zeek/src/packet_analysis/protocol/tcp/TCPSessionAdapter.cc

1654 lines
61 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include "zeek/packet_analysis/protocol/tcp/TCPSessionAdapter.h"
#include "zeek/RunState.h"
#include "zeek/Val.h"
#include "zeek/analyzer/Manager.h"
#include "zeek/analyzer/protocol/conn-size/ConnSize.h"
#include "zeek/analyzer/protocol/pia/PIA.h"
#include "zeek/analyzer/protocol/tcp/TCP_Endpoint.h"
#include "zeek/analyzer/protocol/tcp/TCP_Flags.h"
#include "zeek/analyzer/protocol/tcp/TCP_Reassembler.h"
#include "zeek/analyzer/protocol/tcp/events.bif.h"
#include "zeek/analyzer/protocol/tcp/types.bif.h"
#include "zeek/packet_analysis/protocol/tcp/TCP.h"
constexpr int ORIG = 1;
constexpr int RESP = 2;
constexpr int32_t TOO_LARGE_SEQ_DELTA = 1048576;
using namespace zeek;
using namespace zeek::packet_analysis::TCP;
TCPSessionAdapter::TCPSessionAdapter(Connection* conn) : packet_analysis::IP::SessionAdapter("TCP", conn) {
// Set a timer to eventually time out this connection.
ADD_ANALYZER_TIMER(&TCPSessionAdapter::ExpireTimer, run_state::network_time + zeek::detail::tcp_SYN_timeout, false,
zeek::detail::TIMER_TCP_EXPIRE);
deferred_gen_event = close_deferred = 0;
seen_first_ACK = 0;
is_active = 1;
finished = 0;
reassembling = 0;
first_packet_seen = 0;
is_partial = 0;
orig = new analyzer::tcp::TCP_Endpoint(this, true);
resp = new analyzer::tcp::TCP_Endpoint(this, false);
orig->SetPeer(resp);
resp->SetPeer(orig);
}
TCPSessionAdapter::~TCPSessionAdapter() {
for ( Analyzer* a : packet_children )
delete a;
delete orig;
delete resp;
}
void TCPSessionAdapter::Init() {
Analyzer::Init();
for ( Analyzer* a : packet_children )
a->Init();
}
void TCPSessionAdapter::Done() {
IP::SessionAdapter::Done();
if ( run_state::terminating && connection_pending && is_active && ! BothClosed() )
Event(connection_pending);
for ( Analyzer* a : packet_children )
a->Done();
orig->Done();
resp->Done();
finished = 1;
}
int TCPSessionAdapter::get_segment_len(int payload_len, analyzer::tcp::TCP_Flags flags) {
int seg_len = payload_len;
if ( flags.SYN() )
// SYN consumes a byte of sequence space.
++seg_len;
if ( flags.FIN() )
// FIN consumes a bytes of sequence space.
++seg_len;
if ( flags.RST() )
// Don't include the data in the computation of
// the sequence space for this connection, as
// it's not in fact part of the TCP stream.
seg_len -= payload_len;
return seg_len;
}
static void init_endpoint(analyzer::tcp::TCP_Endpoint* endpoint, analyzer::tcp::TCP_Flags flags, uint32_t first_seg_seq,
uint32_t last_seq, double t) {
switch ( endpoint->state ) {
case analyzer::tcp::TCP_ENDPOINT_INACTIVE:
if ( flags.SYN() ) {
endpoint->InitAckSeq(first_seg_seq);
endpoint->InitStartSeq(first_seg_seq);
}
else {
// This is a partial connection - set up the initial sequence
// numbers as though we saw a SYN, to keep the relative byte
// numbering consistent.
endpoint->InitAckSeq(first_seg_seq - 1);
endpoint->InitStartSeq(first_seg_seq - 1);
// But ensure first packet is not marked duplicate
last_seq = first_seg_seq;
}
endpoint->InitLastSeq(last_seq);
endpoint->start_time = t;
break;
case analyzer::tcp::TCP_ENDPOINT_SYN_SENT:
case analyzer::tcp::TCP_ENDPOINT_SYN_ACK_SENT:
if ( flags.SYN() && first_seg_seq != endpoint->StartSeq() ) {
endpoint->Conn()->Weird("SYN_seq_jump");
endpoint->InitStartSeq(first_seg_seq);
endpoint->InitAckSeq(first_seg_seq);
endpoint->InitLastSeq(last_seq);
}
break;
case analyzer::tcp::TCP_ENDPOINT_ESTABLISHED:
case analyzer::tcp::TCP_ENDPOINT_PARTIAL:
if ( flags.SYN() ) {
if ( endpoint->Size() > 0 )
endpoint->Conn()->Weird("SYN_inside_connection");
if ( first_seg_seq != endpoint->StartSeq() )
endpoint->Conn()->Weird("SYN_seq_jump");
// Make a guess that somehow the connection didn't get established,
// and this SYN will be the one that actually sets it up.
endpoint->InitStartSeq(first_seg_seq);
endpoint->InitAckSeq(first_seg_seq);
endpoint->InitLastSeq(last_seq);
}
break;
case analyzer::tcp::TCP_ENDPOINT_RESET:
if ( flags.SYN() ) {
if ( endpoint->prev_state == analyzer::tcp::TCP_ENDPOINT_INACTIVE ) {
// Seq. numbers were initialized by a RST packet from this
// endpoint, but now that a SYN is seen from it, that could mean
// the earlier RST was spoofed/injected, so re-initialize. This
// mostly just helps prevent misrepresentations of payload sizes
// that are based on bad initial sequence values.
endpoint->InitStartSeq(first_seg_seq);
endpoint->InitAckSeq(first_seg_seq);
endpoint->InitLastSeq(last_seq);
}
}
break;
default: break;
}
}
uint64_t TCPSessionAdapter::get_relative_seq(const analyzer::tcp::TCP_Endpoint* endpoint, uint32_t cur_base,
uint32_t last, uint32_t wraps, bool* underflow) {
int32_t delta = seq_delta(cur_base, last);
if ( delta < 0 ) {
if ( wraps && cur_base > last )
// Seems to be a part of a previous 32-bit sequence space.
--wraps;
}
else if ( delta > 0 ) {
if ( cur_base < last )
// The sequence space wrapped around.
++wraps;
}
if ( wraps == 0 ) {
delta = seq_delta(cur_base, endpoint->StartSeq());
if ( underflow && delta < 0 )
*underflow = true;
return delta;
}
return endpoint->ToRelativeSeqSpace(cur_base, wraps);
}
static void update_history(analyzer::tcp::TCP_Flags flags, analyzer::tcp::TCP_Endpoint* endpoint, uint64_t rel_seq,
int len) {
int bits_set = (flags.SYN() ? 1 : 0) + (flags.FIN() ? 1 : 0) + (flags.RST() ? 1 : 0);
if ( bits_set > 1 ) {
if ( flags.FIN() && flags.RST() )
endpoint->CheckHistory(analyzer::tcp::TCP_Endpoint::HIST_FIN_RST_PKT, 'I');
else
endpoint->CheckHistory(analyzer::tcp::TCP_Endpoint::HIST_MULTI_FLAG_PKT, 'Q');
}
else if ( bits_set == 1 ) {
if ( flags.SYN() ) {
char code = flags.ACK() ? 'H' : 'S';
if ( endpoint->CheckHistory(analyzer::tcp::TCP_Endpoint::HIST_SYN_PKT, code) &&
rel_seq != endpoint->hist_last_SYN )
endpoint->AddHistory(code);
endpoint->hist_last_SYN = rel_seq;
}
if ( flags.FIN() ) {
// For FIN's, the sequence number comes at the
// end of (any data in) the packet, not the
// beginning as for SYNs and RSTs.
