger = f->GetTrigger();
if ( trigger )
{
Val* v = trigger->Lookup(this);
if ( v )
{
DBG_LOG(DBG_NOTIFIERS,
"%s: provides cached function result",
trigger->Name());
return v->Ref();
}
}
}
Val* ret = 0;
Val* func_val = func->Eval(f);
val_list* v = eval_list(f, args);
if ( func_val && v )
{
const ::Func* func = func_val->AsFunc();
calling_expr = this;
const CallExpr* current_call = f ? f->GetCall() : 0;
if ( f )
f->SetCall(this);
ret = func->Call(v, f); // No try/catch here; we pass exceptions upstream.
if ( f )
f->SetCall(current_call);
// Don't Unref() the arguments, as Func::Call already did that.
delete v;
calling_expr = 0;
}
else
delete_vals(v);
Unref(func_val);
return ret;
}
TraversalCode CallExpr::Traverse(TraversalCallback* cb) const
{
TraversalCode tc = cb->PreExpr(this);
HANDLE_TC_EXPR_PRE(tc);
tc = func->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = args->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = cb->PostExpr(this);
HANDLE_TC_EXPR_POST(tc);
}
void CallExpr::ExprDescribe(ODesc* d) const
{
func->Describe(d);
if ( d->IsReadable() || d->IsPortable() )
{
d->Add("(");
args->Describe(d);
d->Add(")");
}
else
args->Describe(d);
}
IMPLEMENT_SERIAL(CallExpr, SER_CALL_EXPR);
bool CallExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_CALL_EXPR, Expr);
return func->Serialize(info) && args->Serialize(info);
}
bool CallExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(Expr);
func = Expr::Unserialize(info);
if ( ! func )
return false;
args = (ListExpr*) Expr::Unserialize(info, EXPR_LIST);
return args != 0;
}
EventExpr::EventExpr(const char* arg_name, ListExpr* arg_args)
: Expr(EXPR_EVENT)
{
name = arg_name;
args = arg_args;
EventHandler* h = event_registry->Lookup(name.c_str());
if ( ! h )
{
h = new EventHandler(name.c_str());
event_registry->Register(h);
}
h->SetUsed();
handler = h;
if ( args->IsError() )
{
SetError();
return;
}
FuncType* func_type = h->FType();
if ( ! func_type )
{
Error("not an event");
SetError();
return;
}
if ( ! func_type->MatchesIndex(args) )
SetError("argument type mismatch in event invocation");
else
{
if ( func_type->YieldType() )
{
Error("function invoked as an event");
SetError();
}
}
}
EventExpr::~EventExpr()
{
Unref(args);
}
Expr* EventExpr::Simplify(SimplifyType /* simp_type */)
{
if ( ! IsError() )
args = simplify_expr_list(args, SIMPLIFY_GENERAL);
return this;
}
Val* EventExpr::Eval(Frame* f) const
{
if ( IsError() )
return 0;
val_list* v = eval_list(f, args);
mgr.QueueEvent(handler, v);
return 0;
}
TraversalCode EventExpr::Traverse(TraversalCallback* cb) const
{
TraversalCode tc = cb->PreExpr(this);
HANDLE_TC_EXPR_PRE(tc);
tc = args->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
tc = cb->PostExpr(this);
HANDLE_TC_EXPR_POST(tc);
}
void EventExpr::ExprDescribe(ODesc* d) const
{
d->Add(name.c_str());
if ( d->IsReadable() || d->IsPortable() )
{
d->Add("(");
args->Describe(d);
d->Add(")");
}
else
args->Describe(d);
}
IMPLEMENT_SERIAL(EventExpr, SER_EVENT_EXPR);
bool EventExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_EVENT_EXPR, Expr);
if ( ! handler->Serialize(info) )
return false;
return SERIALIZE(name) && args->Serialize(info);
}
bool EventExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(Expr);
EventHandler* h = EventHandler::Unserialize(info);
if ( ! h )
return false;
handler = h;
if ( ! UNSERIALIZE(&name) )
return false;
args = (ListExpr*) Expr::Unserialize(info, EXPR_LIST);
return args;
}
ListExpr::ListExpr() : Expr(EXPR_LIST)
{
SetType(new TypeList());
}
ListExpr::ListExpr(Expr* e) : Expr(EXPR_LIST)
{
SetType(new TypeList());
Append(e);
}
ListExpr::~ListExpr()
{
loop_over_list(exprs, i)
Unref(exprs[i]);
}
void ListExpr::Append(Expr* e)
{
exprs.append(e);
((TypeList*) type)->Append(e->Type()->Ref());
}
int ListExpr::IsPure() const
{
loop_over_list(exprs, i)
if ( ! exprs[i]->IsPure() )
return 0;
return 1;
}
int ListExpr::AllConst() const
{
loop_over_list(exprs, i)
if ( ! exprs[i]->IsConst() )
return 0;
return 1;
}
Expr* ListExpr::Simplify(SimplifyType /* simp_type */)
{
loop_over_list(exprs, i)
exprs.replace(i, simplify_expr(exprs[i], SIMPLIFY_GENERAL));
// Note that we do *not* simplify a list with one element
// to just that element. The assumption that simplify_expr(ListExpr*)
// returns a ListExpr* is widespread.
