zeek/src/util.cc
Tim Wojtulewicz fe0c22c789 Base: Clean up explicit uses of namespaces in places where they're not necessary.
This commit covers all of the common and base classes.
2020-08-24 12:07:00 -07:00

2622 lines
58 KiB
C++

// See the file "COPYING" in the main distribution directory for copyright.
#include "zeek-config.h"
#include "util.h"
#include "util-config.h"
#ifdef TIME_WITH_SYS_TIME
# include <sys/time.h>
# include <time.h>
#else
# ifdef HAVE_SYS_TIME_H
# include <sys/time.h>
# else
# include <time.h>
# endif
#endif
#ifdef HAVE_DARWIN
#include <mach/task.h>
#include <mach/mach_init.h>
#endif
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <stdarg.h>
#include <errno.h>
#include <signal.h>
#include <libgen.h>
#include <openssl/md5.h>
#include <openssl/sha.h>
#ifdef HAVE_MALLINFO
# include <malloc.h>
#endif
#include <string>
#include <array>
#include <vector>
#include <algorithm>
#include <iostream>
#include "Desc.h"
#include "Dict.h"
#include "digest.h"
#include "input.h"
#include "Obj.h"
#include "Val.h"
#include "NetVar.h"
#include "RunState.h"
#include "Reporter.h"
#include "iosource/Manager.h"
#include "iosource/PktSrc.h"
#include "ConvertUTF.h"
#include "Hash.h"
#include "3rdparty/doctest.h"
#ifdef __linux__
#if __has_include(<sys/random.h>)
#define HAVE_GETRANDOM
#include <sys/random.h>
#endif
#endif
using namespace std;
extern const char* proc_status_file;
static bool can_read(const string& path)
{
return access(path.c_str(), R_OK) == 0;
}
static bool starts_with(std::string_view s, std::string_view beginning)
{
if ( beginning.size() > s.size() )
return false;
return std::equal(beginning.begin(), beginning.end(), s.begin());
}
TEST_CASE("util starts_with")
{
CHECK(starts_with("abcde", "ab") == true);
CHECK(starts_with("abcde", "de") == false);
CHECK(starts_with("abcde", "abcedf") == false);
}
static bool ends_with(std::string_view s, std::string_view ending)
{
if ( ending.size() > s.size() )
return false;
return std::equal(ending.rbegin(), ending.rend(), s.rbegin());
}
TEST_CASE("util ends_with")
{
CHECK(ends_with("abcde", "de") == true);
CHECK(ends_with("abcde", "fg") == false);
CHECK(ends_with("abcde", "abcedf") == false);
}
static string zeek_path_value;
namespace zeek::util {
namespace detail {
TEST_CASE("util extract_ip")
{
CHECK(extract_ip("[1.2.3.4]") == "1.2.3.4");
CHECK(extract_ip("0x1.2.3.4") == "1.2.3.4");
CHECK(extract_ip("[]") == "");
}
/**
* Return IP address without enclosing brackets and any leading 0x. Also
* trims leading/trailing whitespace.
*/
std::string extract_ip(const std::string& i)
{
std::string s(strstrip(i));
if ( s.size() > 0 && s[0] == '[' )
s.erase(0, 1);
if ( s.size() > 1 && s.substr(0, 2) == "0x" )
s.erase(0, 2);
size_t pos = 0;
if ( (pos = s.find(']')) != std::string::npos )
s = s.substr(0, pos);
return s;
}
TEST_CASE("util extract_ip_and_len")
{
int len;
std::string out = extract_ip_and_len("[1.2.3.4/24]", &len);
CHECK(out == "1.2.3.4");
CHECK(len == 24);
out = extract_ip_and_len("0x1.2.3.4/32", &len);
CHECK(out == "1.2.3.4");
CHECK(len == 32);
out = extract_ip_and_len("[]/abcd", &len);
CHECK(out == "");
CHECK(len == 0);
out = extract_ip_and_len("[]/16", nullptr);
CHECK(out == "");
}
/**
* Given a subnet string, return IP address and subnet length separately.
*/
std::string extract_ip_and_len(const std::string& i, int* len)
{
size_t pos = i.find('/');
if ( pos == std::string::npos )
return i;
if ( len )
*len = atoi(i.substr(pos + 1).c_str());
return extract_ip(i.substr(0, pos));
}
static constexpr int parse_octal_digit(char ch) noexcept
{
if ( ch >= '0' && ch <= '7' )
return ch - '0';
else
return -1;
}
static constexpr int parse_hex_digit(char ch) noexcept
{
if ( ch >= '0' && ch <= '9' )
return ch - '0';
else if ( ch >= 'a' && ch <= 'f' )
return 10 + ch - 'a';
else if ( ch >= 'A' && ch <= 'F' )
return 10 + ch - 'A';
else
return -1;
}
int expand_escape(const char*& s)
{
switch ( *(s++) ) {
case 'b': return '\b';
case 'f': return '\f';
case 'n': return '\n';
case 'r': return '\r';
case 't': return '\t';
case 'a': return '\a';
case 'v': return '\v';
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7':
{ // \<octal>{1,3}
--s; // put back the first octal digit
const char* start = s;
// require at least one octal digit and parse at most three
int result = parse_octal_digit(*s++);
if ( result < 0 )
{
reporter->Error("bad octal escape: %s", start);
return 0;
}
// second digit?
int digit = parse_octal_digit(*s);
if ( digit >= 0 )
{
result = (result << 3) | digit;
++s;
// third digit?
digit = parse_octal_digit(*s);
if ( digit >= 0 )
{
result = (result << 3) | digit;
++s;
}
}
return result;
}
case 'x':
{ /* \x<hex> */
const char* start = s;
// Look at most 2 characters, so that "\x0ddir" -> "^Mdir".
