zeek/src/SmithWaterman.cc
2020-06-09 17:20:45 -07:00

566 lines
14 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include "zeek-config.h"
#include <algorithm>
#include <ctype.h>
#include "SmithWaterman.h"
#include "Var.h"
#include "util.h"
#include "Reporter.h"
#include "Val.h"
BroSubstring::BroSubstring(const BroSubstring& bst)
: BroString((const BroString&) bst), _num(), _new(bst._new)
{
for ( BSSAlignVecCIt it = bst._aligns.begin(); it != bst._aligns.end(); ++it )
_aligns.push_back(*it);
}
const BroSubstring& BroSubstring::operator=(const BroSubstring& bst)
{
BroString::operator=(bst);
_aligns.clear();
for ( BSSAlignVecCIt it = bst._aligns.begin(); it != bst._aligns.end(); ++it )
_aligns.push_back(*it);
_new = bst._new;
return *this;
}
void BroSubstring::AddAlignment(const BroString* str, int index)
{
_aligns.push_back(BSSAlign(str, index));
}
bool BroSubstring::DoesCover(const BroSubstring* bst) const
{
if ( _aligns.size() != bst->_aligns.size() )
return false;
BSSAlignVecCIt it_bst = bst->_aligns.begin();
for ( BSSAlignVecCIt it = _aligns.begin(); it != _aligns.end(); ++it, ++it_bst )
{
const BSSAlign& a = *it;
const BSSAlign& a_bst = *it_bst;
if (a.index > a_bst.index || a.index + Len() < a_bst.index + bst->Len())
return false;
}
return true;
}
VectorVal* BroSubstring::VecToPolicy(Vec* vec)
{
static auto sw_substring_type = zeek::id::find_type<zeek::RecordType>("sw_substring");
static auto sw_align_type = zeek::id::find_type<zeek::RecordType>("sw_align");
static auto sw_align_vec_type = zeek::id::find_type<zeek::VectorType>("sw_align_vec");
static auto sw_substring_vec_type = zeek::id::find_type<zeek::VectorType>("sw_substring_vec");
auto result = make_intrusive<VectorVal>(sw_substring_vec_type);
if ( vec )
{
for ( unsigned int i = 0; i < vec->size(); ++i )
{
BroSubstring* bst = (*vec)[i];
auto st_val = make_intrusive<RecordVal>(sw_substring_type);
st_val->Assign(0, make_intrusive<StringVal>(new BroString(*bst)));
auto aligns = make_intrusive<VectorVal>(sw_align_vec_type);
for ( unsigned int j = 0; j < bst->GetNumAlignments(); ++j )
{
const BSSAlign& align = (bst->GetAlignments())[j];
auto align_val = make_intrusive<RecordVal>(sw_align_type);
align_val->Assign(0, make_intrusive<StringVal>(new BroString(*align.string)));
align_val->Assign(1, val_mgr->Count(align.index));
aligns->Assign(j + 1, std::move(align_val));
}
st_val->Assign(1, std::move(aligns));
st_val->Assign(2, val_mgr->Bool(bst->IsNewAlignment()));
result->Assign(i + 1, std::move(st_val));
}
}
return result.release();
}
BroSubstring::Vec* BroSubstring::VecFromPolicy(VectorVal* vec)
{
Vec* result = new Vec();
// VectorVals start at index 1!