return this;
}
Val* ListExpr::Eval(Frame* f) const
{
ListVal* v = new ListVal(TYPE_ANY);
loop_over_list(exprs, i)
{
Val* ev = exprs[i]->Eval(f);
if ( ! ev )
{
Error("uninitialized list value");
Unref(v);
return 0;
}
v->Append(ev);
}
return v;
}
BroType* ListExpr::InitType() const
{
if ( exprs.length() == 0 )
{
Error("empty list in untyped initialization");
return 0;
}
if ( exprs[0]->IsRecordElement(0) )
{
type_decl_list* types = new type_decl_list;
loop_over_list(exprs, i)
{
TypeDecl* td = new TypeDecl(0, 0);
if ( ! exprs[i]->IsRecordElement(td) )
{
exprs[i]->Error("record element expected");
delete td;
delete types;
return 0;
}
types->append(td);
}
return new RecordType(types);
}
else
{
TypeList* tl = new TypeList();
loop_over_list(exprs, i)
{
Expr* e = exprs[i];
BroType* ti = e->Type();
// Collapse any embedded sets or lists.
if ( ti->IsSet() || ti->Tag() == TYPE_LIST )
{
TypeList* til = ti->IsSet() ?
ti->AsSetType()->Indices() :
ti->AsTypeList();
if ( ! til->IsPure() ||
! til->AllMatch(til->PureType(), 1) )
tl->Append(til->Ref());
else
tl->Append(til->PureType()->Ref());
}
else
tl->Append(ti->Ref());
}
return tl;
}
}
Val* ListExpr::InitVal(const BroType* t, Val* aggr) const
{
// While fairly similar to the EvalIntoAggregate() code,
// we keep this separate since it also deals with initialization
// idioms such as embedded aggregates and cross-product
// expansion.
if ( IsError() )
return 0;
// Check whether each element of this list itself matches t,
// in which case we should expand as a ListVal.
if ( ! aggr && type->AsTypeList()->AllMatch(t, 1) )
{
ListVal* v = new ListVal(TYPE_ANY);
const type_list* tl = type->AsTypeList()->Types();
if ( exprs.length() != tl->length() )
{
Error("index mismatch", t);
Unref(v);
return 0;
}
loop_over_list(exprs, i)
{
Val* vi = exprs[i]->InitVal((*tl)[i], 0);
if ( ! vi )
{
Unref(v);
return 0;
}
v->Append(vi);
}
return v;
}
if ( t->Tag() == TYPE_LIST )
{
if ( aggr )
{
Error("bad use of list in initialization", t);
return 0;
}
const type_list* tl = t->AsTypeList()->Types();
if ( exprs.length() != tl->length() )
{
Error("index mismatch", t);
return 0;
}
ListVal* v = new ListVal(TYPE_ANY);
loop_over_list(exprs, i)
{
Val* vi = exprs[i]->InitVal((*tl)[i], 0);
if ( ! vi )
{
Unref(v);
return 0;
}
v->Append(vi);
}
return v;
}
if ( t->Tag() != TYPE_RECORD && t->Tag() != TYPE_TABLE &&
t->Tag() != TYPE_VECTOR )
{
if ( exprs.length() == 1 )
// Allow "global x:int = { 5 }"
return exprs[0]->InitVal(t, aggr);
else
{
Error("aggregate initializer for scalar type", t);
return 0;
}
}
if ( ! aggr )
Internal("missing aggregate in ListExpr::InitVal");
if ( t->IsSet() )
return AddSetInit(t, aggr);
if ( t->Tag() == TYPE_VECTOR )
{
// v: vector = [10, 20, 30];
VectorVal* vec = aggr->AsVectorVal();
loop_over_list(exprs, i)
{
Expr* e = exprs[i];
check_and_promote_expr(e, vec->Type()->AsVectorType()->YieldType());
Val* v = e->Eval(0);
if ( ! vec->Assign(i, v) )
{
e->Error(fmt("type mismatch at index %d", i));
return 0;
}
}
return aggr;
}
// If we got this far, then it's either a table or record
// initialization. Both of those involve AssignExpr's, which
// know how to add themselves to a table or record. Another
// possibility is an expression that evaluates itself to a
// table, which we can then add to the aggregate.