if ( endpoint->CheckHistory(analyzer::tcp::TCP_Endpoint::HIST_FIN_PKT, 'F') &&
rel_seq + len != endpoint->hist_last_FIN )
endpoint->AddHistory('F');
endpoint->hist_last_FIN = rel_seq + len;
}
if ( flags.RST() ) {
if ( endpoint->CheckHistory(analyzer::tcp::TCP_Endpoint::HIST_RST_PKT, 'R') &&
rel_seq != endpoint->hist_last_RST )
endpoint->AddHistory('R');
endpoint->hist_last_RST = rel_seq;
}
}
else { // bits_set == 0
if ( len )
endpoint->CheckHistory(analyzer::tcp::TCP_Endpoint::HIST_DATA_PKT, 'D');
else if ( flags.ACK() )
endpoint->CheckHistory(analyzer::tcp::TCP_Endpoint::HIST_ACK_PKT, 'A');
}
}
static void update_window(analyzer::tcp::TCP_Endpoint* endpoint, unsigned int window, uint32_t base_seq,
uint32_t ack_seq, analyzer::tcp::TCP_Flags flags) {
// Note, applying scaling here would be incorrect for an initial SYN,
// whose window value is always unscaled. However, we don't
// check the window's value for recision in that case anyway, so
// no-harm-no-foul.
int scale = endpoint->window_scale;
window = window << scale;
// Zero windows are boring if either (1) they come with a RST packet
// or after a RST packet, or (2) they come after the peer has sent
// a FIN (because there's no relevant window at that point anyway).
// (They're also boring if they come after the peer has sent a RST,
// but *nothing* should be sent in response to a RST, so we ignore
// that case.)
//
// However, they *are* potentially interesting if sent by an
// endpoint that's already sent a FIN, since that FIN meant "I'm
// not going to send any more", but doesn't mean "I won't receive
// any more".
if ( window == 0 && ! flags.RST() && endpoint->peer->state != analyzer::tcp::TCP_ENDPOINT_CLOSED &&
endpoint->state != analyzer::tcp::TCP_ENDPOINT_RESET )
endpoint->ZeroWindow();
// Don't analyze window values off of SYNs, they're sometimes
// immediately rescinded. Also don't do so for FINs or RSTs,
// or if the connection has already been partially closed, since
// such recisions occur frequently in practice, probably as the
// receiver loses buffer memory due to its process going away.
if ( ! flags.SYN() && ! flags.FIN() && ! flags.RST() && endpoint->state != analyzer::tcp::TCP_ENDPOINT_CLOSED &&
endpoint->state != analyzer::tcp::TCP_ENDPOINT_RESET ) {
// ### Decide whether to accept new window based on Active
// Mapping policy.
if ( seq_delta(base_seq, endpoint->window_seq) >= 0 && seq_delta(ack_seq, endpoint->window_ack_seq) >= 0 ) {
uint32_t new_edge = ack_seq + window;
uint32_t old_edge = endpoint->window_ack_seq + endpoint->window;
int32_t advance = seq_delta(new_edge, old_edge);
if ( advance < 0 ) {
// An apparent window recision. Allow a
// bit of slop for window scaling. This is
// because sometimes there will be an
// apparent recision due to the granularity
// of the scaling.
if ( (-advance) >= (1 << scale) )
endpoint->Conn()->Weird("window_recision");
}
endpoint->window = window;
endpoint->window_ack_seq = ack_seq;
endpoint->window_seq = base_seq;
}
}
}
static zeek::RecordValPtr build_syn_packet_val(bool is_orig, const zeek::IP_Hdr* ip, const struct tcphdr* tcp) {
int winscale = -1;
int MSS = 0;
int SACK = 0;
std::optional<uint64_t> TSval;
std::optional<uint64_t> TSecr;
// Parse TCP options.
u_char* options = (u_char*)tcp + sizeof(struct tcphdr);
u_char* opt_end = (u_char*)tcp + static_cast<ptrdiff_t>(tcp->th_off * 4);
while ( options < opt_end ) {
unsigned int opt = options[0];
if ( opt == TCPOPT_EOL )
// All done - could flag if more junk left over ....
break;
if ( opt == TCPOPT_NOP ) {
++options;
continue;
}
if ( options + 1 >= opt_end )
// We've run off the end, no room for the length.
break;
unsigned int opt_len = options[1];
if ( options + opt_len > opt_end )
// No room for rest of option.
break;
if ( opt_len == 0 )
// Trashed length field.
break;
switch ( opt ) {
case TCPOPT_SACK_PERMITTED: SACK = 1; break;
case TCPOPT_MAXSEG:
if ( opt_len < 4 )
break; // bad length
MSS = (options[2] << 8) | options[3];
break;
case 3: // TCPOPT_WSCALE
if ( opt_len < 3 )
break; // bad length
winscale = options[2];
break;
case 8: // TCPOPT_TIMESTAMP
if ( opt_len < 10 )
break; // bad length
TSval =
(((((static_cast<uint64_t>(options[2]) << 8) | options[3]) << 8) | options[4]) << 8) | options[5];
TSecr =
(((((static_cast<uint64_t>(options[6]) << 8) | options[7]) << 8) | options[8]) << 8) | options[9];
break;
default: // just skip over
break;
}
options += opt_len;
}
static auto SYN_packet = zeek::id::find_type<zeek::RecordType>("SYN_packet");
auto v = zeek::make_intrusive<zeek::RecordVal>(SYN_packet);
v->Assign(0, is_orig);
v->Assign(1, static_cast<bool>(ip->DF()));
v->Assign(2, ip->TTL());
v->Assign(3, ip->TotalLen());
v->Assign(4, ntohs(tcp->th_win));
v->Assign(5, winscale);
v->Assign(6, MSS);
v->Assign(7, static_cast<bool>(SACK));
if ( TSval )
v->Assign(8, *TSval);
if ( TSecr )
v->Assign(9, *TSecr);
return v;
}
static void init_window(analyzer::tcp::TCP_Endpoint* endpoint, analyzer::tcp::TCP_Endpoint* peer,
analyzer::tcp::TCP_Flags flags, zeek_int_t scale, uint32_t base_seq, uint32_t ack_seq) {
// ### In the following, we could be fooled by an
// inconsistent SYN retransmission. Where's a normalizer
// when you need one?
if ( scale < 0 ) { // no window scaling option
if ( flags.ACK() ) { // window scaling not negotiated
endpoint->window_scale = 0;
peer->window_scale = 0;
}
else
// We're not offering window scaling.
// Ideally, we'd remember this fact so that
// if the SYN/ACK *does* include window
// scaling, we know it won't be negotiated.