for ( unsigned int i = 1; i <= vec->Size(); ++i )
{
const auto& v = vec->At(i); // get the RecordVal
if ( ! v )
continue;
const BroString* str = v->AsRecordVal()->GetField(0)->AsString();
BroSubstring* substr = new BroSubstring(*str);
const VectorVal* aligns = v->AsRecordVal()->GetField(1)->AsVectorVal();
for ( unsigned int j = 1; j <= aligns->Size(); ++j )
{
const RecordVal* align = aligns->AsVectorVal()->At(j)->AsRecordVal();
const BroString* str = align->GetField(0)->AsString();
int index = align->GetField(1)->AsCount();
substr->AddAlignment(str, index);
}
bool new_alignment = v->AsRecordVal()->GetField(2)->AsBool();
substr->MarkNewAlignment(new_alignment);
result->push_back(substr);
}
return result;
}
char* BroSubstring::VecToString(Vec* vec)
{
std::string result("[");
for ( BroSubstring::VecIt it = vec->begin(); it != vec->end(); ++it )
{
result += (*it)->CheckString();
result += ",";
}
result += "]";
return strdup(result.c_str());
}
BroString::IdxVec* BroSubstring::GetOffsetsVec(const Vec* vec, unsigned int index)
{
BroString::IdxVec* result = new BroString::IdxVec();
for ( VecCIt it = vec->begin(); it != vec->end(); ++it )
{
int start, end;
const BroSubstring* bst = (*it);
if ( bst->_aligns.size() <= index )
continue;
const BSSAlign& align = bst->_aligns[index];
start = align.index;
end = start + bst->Len();
result->push_back(start);
result->push_back(end);
}
return result;
}
bool BroSubstringCmp::operator()(const BroSubstring* bst1,
const BroSubstring* bst2) const
{
if ( _index >= bst1->GetNumAlignments() ||
_index >= bst2->GetNumAlignments() )
{
reporter->Warning("BroSubstringCmp::operator(): invalid index for input strings.\n");
return false;
}
if ( bst1->GetAlignments()[_index].index <=
bst2->GetAlignments()[_index].index )
return true;
return false;
}
// A node in Smith-Waterman's dynamic programming matrix. Each node
// contains the byte it represents in the case of a match, the score
// at this point, and a pointer to the previous cell. Previous means
// one up and left in case of a match, or a jump somewhere above and
// left in case of a gap.
//
struct SWNode {
// ID field for the cell, for debugging purposes.
int id;
u_char swn_byte;
bool swn_byte_assigned;
bool swn_visited;
// The score in this cell. The cell with the globally best score
// marks the end of the alignment.
int swn_score;
// Pointer to previous match, walking back yields subsequence.
SWNode* swn_prev;
};
// A matrix of Smith-Waterman nodes.
//
class SWNodeMatrix {
public:
SWNodeMatrix(const BroString* s1, const BroString* s2)
: _s1(s1), _s2(s2), _rows(s1->Len() + 1), _cols(s2->Len() + 1)
{
_nodes = new SWNode[_cols * _rows];
memset(_nodes, 0, sizeof(SWNode) * _cols * _rows);
}
~SWNodeMatrix() { delete [] _nodes; }
SWNode* operator()(int row, int col)
{
// Make sure access is in allowed range.
if ( row < 0 || row >= _rows )
return nullptr;
if ( col < 0 || col >= _cols )
return nullptr;
return &(_nodes[row * _cols + col]);
}
const BroString* GetRowsString() const { return _s1; }
const BroString* GetColsString() const { return _s2; }
int GetHeight() const { return _rows; }
int GetWidth() const { return _cols; }
// Quick helper function that calculates the coordinates of a
// node in the matrix via pointer arithmetic.
//
void GetNodeIndices(SWNode* node, int& row, int& col)
{
SWNode* base = &_nodes[0];
int offset = (node - base);
col = (offset % _cols);
row = (offset / _cols);
}
private:
const BroString* _s1;
const BroString* _s2;
int _rows, _cols;
SWNode* _nodes;
};
// Returns the common subsequence starting from a given node.
// @result: vector holding results on return.
// @matrix: SW matrix.
// @node: starting node.
// @params: SW parameters.
//
static void sw_collect_single(BroSubstring::Vec* result, SWNodeMatrix& matrix,
SWNode* node, SWParams& params)
{
std::string substring("");
int row = 0, col = 0;
while ( node )
{
// printf("NODE: %i\n", node->id);
node->swn_visited = true;
// Once we hit a gap, terminate the string and prepend
// it to our result vector, IF it has at least the length
// requested through the params._min_toklen parameter.