loop_over_list(exprs, i)
{
Expr* e = exprs[i];
if ( e->Tag() == EXPR_ASSIGN || e->Tag() == EXPR_FIELD_ASSIGN )
{
if ( ! e->InitVal(t, aggr) )
return 0;
}
else
{
if ( t->Tag() == TYPE_RECORD )
{
e->Error("bad record initializer", t);
return 0;
}
Val* v = e->Eval(0);
if ( ! same_type(v->Type(), t) )
{
v->Type()->Error("type clash in table initializer", t);
return 0;
}
if ( ! v->AsTableVal()->AddTo(aggr->AsTableVal(), 1) )
return 0;
}
}
return aggr;
}
Val* ListExpr::AddSetInit(const BroType* t, Val* aggr) const
{
if ( aggr->Type()->Tag() != TYPE_TABLE )
Internal("bad aggregate in ListExpr::InitVal");
TableVal* tv = aggr->AsTableVal();
const TableType* tt = tv->Type()->AsTableType();
const TypeList* it = tt->Indices();
loop_over_list(exprs, i)
{
Val* element;
if ( exprs[i]->Type()->IsSet() )
// A set to flatten.
element = exprs[i]->Eval(0);
else if ( exprs[i]->Type()->Tag() == TYPE_LIST )
element = exprs[i]->InitVal(it, 0);
else
element = exprs[i]->InitVal((*it->Types())[0], 0);
if ( ! element )
return 0;
if ( element->Type()->IsSet() )
{
if ( ! same_type(element->Type(), t) )
{
element->Error("type clash in set initializer", t);
return 0;
}
if ( ! element->AsTableVal()->AddTo(tv, 1) )
return 0;
continue;
}
if ( exprs[i]->Type()->Tag() == TYPE_LIST )
element = check_and_promote(element, it, 1);
else
element = check_and_promote(element, (*it->Types())[0], 1);
if ( ! element )
return 0;
if ( ! tv->ExpandAndInit(element, 0) )
{
Unref(element);
Unref(tv);
return 0;
}
Unref(element);
}
return tv;
}
void ListExpr::ExprDescribe(ODesc* d) const
{
d->AddCount(exprs.length());
loop_over_list(exprs, i)
{
if ( (d->IsReadable() || d->IsPortable()) && i > 0 )
d->Add(", ");
exprs[i]->Describe(d);
}
}
Expr* ListExpr::MakeLvalue()
{
loop_over_list(exprs, i)
if ( exprs[i]->Tag() != EXPR_NAME )
ExprError("can only assign to list of identifiers");
return new RefExpr(this);
}
void ListExpr::Assign(Frame* f, Val* v, Opcode op)
{
ListVal* lv = v->AsListVal();
if ( exprs.length() != lv->Vals()->length() )
ExprError("mismatch in list lengths");
loop_over_list(exprs, i)
exprs[i]->Assign(f, (*lv->Vals())[i]->Ref(), op);
Unref(lv);
}
TraversalCode ListExpr::Traverse(TraversalCallback* cb) const
{
TraversalCode tc = cb->PreExpr(this);
HANDLE_TC_EXPR_PRE(tc);
loop_over_list(exprs, i)
{
tc = exprs[i]->Traverse(cb);
HANDLE_TC_EXPR_PRE(tc);
}
tc = cb->PostExpr(this);
HANDLE_TC_EXPR_POST(tc);
}
IMPLEMENT_SERIAL(ListExpr, SER_LIST_EXPR);
bool ListExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_LIST_EXPR, Expr);
if ( ! SERIALIZE(exprs.length()) )
return false;
loop_over_list(exprs, i)
if ( ! exprs[i]->Serialize(info) )
return false;
return true;
}
bool ListExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(Expr);
int len;
if ( ! UNSERIALIZE(&len) )
return false;
while ( len-- )
{
Expr* e = Expr::Unserialize(info);
if ( ! e )
return false;
exprs.append(e);
}
return true;
}
RecordAssignExpr::RecordAssignExpr(Expr* record, Expr* init_list, int is_init)
{
const expr_list& inits = init_list->AsListExpr()->Exprs();
RecordType* lhs = record->Type()->AsRecordType();
// The inits have two forms:
// 1) other records -- use all matching field names+types
// 2) a string indicating the field name, then (as the next element)
// the value to use for that field.