// But it's a pain to track that, and hard
// to see how an adversarial responder could
// use it to evade. Also, if we *do* want
// to track it, we could do so using
// connection_SYN_packet.
endpoint->window_scale = 0;
}
else {
endpoint->window_scale = scale;
endpoint->window_seq = base_seq;
endpoint->window_ack_seq = ack_seq;
peer->window_seq = ack_seq;
peer->window_ack_seq = base_seq;
}
}
static void init_peer(analyzer::tcp::TCP_Endpoint* peer, analyzer::tcp::TCP_Endpoint* endpoint,
analyzer::tcp::TCP_Flags flags, uint32_t ack_seq) {
if ( ! flags.SYN() && ! flags.FIN() && ! flags.RST() ) {
if ( endpoint->state == analyzer::tcp::TCP_ENDPOINT_SYN_SENT ||
endpoint->state == analyzer::tcp::TCP_ENDPOINT_SYN_ACK_SENT ||
endpoint->state == analyzer::tcp::TCP_ENDPOINT_ESTABLISHED ) {
// We've already sent a SYN, but that
// hasn't roused the other end, yet we're
// ack'ing their data.
if ( ! endpoint->Conn()->DidWeird() )
endpoint->Conn()->Weird("possible_split_routing");
}
}
// Start the sequence numbering as if there was an initial
// SYN, so the relative numbering of subsequent data packets
// stays consistent.
peer->InitStartSeq(ack_seq - 1);
peer->InitAckSeq(ack_seq - 1);
peer->InitLastSeq(ack_seq - 1);
}
static void update_ack_seq(analyzer::tcp::TCP_Endpoint* endpoint, uint32_t ack_seq) {
int32_t delta_ack = seq_delta(ack_seq, endpoint->AckSeq());
if ( ack_seq == 0 && delta_ack > TOO_LARGE_SEQ_DELTA )
// More likely that this is a broken ack than a
// large connection that happens to land on 0 in the
// sequence space.
;
else if ( delta_ack > 0 )
endpoint->UpdateAckSeq(ack_seq);
}
// Returns the difference between last_seq and the last sequence
// seen by the endpoint (may be negative).
static int32_t update_last_seq(analyzer::tcp::TCP_Endpoint* endpoint, uint32_t last_seq, analyzer::tcp::TCP_Flags flags,
int len) {
int32_t delta_last = seq_delta(last_seq, endpoint->LastSeq());
if ( (flags.SYN() || flags.RST()) && (delta_last > TOO_LARGE_SEQ_DELTA || delta_last < -TOO_LARGE_SEQ_DELTA) )
// ### perhaps trust RST seq #'s if initial and not too
// outlandish, but not if they're coming after the other
// side has sent a FIN - trust the FIN ack instead
; // NOLINT(bugprone-branch-clone)
else if ( flags.FIN() && endpoint->LastSeq() == endpoint->StartSeq() + 1 )
// Update last_seq based on the FIN even if delta_last < 0.
// This is to accommodate > 2 GB connections for which
// we've only seen the SYN and the FIN (hence the check
// for last_seq == start_seq + 1).
endpoint->UpdateLastSeq(last_seq); // NOLINT(bugprone-branch-clone)
else if ( endpoint->state == analyzer::tcp::TCP_ENDPOINT_RESET )
// don't trust any subsequent sequence numbers
; // NOLINT(bugprone-branch-clone)
else if ( delta_last > 0 )
// ### check for large jumps here.
// ## endpoint->last_seq = last_seq;
endpoint->UpdateLastSeq(last_seq); // NOLINT(bugprone-branch-clone)
else if ( delta_last <= 0 && len > 0 )
endpoint->DidRxmit();
return delta_last;
}
void TCPSessionAdapter::Process(bool is_orig, const struct tcphdr* tp, int len, const std::shared_ptr<IP_Hdr>& ip,
const u_char* data, int remaining) {
analyzer::tcp::TCP_Flags flags(tp);
uint32_t base_seq = ntohl(tp->th_seq);
uint32_t ack_seq = ntohl(tp->th_ack);
uint32_t tcp_hdr_len = data - (const u_char*)tp;
analyzer::tcp::TCP_Endpoint* endpoint = is_orig ? orig : resp;
analyzer::tcp::TCP_Endpoint* peer = endpoint->peer;
SetPartialStatus(flags, endpoint->IsOrig());
int seg_len = get_segment_len(len, flags);
uint32_t seq_one_past_segment = base_seq + seg_len;
init_endpoint(endpoint, flags, base_seq, seq_one_past_segment, run_state::current_timestamp);
bool seq_underflow = false;
uint64_t rel_seq = get_relative_seq(endpoint, base_seq, endpoint->LastSeq(), endpoint->SeqWraps(), &seq_underflow);
if ( seq_underflow && ! flags.RST() )
// Can't tell if if this is a retransmit/out-of-order or something
// before the sequence Zeek initialized the endpoint at or the TCP is
// just broken and sending garbage sequences. In either case, some
// standard analysis doesn't apply (e.g. reassembly).
Weird("TCP_seq_underflow_or_misorder");
update_history(flags, endpoint, rel_seq, len);
update_window(endpoint, ntohs(tp->th_win), base_seq, ack_seq, flags);
if ( ! orig->did_close || ! resp->did_close )
Conn()->SetLastTime(run_state::current_timestamp);
if ( flags.SYN() ) {
SynWeirds(flags, endpoint, len);
RecordValPtr SYN_vals = build_syn_packet_val(is_orig, ip.get(), tp);
init_window(endpoint, peer, flags, SYN_vals->GetFieldAs<IntVal>(5), base_seq, ack_seq);
if ( connection_SYN_packet )
EnqueueConnEvent(connection_SYN_packet, ConnVal(), SYN_vals);
}
if ( flags.FIN() ) {
++endpoint->FIN_cnt;
if ( endpoint->FIN_cnt >= zeek::detail::tcp_storm_thresh &&
run_state::current_timestamp < endpoint->last_time + zeek::detail::tcp_storm_interarrival_thresh )
Weird("FIN_storm");
endpoint->FIN_seq = rel_seq + seg_len;
}
if ( flags.RST() ) {
++endpoint->RST_cnt;
if ( endpoint->RST_cnt >= zeek::detail::tcp_storm_thresh &&
run_state::current_timestamp < endpoint->last_time + zeek::detail::tcp_storm_interarrival_thresh )
Weird("RST_storm");
// This now happens often enough that it's
// not in the least interesting.
// if ( len > 0 )
// Weird("RST_with_data");
PacketWithRST();
}
uint64_t rel_ack = 0;
if ( flags.ACK() ) {
if ( is_orig && ! seen_first_ACK &&
(endpoint->state == analyzer::tcp::TCP_ENDPOINT_ESTABLISHED ||
endpoint->state == analyzer::tcp::TCP_ENDPOINT_SYN_SENT) ) {
seen_first_ACK = 1;
Event(connection_first_ACK);
}
if ( peer->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE ) {
rel_ack = 1;
init_peer(peer, endpoint, flags, ack_seq);
}
else {
bool ack_underflow = false;
rel_ack = get_relative_seq(peer, ack_seq, peer->AckSeq(), peer->AckWraps(), &ack_underflow);
if ( ack_underflow ) {
rel_ack = 0;
Weird("TCP_ack_underflow_or_misorder");
}
else if ( ! flags.RST() )
// Don't trust ack's in RST packets.
update_ack_seq(peer, ack_seq);
}
}
int32_t delta_last = update_last_seq(endpoint, seq_one_past_segment, flags, len);
endpoint->last_time = run_state::current_timestamp;
bool do_close;
bool gen_event;
UpdateStateMachine(run_state::current_timestamp, endpoint, peer, base_seq, ack_seq, len, delta_last, is_orig, flags,
do_close, gen_event);
if ( flags.ACK() )
// We wait on doing this until we've updated the state
// machine so that if the ack reveals a content gap,
// we can tell whether it came at the very end of the
// connection (in a FIN or RST). Those gaps aren't
// reliable - especially those for RSTs - and we refrain
// from flagging them in the connection history.
peer->AckReceived(rel_ack);
if ( tcp_packet )
GeneratePacketEvent(rel_seq, rel_ack, data, len, remaining, is_orig, flags);
if ( (tcp_option || tcp_options) && tcp_hdr_len > sizeof(*tp) )
ParseTCPOptions(tp, is_orig);
// PIA/signature matching state needs to be initialized before
// processing/reassembling any TCP data, since that processing may
// itself try to perform signature matching. Also note that a SYN
// packet may technically carry data (see RFC793 Section 3.4 and also
// TCP Fast Open).