//
if ( node->swn_byte_assigned )
{
matrix.GetNodeIndices(node, row, col);
substring += node->swn_byte;
// printf("SUBSTRING: %s\n", substring.c_str());
}
else
{
// printf("GAP\n");
if ( substring.size() >= params._min_toklen )
{
reverse(substring.begin(), substring.end());
BroSubstring* bst = new BroSubstring(substring);
bst->AddAlignment(matrix.GetRowsString(), row-1);
bst->AddAlignment(matrix.GetColsString(), col-1);
result->push_back(bst);
}
substring = "";
}
node = node->swn_prev;
}
// Anything left over now is the first string of an alignment and is
// manually added and marked as the beginning of a new alignment.
//
if ( substring.size() > 0 )
{
reverse(substring.begin(), substring.end());
BroSubstring* bst = new BroSubstring(substring);
bst->AddAlignment(matrix.GetRowsString(), row-1);
bst->AddAlignment(matrix.GetColsString(), col-1);
result->push_back(bst);
}
if ( result->size() > 0 )
result->back()->MarkNewAlignment(true);
}
// Returns repeated common-subsequence alignments.
// @result: vector holding results on return.
// @matrix: SW matrix.
// @params: SW parameters.
//
// The approach taken is to essentially follow back from all starting points of
// common subsequences while tracking which nodes were visited earlier and which
// substrings are redundant (i.e., fully covered by a larger common substring).
//
static void sw_collect_multiple(BroSubstring::Vec* result,
SWNodeMatrix& matrix, SWParams& params)
{
std::vector<BroSubstring::Vec*> als;
for ( int i = matrix.GetHeight() - 1; i > 0; --i )
{
for ( int j = matrix.GetWidth() - 1; j > 0; --j )
{
SWNode* node = matrix(i, j);
if ( ! (node->swn_byte_assigned && ! node->swn_visited) )
continue;
BroSubstring::Vec* new_al = new BroSubstring::Vec();
sw_collect_single(new_al, matrix, node, params);
for ( std::vector<BroSubstring::Vec*>::iterator it = als.begin();
it != als.end(); ++it )
{
BroSubstring::Vec* old_al = *it;
if ( old_al == nullptr )
continue;
for ( BroSubstring::VecIt it2 = old_al->begin();
it2 != old_al->end(); ++it2 )
{
for ( BroSubstring::VecIt it3 = new_al->begin();
it3 != new_al->end(); ++it3 )
{
if ( (*it2)->DoesCover(*it3) )
{
delete_each(new_al);
delete new_al;
new_al = nullptr;
goto end_loop;
}
if ( (*it3)->DoesCover(*it2) )
{
delete_each(old_al);
delete old_al;
*it = 0;
goto end_loop;
}
}
}
}
end_loop:
if ( new_al )
als.push_back(new_al);
}
}
for ( std::vector<BroSubstring::Vec*>::iterator it = als.begin();
it != als.end(); ++it )
{
BroSubstring::Vec* al = *it;
if ( al == nullptr )
continue;
for ( BroSubstring::VecIt it2 = al->begin();
it2 != al->end(); ++it2 )
result->push_back(*it2);
delete al;
}
}
// The main Smith-Waterman algorithm.
//
BroSubstring::Vec* smith_waterman(const BroString* s1, const BroString* s2,
SWParams& params)
{
BroSubstring::Vec* result = new BroSubstring::Vec();
if ( ! s1 || s1->Len() < int(params._min_toklen) ||
! s2 || s2->Len() < int(params._min_toklen) )
return result;
// Length of both strings, plus one because SW needs
// an extra row and column.
//
int i, len1 = s1->Len() + 1;
int j, len2 = s2->Len() + 1;
int row = 0, col = 0;
byte_vec string1 = s1->Bytes();
byte_vec string2 = s2->Bytes();
SWNodeMatrix matrix(s1, s2); // dynamic programming matrix.