for ( int i = 0; i < inits.length(); ++i )
{
if ( inits[i]->Type()->Tag() == TYPE_RECORD )
{
RecordType* t = inits[i]->Type()->AsRecordType();
for ( int j = 0; j < t->NumFields(); ++j )
{
const char* field_name = t->FieldName(j);
int field = lhs->FieldOffset(field_name);
if ( field >= 0 &&
same_type(lhs->FieldType(field), t->FieldType(j)) )
{
FieldExpr* fe_lhs = new FieldExpr(record, field_name);
FieldExpr* fe_rhs = new FieldExpr(inits[i], field_name);
Append(get_assign_expr(fe_lhs->Ref(), fe_rhs->Ref(), is_init));
}
}
}
else if ( inits[i]->Tag() == EXPR_FIELD_ASSIGN )
{
FieldAssignExpr* rf = (FieldAssignExpr*) inits[i];
rf->Ref();
const char* field_name = ""; // rf->FieldName();
if ( lhs->HasField(field_name) )
{
FieldExpr* fe_lhs = new FieldExpr(record, field_name);
Expr* fe_rhs = rf->Op();
Append(get_assign_expr(fe_lhs->Ref(), fe_rhs, is_init));
}
else
{
string s = "No such field '";
s += field_name;
s += "'";
init_list->SetError(s.c_str());
}
}
else
{
init_list->SetError("bad record initializer");
return;
}
}
}
IMPLEMENT_SERIAL(RecordAssignExpr, SER_RECORD_ASSIGN_EXPR);
bool RecordAssignExpr::DoSerialize(SerialInfo* info) const
{
DO_SERIALIZE(SER_RECORD_ASSIGN_EXPR, ListExpr);
return true;
}
bool RecordAssignExpr::DoUnserialize(UnserialInfo* info)
{
DO_UNSERIALIZE(ListExpr);
return true;
}
Expr* get_assign_expr(Expr* op1, Expr* op2, int is_init)
{
if ( op1->Type()->Tag() == TYPE_RECORD &&
op2->Type()->Tag() == TYPE_LIST )
return new RecordAssignExpr(op1, op2, is_init);
else
return new AssignExpr(op1, op2, is_init);
}
int check_and_promote_expr(Expr*& e, BroType* t)
{
BroType* et = e->Type();
TypeTag e_tag = et->Tag();
TypeTag t_tag = t->Tag();
if ( t->Tag() == TYPE_ANY )
return 1;
if ( EitherArithmetic(t_tag, e_tag) )
{
if ( e_tag == t_tag )
return 1;
if ( ! BothArithmetic(t_tag, e_tag) )
{
t->Error("arithmetic mixed with non-arithmetic", e);
return 0;
}
TypeTag mt = max_type(t_tag, e_tag);
if ( mt != t_tag )
{
t->Error("over-promotion of arithmetic value", e);
return 0;
}
e = new ArithCoerceExpr(e, t_tag);
return 1;
}
if ( t->Tag() == TYPE_RECORD && et->Tag() == TYPE_RECORD )
{
RecordType* t_r = t->AsRecordType();
RecordType* et_r = et->AsRecordType();
if ( same_type(t, et) )
{
// Make sure the attributes match as well.