CheckPIA_FirstPacket(is_orig, ip.get());
if ( DEBUG_tcp_data_sent ) {
DEBUG_MSG("%.6f before DataSent: len=%d remaining=%d skip=%d\n", run_state::network_time, len, remaining,
Skipping());
}
rel_data_seq = flags.SYN() ? rel_seq + 1 : rel_seq;
bool need_contents = false;
if ( len > 0 && (remaining >= len || ! packet_children.empty()) && ! flags.RST() && ! Skipping() &&
! seq_underflow )
need_contents =
endpoint->DataSent(run_state::current_timestamp, rel_data_seq, len, remaining, data, ip.get(), tp);
endpoint->CheckEOF();
if ( do_close ) {
// We need to postpone doing this until after we process
// DataSent, so we don't generate a connection_finished event
// until after data perhaps included with the FIN is processed.
ConnectionClosed(endpoint, peer, gen_event);
}
CheckRecording(need_contents, flags);
}
analyzer::Analyzer* TCPSessionAdapter::FindChild(analyzer::ID arg_id) {
analyzer::Analyzer* child = packet_analysis::IP::SessionAdapter::FindChild(arg_id);
if ( child )
return child;
for ( Analyzer* a : packet_children ) {
if ( analyzer::Analyzer* child = a->FindChild(arg_id) )
return child;
}
return nullptr;
}
analyzer::Analyzer* TCPSessionAdapter::FindChild(zeek::Tag arg_tag) {
analyzer::Analyzer* child = packet_analysis::IP::SessionAdapter::FindChild(arg_tag);
if ( child )
return child;
for ( Analyzer* a : packet_children ) {
if ( analyzer::Analyzer* child = a->FindChild(arg_tag) )
return child;
}
return nullptr;
}
bool TCPSessionAdapter::RemoveChildAnalyzer(analyzer::ID id) {
auto rval = packet_analysis::IP::SessionAdapter::RemoveChildAnalyzer(id);
if ( rval )
return rval;
return RemoveChild(packet_children, id);
}
void TCPSessionAdapter::EnableReassembly() {
SetReassembler(new analyzer::tcp::TCP_Reassembler(this, this, analyzer::tcp::TCP_Reassembler::Forward, orig),
new analyzer::tcp::TCP_Reassembler(this, this, analyzer::tcp::TCP_Reassembler::Forward, resp));
}
void TCPSessionAdapter::SetReassembler(analyzer::tcp::TCP_Reassembler* rorig, analyzer::tcp::TCP_Reassembler* rresp) {
orig->AddReassembler(rorig);
rorig->SetDstAnalyzer(this);
resp->AddReassembler(rresp);
rresp->SetDstAnalyzer(this);
if ( new_connection_contents && reassembling == 0 )
Event(new_connection_contents);
reassembling = 1;
}
void TCPSessionAdapter::SetPartialStatus(analyzer::tcp::TCP_Flags flags, bool is_orig) {
if ( is_orig ) {
if ( ! (first_packet_seen & ORIG) )
is_partial = ! flags.SYN() || flags.ACK();
}
else {
if ( ! (first_packet_seen & RESP) && ! is_partial )
is_partial = ! flags.SYN();
}
}
void TCPSessionAdapter::SetFirstPacketSeen(bool is_orig) { first_packet_seen |= (is_orig ? ORIG : RESP); }
void TCPSessionAdapter::UpdateInactiveState(double t, analyzer::tcp::TCP_Endpoint* endpoint,
analyzer::tcp::TCP_Endpoint* peer, uint32_t base_seq, uint32_t ack_seq,
int len, bool is_orig, analyzer::tcp::TCP_Flags flags, bool& do_close,
bool& gen_event) {
if ( flags.SYN() ) {
if ( is_orig ) {
if ( flags.ACK() ) {
Weird("connection_originator_SYN_ack");
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_SYN_ACK_SENT);
}
else
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_SYN_SENT);
if ( zeek::detail::tcp_attempt_delay )
ADD_ANALYZER_TIMER(&TCPSessionAdapter::AttemptTimer, t + zeek::detail::tcp_attempt_delay, true,
zeek::detail::TIMER_TCP_ATTEMPT);
}
else {
if ( flags.ACK() ) {
if ( peer->state != analyzer::tcp::TCP_ENDPOINT_INACTIVE &&
peer->state != analyzer::tcp::TCP_ENDPOINT_PARTIAL &&
! seq_between(ack_seq, peer->StartSeq(), peer->LastSeq()) )
Weird("bad_SYN_ack");
}
else if ( peer->state == analyzer::tcp::TCP_ENDPOINT_SYN_ACK_SENT && base_seq == endpoint->StartSeq() ) {
// This is a SYN/SYN-ACK reversal,
// per the discussion in IsReuse.
// Flip the endpoints and establish
// the connection.
is_partial = 0;
Conn()->FlipRoles();
peer->SetState(analyzer::tcp::TCP_ENDPOINT_ESTABLISHED);
SetFirstPacketSeen(true);
}
else
Weird("simultaneous_open");
if ( peer->state == analyzer::tcp::TCP_ENDPOINT_SYN_SENT )
peer->SetState(analyzer::tcp::TCP_ENDPOINT_ESTABLISHED);
else if ( peer->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE ) {
// If we were to ignore SYNs and
// only instantiate state on SYN
// acks, then we'd do:
// peer->SetState(analyzer::tcp::TCP_ENDPOINT_ESTABLISHED);
// here.
Weird("unsolicited_SYN_response");
}
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_ESTABLISHED);
if ( peer->state != analyzer::tcp::TCP_ENDPOINT_PARTIAL ) {
Event(connection_established);
Conn()->EnableStatusUpdateTimer();
}
}
}
if ( flags.FIN() ) {
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_CLOSED);
do_close = gen_event = true;
if ( peer->state != analyzer::tcp::TCP_ENDPOINT_PARTIAL && ! flags.SYN() )
Weird("spontaneous_FIN");
}
if ( flags.RST() ) {
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_RESET);
bool is_reject = false;
if ( is_orig ) {
// If our peer is established then we saw
// a SYN-ack but not SYN - so a reverse
// scan, and we should treat this as a
// reject.
if ( peer->state == analyzer::tcp::TCP_ENDPOINT_ESTABLISHED )
is_reject = true;
}
else if ( peer->state == analyzer::tcp::TCP_ENDPOINT_SYN_SENT ||
peer->state == analyzer::tcp::TCP_ENDPOINT_SYN_ACK_SENT )
// We're rejecting an initial SYN.
is_reject = true;
do_close = true;
gen_event = ! is_reject;
if ( is_reject )
Event(connection_rejected);
else if ( peer->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE )
Weird("spontaneous_RST");
}
if ( endpoint->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE ) { // No control flags to change the state.
if ( ! is_orig && len == 0 && orig->state == analyzer::tcp::TCP_ENDPOINT_SYN_SENT )
// Some eccentric TCP's will ack an initial
// SYN prior to sending a SYN reply (hello,
// ftp.microsoft.com). For those, don't
// consider the ack as forming a partial
// connection.
;
else if ( flags.ACK() && peer->state == analyzer::tcp::TCP_ENDPOINT_ESTABLISHED ) {
// No SYN packet from originator but SYN/ACK from
// responder, and now a pure ACK. Probably means we
// just missed that initial SYN. Let's not treat it
// as partial and instead establish the connection.
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_ESTABLISHED);
is_partial = 0;
SetFirstPacketSeen(is_orig);
}
else {
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_PARTIAL);
Conn()->EnableStatusUpdateTimer();
if ( peer->state == analyzer::tcp::TCP_ENDPOINT_PARTIAL )
// We've seen both sides of a partial
// connection, report it.