SWNode* node_max = nullptr; // pointer to the best score's node
SWNode* node_br_max = nullptr; // pointer to lowest-right matching node
// The highest score in the matrix, globally. We initialize to 1
// because we are only interested in real scores (initializing to
// -infty would mean 0 is larger, and would complicate the link
// structure in the matrix).
//
int matrix_max = 1;
int br_max_r = 0;
int br_max_b = 0;
// Matrix initialization ----------------------------------------------
// Assign IDs to each cell -- this is only for debugging purposes
// and can go later.
int counter = 1;
for ( i = 1; i < len1; ++i )
for ( j = 1; j < len2; ++j )
matrix(i, j)->id = counter++;
// Subsequence calculation --------------------------------------------
for ( i = 1; i < len1; ++i )
{
for ( j = 1; j < len2; ++j )
{
// Current node, top/left neighbours.
//
SWNode* current = matrix(i, j);
SWNode* node_tl = matrix(i-1, j-1);
SWNode* node_l = matrix(i, j-1);
SWNode* node_t = matrix(i-1, j);
// Scores of neighbouring nodes.
//
int score_t = node_t->swn_score;
int score_l = node_l->swn_score;
int score_tl = node_tl->swn_score;
// If strings at current indices match, assign new
// score to current node. Minus-one adjustments
// are necessary since matrix has one extra
// row + column.
//
if ( string1[i-1] == string2[j-1] )
{
// We have a match: improve previous score.
//
score_tl += 1;
// If we're continuing a chain of matches, rate
// higher. This favours longer consecutive
// substrings.
//
if ( node_tl->swn_byte_assigned )
score_tl += 99;
// Store the byte we've matched in the node for
// easier access.
//
current->swn_byte = string1[i-1];
current->swn_byte_assigned = true;
}
// Pick the score among the neighbours that is now highest.
// This is the core of Smith-Waterman.
//
if ( current->swn_byte_assigned )
current->swn_score = score_tl;
else
current->swn_score = std::max(std::max(score_t, score_l), score_tl);
// Establish predecessor chain according to neighbor
// with best score.
//
if ( current->swn_score == score_tl &&
current->swn_byte_assigned )
{
// If we had matched bytes (*and* it's the
// best neighbor), marke the node accordingly
//
if ( i >= br_max_b && j >= br_max_r )
{
node_br_max = current;
br_max_b = i;
br_max_r = j;
}
current->swn_prev = node_tl;
}
else if ( current->swn_score == score_t )
current->swn_prev = node_t;
else
current->swn_prev = node_l;
// Check if we have a new global maximum -- we
// specifically track the node that is the global
// maximum so we now from where to backtrack at
// the end of the matrix iteration.
//
if ( current->swn_score > matrix_max )
{
node_max = current;
matrix_max = current->swn_score;
}
#if 0
printf("%4i/%.5i%c/%.5i[%c%c] ",
current->swn_score,
current->id,
current->swn_byte_assigned ? '*' : ' ',
current->swn_prev ? current->swn_prev->id : 0,
string1[i-1], string2[j-1]);
#endif
//printf("%.5i ", current->swn_score);
}
#if 0
printf("\n");
#endif
}
// Result generation.
// How we do this depends on the mode we operate in. In SW_SINGLE, we
// follow the path from the best node until there is no predecessor
// (that is, when we hit a node in row 0), and stop. In SW_MULTIPLE,
// we collect all non-redundant common subsequences.
if ( params._sw_variant == SW_MULTIPLE )
sw_collect_multiple(result, matrix, params);
else
sw_collect_single(result, matrix, node_max, params);
if ( len1 > len2 )
sort(result->begin(), result->end(), BroSubstringCmp(0));
else
sort(result->begin(), result->end(), BroSubstringCmp(1));
return result;
}