for ( int i = 0; i < t_r->NumFields(); ++i )
{
const TypeDecl* td1 = t_r->FieldDecl(i);
const TypeDecl* td2 = et_r->FieldDecl(i);
if ( same_attrs(td1->attrs, td2->attrs) )
// Everything matches perfectly.
return 1;
}
}
if ( record_promotion_compatible(t_r, et_r) )
{
e = new RecordCoerceExpr(e, t_r);
return 1;
}
t->Error("incompatible record types", e);
return 0;
}
if ( ! same_type(t, et) )
{
if ( t->Tag() == TYPE_TABLE && et->Tag() == TYPE_TABLE &&
et->AsTableType()->IsUnspecifiedTable() )
{
e = new TableCoerceExpr(e, t->AsTableType());
return 1;
}
if ( t->Tag() == TYPE_VECTOR && et->Tag() == TYPE_VECTOR &&
et->AsVectorType()->IsUnspecifiedVector() )
{
e = new VectorCoerceExpr(e, t->AsVectorType());
return 1;
}
t->Error("type clash", e);
return 0;
}
return 1;
}
int check_and_promote_exprs(ListExpr*& elements, TypeList* types)
{
expr_list& el = elements->Exprs();
const type_list* tl = types->Types();
if ( tl->length() == 1 && (*tl)[0]->Tag() == TYPE_ANY )
return 1;
if ( el.length() != tl->length() )
{
types->Error("indexing mismatch", elements);
return 0;
}
loop_over_list(el, i)
{
Expr* e = el[i];
if ( ! check_and_promote_expr(e, (*tl)[i]) )
{
e->Error("type mismatch", (*tl)[i]);
return 0;
}
if ( e != el[i] )
el.replace(i, e);
}
return 1;
}
int check_and_promote_args(ListExpr*& args, RecordType* types)
{
expr_list& el = args->Exprs();
int ntypes = types->NumFields();
// give variadic BIFs automatic pass
if ( ntypes == 1 && types->FieldDecl(0)->type->Tag() == TYPE_ANY )
return 1;
if ( el.length() < ntypes )
{
expr_list def_elements;
// Start from rightmost parameter, work backward to fill in missing
// arguments using &default expressions.
for ( int i = ntypes - 1; i >= el.length(); --i )
{
TypeDecl* td = types->FieldDecl(i);
Attr* def_attr = td->attrs ? td->attrs->FindAttr(ATTR_DEFAULT) : 0;
if ( ! def_attr )
{
types->Error("parameter mismatch", args);
return 0;
}
def_elements.insert(def_attr->AttrExpr());
}
loop_over_list(def_elements, i)
el.append(def_elements[i]->Ref());
}
TypeList* tl = new TypeList();
for ( int i = 0; i < types->NumFields(); ++i )
tl->Append(types->FieldType(i)->Ref());
int rval = check_and_promote_exprs(args, tl);
Unref(tl);
return rval;
}
int check_and_promote_exprs_to_type(ListExpr*& elements, BroType* type)
{
expr_list& el = elements->Exprs();
if ( type->Tag() == TYPE_ANY )
return 1;
loop_over_list(el, i)
{
Expr* e = el[i];
if ( ! check_and_promote_expr(e, type) )
{
e->Error("type mismatch", type);
return 0;
}
if ( e != el[i] )
el.replace(i, e);
}
return 1;
}
Expr* simplify_expr(Expr* e, SimplifyType simp_type)
{
if ( ! e )
return 0;
for ( Expr* s = e->Simplify(simp_type); s != e; s = e->Simplify(simp_type) )
{
Unref(e);
e = s;
}
return e;
}
ListExpr* simplify_expr_list(ListExpr* l, SimplifyType simp_type)
{
return (ListExpr*) simplify_expr(l, simp_type);
}
val_list* eval_list(Frame* f, const ListExpr* l)
{
const expr_list& e = l->Exprs();
val_list* v = new val_list(e.length());
loop_over_list(e, i)
{
Val* ev = e[i]->Eval(f);
if ( ! ev )
break;
v->append(ev);
}
if ( i < e.length() )
{ // Failure.