Event(partial_connection);
}
}
}
void TCPSessionAdapter::UpdateSYN_SentState(analyzer::tcp::TCP_Endpoint* endpoint, analyzer::tcp::TCP_Endpoint* peer,
int len, bool is_orig, analyzer::tcp::TCP_Flags flags, bool& do_close,
bool& gen_event) {
if ( flags.SYN() ) {
if ( is_orig ) {
if ( flags.ACK() && ! flags.FIN() && ! flags.RST() &&
endpoint->state != analyzer::tcp::TCP_ENDPOINT_SYN_ACK_SENT )
Weird("repeated_SYN_with_ack");
}
else {
if ( ! flags.ACK() && endpoint->state != analyzer::tcp::TCP_ENDPOINT_SYN_SENT )
Weird("repeated_SYN_reply_wo_ack");
}
}
if ( flags.FIN() ) {
if ( peer->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE ||
peer->state == analyzer::tcp::TCP_ENDPOINT_SYN_SENT )
Weird("inappropriate_FIN");
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_CLOSED);
do_close = gen_event = true;
}
if ( flags.RST() ) {
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_RESET);
ConnectionReset();
do_close = true;
}
else if ( len > 0 )
Weird("data_before_established");
}
void TCPSessionAdapter::UpdateEstablishedState(analyzer::tcp::TCP_Endpoint* endpoint, analyzer::tcp::TCP_Endpoint* peer,
analyzer::tcp::TCP_Flags flags, bool& do_close, bool& gen_event) {
if ( flags.SYN() ) {
if ( endpoint->state == analyzer::tcp::TCP_ENDPOINT_PARTIAL &&
peer->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE && ! flags.ACK() ) {
Weird("SYN_after_partial");
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_SYN_SENT);
}
}
if ( flags.FIN() && ! flags.RST() ) // ###
{ // should check sequence/ack numbers here ###
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_CLOSED);
if ( peer->state == analyzer::tcp::TCP_ENDPOINT_RESET &&
peer->prev_state == analyzer::tcp::TCP_ENDPOINT_CLOSED )
// The peer sent a FIN followed by a RST.
// Turn it back into CLOSED state, because
// this was actually normal termination.
peer->SetState(analyzer::tcp::TCP_ENDPOINT_CLOSED);
do_close = gen_event = true;
}
if ( flags.RST() ) {
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_RESET);
do_close = true;
if ( peer->state != analyzer::tcp::TCP_ENDPOINT_RESET ||
peer->prev_state != analyzer::tcp::TCP_ENDPOINT_ESTABLISHED )
ConnectionReset();
}
}
void TCPSessionAdapter::UpdateClosedState(double t, analyzer::tcp::TCP_Endpoint* endpoint, int32_t delta_last,
analyzer::tcp::TCP_Flags flags, bool& do_close) {
if ( flags.SYN() )
Weird("SYN_after_close");
if ( flags.FIN() && delta_last > 0 )
// Probably should also complain on FIN recision.
// That requires an extra state variable to avoid
// generating slews of weird's when a TCP gets
// seriously confused (this from experience).
Weird("FIN_advanced_last_seq");
// Previously, our state was CLOSED, since we sent a FIN.
// If our peer was also closed, then don't change our state
// now on a RST, since this connection has already seen a FIN
// exchange.
if ( flags.RST() && endpoint->peer->state != analyzer::tcp::TCP_ENDPOINT_CLOSED ) {
endpoint->SetState(analyzer::tcp::TCP_ENDPOINT_RESET);
if ( ! endpoint->did_close )
// RST after FIN.
do_close = true;
if ( connection_reset )
ADD_ANALYZER_TIMER(&TCPSessionAdapter::ResetTimer, t + zeek::detail::tcp_reset_delay, true,
zeek::detail::TIMER_TCP_RESET);
}
}
void TCPSessionAdapter::UpdateResetState(int len, analyzer::tcp::TCP_Flags flags) {
if ( flags.SYN() )
Weird("SYN_after_reset");
if ( flags.FIN() )
Weird("FIN_after_reset");
if ( len > 0 && ! flags.RST() )
Weird("data_after_reset");
}
void TCPSessionAdapter::UpdateStateMachine(double t, analyzer::tcp::TCP_Endpoint* endpoint,
analyzer::tcp::TCP_Endpoint* peer, uint32_t base_seq, uint32_t ack_seq,
int len, int32_t delta_last, bool is_orig, analyzer::tcp::TCP_Flags flags,
bool& do_close, bool& gen_event) {
do_close = false; // whether to report the connection as closed
gen_event = false; // if so, whether to generate an event
switch ( endpoint->state ) {
case analyzer::tcp::TCP_ENDPOINT_INACTIVE:
UpdateInactiveState(t, endpoint, peer, base_seq, ack_seq, len, is_orig, flags, do_close, gen_event);
break;
case analyzer::tcp::TCP_ENDPOINT_SYN_SENT:
case analyzer::tcp::TCP_ENDPOINT_SYN_ACK_SENT:
UpdateSYN_SentState(endpoint, peer, len, is_orig, flags, do_close, gen_event);
break;
case analyzer::tcp::TCP_ENDPOINT_ESTABLISHED:
case analyzer::tcp::TCP_ENDPOINT_PARTIAL:
UpdateEstablishedState(endpoint, peer, flags, do_close, gen_event);
break;
case analyzer::tcp::TCP_ENDPOINT_CLOSED: UpdateClosedState(t, endpoint, delta_last, flags, do_close); break;
case analyzer::tcp::TCP_ENDPOINT_RESET: UpdateResetState(len, flags); break;
}
}
void TCPSessionAdapter::GeneratePacketEvent(uint64_t rel_seq, uint64_t rel_ack, const u_char* data, int len, int caplen,
bool is_orig, analyzer::tcp::TCP_Flags flags) {
EnqueueConnEvent(tcp_packet, ConnVal(), val_mgr->Bool(is_orig), make_intrusive<StringVal>(flags.AsString()),
val_mgr->Count(rel_seq), val_mgr->Count(flags.ACK() ? rel_ack : 0), val_mgr->Count(len),
// We need the min() here because Ethernet padding can lead to
// caplen > len.
make_intrusive<StringVal>(std::min(caplen, len), (const char*)data));
}
bool TCPSessionAdapter::DeliverData(double t, const u_char* data, int len, int caplen, const IP_Hdr* ip,
const struct tcphdr* tp, analyzer::tcp::TCP_Endpoint* endpoint,
uint64_t rel_data_seq, bool is_orig, analyzer::tcp::TCP_Flags flags) {
return endpoint->DataSent(t, rel_data_seq, len, caplen, data, ip, tp);
}
void TCPSessionAdapter::DeliverPacket(int len, const u_char* data, bool is_orig, uint64_t seq, const IP_Hdr* ip,
int caplen) {
// Handle child_packet analyzers. Note: This happens *after* the
// packet has been processed and the TCP state updated.