loop_over_list(*v, j)
Unref((*v)[j]);
delete v;
return 0;
}
else
return v;
}
int same_expr(const Expr* e1, const Expr* e2)
{
if ( e1 == e2 )
return 1;
if ( e1->Tag() != e2->Tag() || ! same_type(e1->Type(), e2->Type()) )
return 0;
if ( e1->IsError() || e2->IsError() )
return 0;
switch ( e1->Tag() ) {
case EXPR_NAME:
{
const NameExpr* n1 = (NameExpr*) e1;
const NameExpr* n2 = (NameExpr*) e2;
return n1->Id() == n2->Id();
}
case EXPR_CONST:
{
const ConstExpr* c1 = (ConstExpr*) e1;
const ConstExpr* c2 = (ConstExpr*) e2;
return same_val(c1->Value(), c2->Value());
}
case EXPR_INCR:
case EXPR_DECR:
case EXPR_NOT:
case EXPR_NEGATE:
case EXPR_POSITIVE:
case EXPR_REF:
case EXPR_RECORD_CONSTRUCTOR:
case EXPR_TABLE_CONSTRUCTOR:
case EXPR_SET_CONSTRUCTOR:
case EXPR_VECTOR_CONSTRUCTOR:
case EXPR_FIELD_ASSIGN:
case EXPR_ARITH_COERCE:
case EXPR_RECORD_COERCE:
case EXPR_TABLE_COERCE:
case EXPR_FLATTEN:
{
const UnaryExpr* u1 = (UnaryExpr*) e1;
const UnaryExpr* u2 = (UnaryExpr*) e2;
return same_expr(u1->Op(), u2->Op());
}
case EXPR_FIELD:
{
const FieldExpr* f1 = (FieldExpr*) e1;
const FieldExpr* f2 = (FieldExpr*) e2;
return same_expr(f1->Op(), f2->Op()) &&
f1->Field() == f2->Field();
}
case EXPR_SCHEDULE:
{
const ScheduleExpr* s1 = (ScheduleExpr*) e1;
const ScheduleExpr* s2 = (ScheduleExpr*) e2;
return same_expr(s1->When(), s2->When()) &&
same_expr(s1->Event(), s2->Event());
}
case EXPR_ADD:
case EXPR_ADD_TO:
case EXPR_SUB:
case EXPR_REMOVE_FROM:
case EXPR_TIMES:
case EXPR_DIVIDE:
case EXPR_MOD:
case EXPR_AND:
case EXPR_OR:
case EXPR_LT:
case EXPR_LE:
case EXPR_EQ:
case EXPR_NE:
case EXPR_GE:
case EXPR_GT:
case EXPR_ASSIGN:
case EXPR_MATCH:
case EXPR_INDEX:
case EXPR_IN:
{
const BinaryExpr* b1 = (BinaryExpr*) e1;
const BinaryExpr* b2 = (BinaryExpr*) e2;
return same_expr(b1->Op1(), b2->Op1()) &&
same_expr(b1->Op2(), b2->Op2());
}
case EXPR_LIST:
{
const ListExpr* l1 = (ListExpr*) e1;
const ListExpr* l2 = (ListExpr*) e2;
const expr_list& le1 = l1->Exprs();
const expr_list& le2 = l2->Exprs();
if ( le1.length() != le2.length() )
return 0;
loop_over_list(le1, i)
if ( ! same_expr(le1[i], le2[i]) )
return 0;
return 1;
}
case EXPR_CALL:
{
const CallExpr* c1 = (CallExpr*) e1;
const CallExpr* c2 = (CallExpr*) e2;
return same_expr(c1->Func(), c2->Func()) &&
c1->IsPure() && same_expr(c1->Args(), c2->Args());
}
default:
reporter->InternalError("bad tag in same_expr()");
}
return 0;
}
int expr_greater(const Expr* e1, const Expr* e2)
{
return int(e1->Tag()) > int(e2->Tag());
}
static Expr* make_constant(BroType* t, double d)
{
Val* v = 0;
switch ( t->InternalType() ) {
case TYPE_INTERNAL_INT: v = new Val(bro_int_t(d), t->Tag()); break;
case TYPE_INTERNAL_UNSIGNED: v = new Val(bro_uint_t(d), t->Tag()); break;
case TYPE_INTERNAL_DOUBLE: v = new Val(double(d), t->Tag()); break;
default:
reporter->InternalError("bad type in make_constant()");
}
return new ConstExpr(v);
}
Expr* make_zero(BroType* t)
{
return make_constant(t, 0.0);
}
Expr* make_one(BroType* t)
{
return make_constant(t, 1.0);
}