analyzer::analyzer_list::iterator next;
for ( auto i = packet_children.begin(); i != packet_children.end(); /* nop */ ) {
auto child = *i;
if ( child->IsFinished() || child->Removing() ) {
if ( child->Removing() )
child->Done();
DBG_LOG(DBG_ANALYZER, "%s deleted child %s", fmt_analyzer(this).c_str(), fmt_analyzer(child).c_str());
i = packet_children.erase(i);
delete child;
}
else {
child->NextPacket(len, data, is_orig, seq, ip, caplen);
++i;
}
}
if ( ! reassembling )
ForwardPacket(len, data, is_orig, seq, ip, caplen);
}
void TCPSessionAdapter::DeliverStream(int len, const u_char* data, bool orig) {
Analyzer::DeliverStream(len, data, orig);
}
void TCPSessionAdapter::Undelivered(uint64_t seq, int len, bool is_orig) { Analyzer::Undelivered(seq, len, orig); }
void TCPSessionAdapter::FlipRoles() {
Analyzer::FlipRoles();
TCPAnalyzer::GetStats().FlipState(orig->state, resp->state);
analyzer::tcp::TCP_Endpoint* tmp_ep = resp;
resp = orig;
orig = tmp_ep;
orig->is_orig = ! orig->is_orig;
resp->is_orig = ! resp->is_orig;
first_packet_seen = ((first_packet_seen & ORIG) ? RESP : 0) | ((first_packet_seen & RESP) ? ORIG : 0);
is_partial = 0; // resetting, it may be re-established later
}
void TCPSessionAdapter::UpdateConnVal(RecordVal* conn_val) {
static const auto& conn_type = zeek::id::find_type<zeek::RecordType>("connection");
static const int origidx = conn_type->FieldOffset("orig");
static const int respidx = conn_type->FieldOffset("resp");
auto* orig_endp_val = conn_val->GetFieldAs<RecordVal>(origidx);
auto* resp_endp_val = conn_val->GetFieldAs<RecordVal>(respidx);
orig_endp_val->Assign(0, orig->Size());
orig_endp_val->Assign(1, orig->state);
resp_endp_val->Assign(0, resp->Size());
resp_endp_val->Assign(1, resp->state);
// Call children's UpdateConnVal
Analyzer::UpdateConnVal(conn_val);
// Have to do packet_children ourselves.
for ( Analyzer* a : packet_children )
a->UpdateConnVal(conn_val);
}
void TCPSessionAdapter::AttemptTimer(double /* t */) {
if ( ! is_active )
return;
if ( (orig->state == analyzer::tcp::TCP_ENDPOINT_SYN_SENT ||
orig->state == analyzer::tcp::TCP_ENDPOINT_SYN_ACK_SENT) &&
resp->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE ) {
Event(connection_attempt);
is_active = 0;
// All done with this connection.
session_mgr->Remove(Conn());
}
}
void TCPSessionAdapter::PartialCloseTimer(double /* t */) {
if ( ! is_active )
return;
if ( orig->state != analyzer::tcp::TCP_ENDPOINT_INACTIVE && resp->state != analyzer::tcp::TCP_ENDPOINT_INACTIVE &&
(! orig->did_close || ! resp->did_close) ) {
if ( orig->state == analyzer::tcp::TCP_ENDPOINT_RESET || resp->state == analyzer::tcp::TCP_ENDPOINT_RESET )
// Presumably the RST is what caused the partial
// close. Don't report it.
return;
Event(connection_partial_close);
session_mgr->Remove(Conn());
}
}
void TCPSessionAdapter::ExpireTimer(double t) {
if ( ! is_active )
return;
if ( Conn()->LastTime() + zeek::detail::tcp_connection_linger < t ) {
if ( orig->did_close || resp->did_close ) {
// No activity for tcp_connection_linger seconds, and
// at least one side has closed. See whether
// connection has likely terminated.
if ( (orig->did_close && resp->did_close) ||
(orig->state == analyzer::tcp::TCP_ENDPOINT_RESET ||
resp->state == analyzer::tcp::TCP_ENDPOINT_RESET) ||
(orig->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE ||
resp->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE) ) {
// Either both closed, or one RST,
// or half-closed.
// The Timer has Ref()'d us and won't Unref()
// us until we return, so it's safe to have
// the session remove and Unref() us here.
Event(connection_timeout);
is_active = 0;
session_mgr->Remove(Conn());
return;
}
}
if ( resp->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE ) {
if ( orig->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE ) {
// Nothing ever happened on this connection.
// This can occur when we see a trashed
// packet - it's discarded by NextPacket
// before setting up an attempt timer,
// so we need to clean it up here.
Event(connection_timeout);
session_mgr->Remove(Conn());
return;
}
}
}
// Connection still active, so reschedule timer.
// ### if PQ_Element's were Obj's, could just Ref the timer
// and adjust its value here, instead of creating a new timer.
ADD_ANALYZER_TIMER(&TCPSessionAdapter::ExpireTimer, t + zeek::detail::tcp_session_timer, false,
zeek::detail::TIMER_TCP_EXPIRE);
}
void TCPSessionAdapter::ResetTimer(double /* t */) {
if ( ! is_active )
return;
if ( ! BothClosed() )
ConnectionReset();
session_mgr->Remove(Conn());
}
void TCPSessionAdapter::DeleteTimer(double /* t */) { session_mgr->Remove(Conn()); }
void TCPSessionAdapter::ConnDeleteTimer(double t) { Conn()->DeleteTimer(t); }
void TCPSessionAdapter::SetContentsFile(unsigned int direction, FilePtr f) {
if ( direction == analyzer::CONTENTS_NONE ) {
orig->SetContentsFile(nullptr);
resp->SetContentsFile(nullptr);
}
else {
if ( direction == analyzer::CONTENTS_ORIG || direction == analyzer::CONTENTS_BOTH )
orig->SetContentsFile(f);
if ( direction == analyzer::CONTENTS_RESP || direction == analyzer::CONTENTS_BOTH )
resp->SetContentsFile(f);
}
}
FilePtr TCPSessionAdapter::GetContentsFile(unsigned int direction) const {
switch ( direction ) {
case analyzer::CONTENTS_NONE: return nullptr;
case analyzer::CONTENTS_ORIG: return orig->GetContentsFile();
case analyzer::CONTENTS_RESP: return resp->GetContentsFile();
case analyzer::CONTENTS_BOTH:
if ( orig->GetContentsFile() != resp->GetContentsFile() )
// This is an "error".
return nullptr;
else
return orig->GetContentsFile();
default: break;
}
reporter->Error("bad direction %u in TCPSessionAdapter::GetContentsFile", direction);
return nullptr;
}
void TCPSessionAdapter::ConnectionClosed(analyzer::tcp::TCP_Endpoint* endpoint, analyzer::tcp::TCP_Endpoint* peer,
bool gen_event) {
const analyzer::analyzer_list& children(GetChildren());
for ( Analyzer* a : children )
// Using this type of cast here is nasty (will crash if
// we inadvertently have a child analyzer that's not a
// TCP_ApplicationAnalyzer), but we have to ...
static_cast<analyzer::tcp::TCP_ApplicationAnalyzer*>(a)->ConnectionClosed(endpoint, peer, gen_event);
if ( DataPending(endpoint) ) {
// Don't close out the connection yet, there's still data to
// deliver.
close_deferred = 1;
if ( ! deferred_gen_event )
deferred_gen_event = gen_event;
return;
}
close_deferred = 0;
if ( endpoint->did_close )
return; // nothing new to report
endpoint->did_close = true;
int close_complete = endpoint->state == analyzer::tcp::TCP_ENDPOINT_RESET || peer->did_close ||
peer->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE;
if ( DEBUG_tcp_connection_close ) {
DEBUG_MSG("%.6f close_complete=%d tcp_close_delay=%f\n", run_state::network_time, close_complete,
zeek::detail::tcp_close_delay);
}
if ( close_complete ) {
if ( endpoint->prev_state != analyzer::tcp::TCP_ENDPOINT_INACTIVE ||
peer->state != analyzer::tcp::TCP_ENDPOINT_INACTIVE ) {
if ( deferred_gen_event ) {
gen_event = true;
deferred_gen_event = 0; // clear flag
}
// We have something interesting to report.
if ( gen_event ) {
if ( peer->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE )
ConnectionFinished(true);
else
ConnectionFinished(false);
}
}
CancelTimers();
// Note, even if tcp_close_delay is zero, we can't
// simply do:
//
// session_mgr->Remove(this);
//
// here, because that would cause the object to be
// deleted out from under us.
if ( zeek::detail::tcp_close_delay != 0.0 )
ADD_ANALYZER_TIMER(&TCPSessionAdapter::ConnDeleteTimer, Conn()->LastTime() + zeek::detail::tcp_close_delay,
false, zeek::detail::TIMER_CONN_DELETE);
else
ADD_ANALYZER_TIMER(&TCPSessionAdapter::DeleteTimer, Conn()->LastTime(), false,
zeek::detail::TIMER_TCP_DELETE);
}
else { // We haven't yet seen a full close.
if ( endpoint->prev_state ==
analyzer::tcp::TCP_ENDPOINT_INACTIVE ) { // First time we've seen anything from this side.
if ( connection_partial_close )
ADD_ANALYZER_TIMER(&TCPSessionAdapter::PartialCloseTimer,
Conn()->LastTime() + zeek::detail::tcp_partial_close_delay, false,
zeek::detail::TIMER_TCP_PARTIAL_CLOSE);
}
else {
// Create a timer to look for the other side closing,
// too.
ADD_ANALYZER_TIMER(&TCPSessionAdapter::ExpireTimer, Conn()->LastTime() + zeek::detail::tcp_session_timer,
false, zeek::detail::TIMER_TCP_EXPIRE);
}
}
}
void TCPSessionAdapter::ConnectionFinished(bool half_finished) {
const analyzer::analyzer_list& children(GetChildren());
for ( Analyzer* a : children )
// Again, nasty - see TCPSessionAdapter::ConnectionClosed.
static_cast<analyzer::tcp::TCP_ApplicationAnalyzer*>(a)->ConnectionFinished(half_finished);
if ( half_finished )
Event(connection_half_finished);
else
Event(connection_finished);
is_active = 0;
}
void TCPSessionAdapter::ConnectionReset() {
Event(connection_reset);
const analyzer::analyzer_list& children(GetChildren());
for ( Analyzer* a : children )
static_cast<analyzer::tcp::TCP_ApplicationAnalyzer*>(a)->ConnectionReset();
is_active = 0;
}
bool TCPSessionAdapter::HadGap(bool is_orig) const {
analyzer::tcp::TCP_Endpoint* endp = is_orig ? orig : resp;
return endp && endp->HadGap();
}
void TCPSessionAdapter::AddChildPacketAnalyzer(analyzer::Analyzer* a) {
DBG_LOG(DBG_ANALYZER, "%s added packet child %s", this->GetAnalyzerName(), a->GetAnalyzerName());
packet_children.push_back(a);
a->SetParent(this);
}
bool TCPSessionAdapter::DataPending(analyzer::tcp::TCP_Endpoint* closing_endp) {
if ( Skipping() )
return false;
return closing_endp->DataPending();
}
void TCPSessionAdapter::EndpointEOF(analyzer::tcp::TCP_Reassembler* endp) {
if ( connection_EOF )
EnqueueConnEvent(connection_EOF, ConnVal(), val_mgr->Bool(endp->IsOrig()));
const analyzer::analyzer_list& children(GetChildren());
for ( Analyzer* a : children )
static_cast<analyzer::tcp::TCP_ApplicationAnalyzer*>(a)->EndpointEOF(endp->IsOrig());
if ( close_deferred ) {
if ( DataPending(endp->Endpoint()) ) {
if ( BothClosed() )
Weird("pending_data_when_closed");
// Defer further, until the other endpoint
// EOF's, too.
}
ConnectionClosed(endp->Endpoint(), endp->Endpoint()->peer, deferred_gen_event);
close_deferred = 0;
}
}
void TCPSessionAdapter::PacketWithRST() {
const analyzer::analyzer_list& children(GetChildren());
for ( Analyzer* a : children )
static_cast<analyzer::tcp::TCP_ApplicationAnalyzer*>(a)->PacketWithRST();
}
void TCPSessionAdapter::CheckPIA_FirstPacket(bool is_orig, const IP_Hdr* ip) {
if ( is_orig && ! (first_packet_seen & ORIG) ) {
if ( auto* pia = static_cast<analyzer::pia::PIA_TCP*>(Conn()->GetPrimaryPIA()) )
pia->FirstPacket(is_orig, ip);
first_packet_seen |= ORIG;
}
if ( ! is_orig && ! (first_packet_seen & RESP) ) {
if ( auto* pia = static_cast<analyzer::pia::PIA_TCP*>(Conn()->GetPrimaryPIA()) )
pia->FirstPacket(is_orig, ip);
first_packet_seen |= RESP;
}
}
bool TCPSessionAdapter::IsReuse(double t, const u_char* pkt) {
const struct tcphdr* tp = (const struct tcphdr*)pkt;
if ( unsigned(tp->th_off) < sizeof(struct tcphdr) / 4 )
// Bogus header, don't interpret further.
return false;
analyzer::tcp::TCP_Endpoint* conn_orig = orig;
// Reuse only occurs on initial SYN's, except for half connections
// it can occur on SYN-acks.
if ( ! (tp->th_flags & TH_SYN) )
return false;
if ( (tp->th_flags & TH_ACK) ) {
if ( orig->state != analyzer::tcp::TCP_ENDPOINT_INACTIVE )
// Not a half connection.
return false;
conn_orig = resp;
}
if ( ! IsClosed() ) {
uint32_t base_seq = ntohl(tp->th_seq);
if ( base_seq == conn_orig->StartSeq() )
return false;
if ( (tp->th_flags & TH_ACK) == 0 && conn_orig->state == analyzer::tcp::TCP_ENDPOINT_SYN_ACK_SENT &&
resp->state == analyzer::tcp::TCP_ENDPOINT_INACTIVE && base_seq == resp->StartSeq() ) {
// This is an initial SYN with the right sequence
// number, and the state is consistent with the
// SYN & the SYN-ACK being flipped (e.g., due to
// reading from two interfaces w/ interrupt
// coalescence). Don't treat this as a reuse.
// NextPacket() will flip set the connection
// state correctly
return false;
}
if ( conn_orig->state == analyzer::tcp::TCP_ENDPOINT_SYN_SENT )
Weird("SYN_seq_jump");
else
Weird("active_connection_reuse");
}
else if ( (orig->IsActive() || resp->IsActive()) && orig->state != analyzer::tcp::TCP_ENDPOINT_RESET &&
resp->state != analyzer::tcp::TCP_ENDPOINT_RESET )
Weird("active_connection_reuse");
else if ( t - Conn()->LastTime() < zeek::detail::tcp_connection_linger &&
orig->state != analyzer::tcp::TCP_ENDPOINT_RESET && resp->state != analyzer::tcp::TCP_ENDPOINT_RESET )
Weird("premature_connection_reuse");
return true;
}
void TCPSessionAdapter::AddExtraAnalyzers(Connection* conn) {
static zeek::Tag analyzer_connsize = analyzer_mgr->GetComponentTag("CONNSIZE");
static zeek::Tag analyzer_tcpstats = analyzer_mgr->GetComponentTag("TCPSTATS");
// We have to decide whether to reassemble the stream.
// We turn it on right away if we already have an app-layer
// analyzer, reassemble_first_packets is true, or the user
// asks us to do so. In all other cases, reassembly may
// be turned on later by the TCP PIA.
bool reass = (! GetChildren().empty()) || zeek::detail::dpd_reassemble_first_packets ||
zeek::detail::tcp_content_deliver_all_orig || zeek::detail::tcp_content_deliver_all_resp;
if ( tcp_contents && ! reass ) {
static auto tcp_content_delivery_ports_orig = id::find_val<TableVal>("tcp_content_delivery_ports_orig");
static auto tcp_content_delivery_ports_resp = id::find_val<TableVal>("tcp_content_delivery_ports_resp");
const auto& dport = val_mgr->Port(ntohs(Conn()->RespPort()), TRANSPORT_TCP);
if ( ! reass )
reass = (bool)tcp_content_delivery_ports_orig->FindOrDefault(dport);
if ( ! reass )
reass = (bool)tcp_content_delivery_ports_resp->FindOrDefault(dport);
}
if ( reass )
EnableReassembly();
if ( analyzer_mgr->IsEnabled(analyzer_tcpstats) )
// Add TCPStats analyzer. This needs to see packets so
// we cannot add it as a normal child.
AddChildPacketAnalyzer(new analyzer::tcp::TCPStats_Analyzer(conn));
if ( analyzer_mgr->IsEnabled(analyzer_connsize) )
// Add ConnSize analyzer. Needs to see packets, not stream.
AddChildPacketAnalyzer(new analyzer::conn_size::ConnSize_Analyzer(conn));
}
void TCPSessionAdapter::SynWeirds(analyzer::tcp::TCP_Flags flags, analyzer::tcp::TCP_Endpoint* endpoint,
int data_len) const {
if ( flags.RST() )
endpoint->Conn()->Weird("TCP_christmas", "", GetAnalyzerName());
if ( flags.URG() )
endpoint->Conn()->Weird("baroque_SYN", "", GetAnalyzerName());
if ( data_len > 0 )
// Not technically wrong according to RFC 793, but the other side
// would be forced to buffer data until the handshake succeeds, and
// that could be bad in some cases, e.g. SYN floods.
// T/TCP definitely complicates this.
endpoint->Conn()->Weird("SYN_with_data", "", GetAnalyzerName());
}
int TCPSessionAdapter::ParseTCPOptions(const struct tcphdr* tcp, bool is_orig) {
// Parse TCP options.
const u_char* options = (const u_char*)tcp + sizeof(struct tcphdr);
const u_char* opt_end = (const u_char*)tcp + static_cast<ptrdiff_t>(tcp->th_off * 4);
std::vector<const u_char*> opts;
while ( options < opt_end ) {
unsigned int opt = options[0];
unsigned int opt_len;
if ( opt < 2 )
opt_len = 1;
else if ( options + 1 >= opt_end )
// We've run off the end, no room for the length.
break;
else
opt_len = options[1];
if ( opt_len == 0 )
break; // trashed length field
if ( options + opt_len > opt_end )
// No room for rest of option.
break;
opts.emplace_back(options);
options += opt_len;
if ( opt == TCPOPT_EOL )
// All done - could flag if more junk left over ....
break;
}
if ( tcp_option )
for ( const auto& o : opts ) {
auto kind = o[0];
auto length = kind < 2 ? 1 : o[1];
EnqueueConnEvent(tcp_option, ConnVal(), val_mgr->Bool(is_orig), val_mgr->Count(kind),
val_mgr->Count(length));
}
if ( tcp_options ) {
auto option_list = make_intrusive<VectorVal>(BifType::Vector::TCP::OptionList);
auto add_option_data = [](const RecordValPtr& rv, const u_char* odata, int olen) {
if ( olen <= 2 )
return;
auto data_len = olen - 2;
auto data = reinterpret_cast<const char*>(odata + 2);
rv->Assign(2, make_intrusive<StringVal>(data_len, data));
};
for ( const auto& o : opts ) {
auto kind = o[0];
auto length = kind < 2 ? 1 : o[1];
auto option_record = make_intrusive<RecordVal>(BifType::Record::TCP::Option);
option_list->Assign(option_list->Size(), option_record);
option_record->Assign(0, kind);
option_record->Assign(1, length);
switch ( kind ) {
case 2:
// MSS
if ( length == 4 ) {
auto mss = ntohs(*reinterpret_cast<const uint16_t*>(o + 2));
option_record->Assign(3, mss);
}
else {
add_option_data(option_record, o, length);
Weird("tcp_option_mss_invalid_len", util::fmt("%d", length));
}
break;
case 3:
// window scale
if ( length == 3 ) {
auto scale = o[2];
option_record->Assign(4, scale);
}
else {
add_option_data(option_record, o, length);
Weird("tcp_option_window_scale_invalid_len", util::fmt("%d", length));
}
break;
case 4:
// sack permitted (implicit boolean)
if ( length != 2 ) {
add_option_data(option_record, o, length);
Weird("tcp_option_sack_invalid_len", util::fmt("%d", length));
}
break;
case 5:
// SACK blocks (1-4 pairs of 32-bit begin+end pointers)
if ( length == 10 || length == 18 || length == 26 || length == 34 ) {
auto p = reinterpret_cast<const uint32_t*>(o + 2);
auto num_pointers = (length - 2) / 4;
auto vt = id::index_vec;
auto sack = make_intrusive<VectorVal>(std::move(vt));
for ( auto i = 0; i < num_pointers; ++i )
sack->Assign(sack->Size(), val_mgr->Count(ntohl(p[i])));
option_record->Assign(5, sack);
}
else {
add_option_data(option_record, o, length);
Weird("tcp_option_sack_blocks_invalid_len", util::fmt("%d", length));
}
break;
case 8:
// timestamps
if ( length == 10 ) {
uint32_t send = ntohl(*reinterpret_cast<const uint32_t*>(o + 2));
uint32_t echo = ntohl(*reinterpret_cast<const uint32_t*>(o + 6));
option_record->Assign(6, send);
option_record->Assign(7, echo);
}
else {
add_option_data(option_record, o, length);
Weird("tcp_option_timestamps_invalid_len", util::fmt("%d", length));
}
break;
case 27:
// TCP Quick Start Response
if ( length == 8 ) {
auto rate = o[2];
auto ttl_diff = o[3];
uint32_t qs_nonce = ntohl(*reinterpret_cast<const uint32_t*>(o + 4));
option_record->Assign(8, rate);
option_record->Assign(9, ttl_diff);
option_record->Assign(10, qs_nonce);
}
else {
add_option_data(option_record, o, length);
Weird("tcp_option_qsresponse_invalid_len", util::fmt("%d", length));
}
break;
case 28:
// TCP User Timeout option UTO
if ( length != 4 ) {
add_option_data(option_record, o, length);
Weird("tcp_option_uto_invalid_len", util::fmt("%d", length));
}
break;
case 29:
// TCP Auth Option AO
if ( length < 4 ) {
add_option_data(option_record, o, length);
Weird("tcp_option_ao_invalid_len", util::fmt("%d", length));
}
break;
case 34:
// TCP Fast open TFO
if ( (length != 2) && (length < 6 || length > 18) ) {
add_option_data(option_record, o, length);
Weird("tcp_option_tfo_invalid_len", util::fmt("%d", length));
}
break;
default: add_option_data(option_record, o, length); break;
}
}
EnqueueConnEvent(tcp_options, ConnVal(), val_mgr->Bool(is_orig), std::move(option_list));
}
if ( options < opt_end )
return -1;
return 0;
}
void TCPSessionAdapter::CheckRecording(bool need_contents, analyzer::tcp::TCP_Flags flags) {
bool record_current_content = need_contents || Conn()->RecordContents();
bool record_current_packet = Conn()->RecordPackets() || flags.SYN() || flags.FIN() || flags.RST();
Conn()->SetRecordCurrentContent(record_current_content);
Conn()->SetRecordCurrentPacket(record_current_packet);
}