int result = parse_hex_digit(*s++);
if ( result < 0 )
{
reporter->Error("bad hexadecimal escape: %s", start);
return 0;
}
// second digit?
int digit = parse_hex_digit(*s);
if ( digit >= 0 )
{
result = (result << 4) | digit;
++s;
}
return result;
}
default:
return s[-1];
}
}
const char* fmt_access_time(double t)
{
static char buf[256];
time_t time = (time_t) t;
struct tm ts;
if ( ! localtime_r(&time, &ts) )
{
reporter->InternalError("unable to get time");
}
strftime(buf, sizeof(buf), "%d/%m-%H:%M", &ts);
return buf;
}
bool ensure_intermediate_dirs(const char* dirname)
{
if ( ! dirname || strlen(dirname) == 0 )
return false;
bool absolute = dirname[0] == '/';
string path = normalize_path(dirname);
const auto path_components = tokenize_string(path, '/');
string current_dir;
for ( size_t i = 0; i < path_components.size(); ++i )
{
if ( i > 0 || absolute )
current_dir += "/";
current_dir += path_components[i];
if ( ! ensure_dir(current_dir.c_str()) )
return false;
}
return true;
}
bool ensure_dir(const char *dirname)
{
if ( mkdir(dirname, 0700) == 0 )
return true;
auto mkdir_errno = errno;
struct stat st;
if ( stat(dirname, &st) == -1 )
{
// Show the original failure reason for mkdir() since nothing's there
// or we can't even tell what is now.
reporter->Warning("can't create directory %s: %s",
dirname, strerror(mkdir_errno));
return false;
}
if ( S_ISDIR(st.st_mode) )
return true;
reporter->Warning("%s exists but is not a directory", dirname);
return false;
}
void hmac_md5(size_t size, const unsigned char* bytes, unsigned char digest[16])
{
if ( ! zeek::detail::KeyedHash::seeds_initialized )
reporter->InternalError("HMAC-MD5 invoked before the HMAC key is set");
zeek::detail::internal_md5(bytes, size, digest);
for ( int i = 0; i < 16; ++i )
digest[i] ^= zeek::detail::KeyedHash::shared_hmac_md5_key[i];
zeek::detail::internal_md5(digest, 16, digest);
}
static bool read_random_seeds(const char* read_file, uint32_t* seed,
std::array<uint32_t, zeek::detail::KeyedHash::SEED_INIT_SIZE>& buf)
{
FILE* f = nullptr;
if ( ! (f = fopen(read_file, "r")) )
{
reporter->Warning("Could not open seed file '%s': %s",
read_file, strerror(errno));
return false;
}
// Read seed for srandom().
if ( fscanf(f, "%u", seed) != 1 )
{
fclose(f);
return false;
}
// Read seeds for hmac-md5/siphash/highwayhash.
for ( auto &v : buf )
{
int tmp;
if ( fscanf(f, "%u", &tmp) != 1 )
{
fclose(f);
return false;
}
v = tmp;
}
fclose(f);
return true;
}
static bool write_random_seeds(const char* write_file, uint32_t seed,
std::array<uint32_t, zeek::detail::KeyedHash::SEED_INIT_SIZE>& buf)
{
FILE* f = nullptr;
if ( ! (f = fopen(write_file, "w+")) )
{
reporter->Warning("Could not create seed file '%s': %s",
write_file, strerror(errno));
return false;
}
fprintf(f, "%u\n", seed);
for ( const auto &v: buf )
fprintf(f, "%u\n", v);
fclose(f);
return true;
}
static bool zeek_rand_determistic = false;
static long int zeek_rand_state = 0;
static bool first_seed_saved = false;
static unsigned int first_seed = 0;
static void zeek_srandom(unsigned int seed, bool deterministic)
{
zeek_rand_state = seed == 0 ? 1 : seed;
zeek_rand_determistic = deterministic;
srandom(seed);
}
void seed_random(unsigned int seed)
{
if ( zeek_rand_determistic )
zeek_rand_state = seed == 0 ? 1 : seed;
else
srandom(seed);
}
void init_random_seed(const char* read_file, const char* write_file,
bool use_empty_seeds)
{
std::array<uint32_t, zeek::detail::KeyedHash::SEED_INIT_SIZE> buf = {};
size_t pos = 0; // accumulates entropy
bool seeds_done = false;
uint32_t seed = 0;
if ( read_file )
{
if ( ! read_random_seeds(read_file, &seed, buf) )
reporter->FatalError("Could not load seeds from file '%s'.\n",
read_file);
else
seeds_done = true;
}
else if ( use_empty_seeds )
seeds_done = true;
if ( ! seeds_done )
{
#ifdef HAVE_GETRANDOM
// getrandom() guarantees reads up to 256 bytes are always successful,
assert(sizeof(buf) < 256);
auto nbytes = getrandom(buf.data(), sizeof(buf), 0);
assert(nbytes == sizeof(buf));
pos += nbytes / sizeof(uint32_t);
#else
// Gather up some entropy.
gettimeofday((struct timeval *)(buf.data() + pos), 0);
pos += sizeof(struct timeval) / sizeof(uint32_t);
// use urandom. For reasons see e.g. http://www.2uo.de/myths-about-urandom/
#if defined(O_NONBLOCK)
int fd = open("/dev/urandom", O_RDONLY | O_NONBLOCK);
#elif defined(O_NDELAY)
int fd = open("/dev/urandom", O_RDONLY | O_NDELAY);
#else
int fd = open("/dev/urandom", O_RDONLY);
#endif
if ( fd >= 0 )
{
int amt = read(fd, buf.data() + pos,
sizeof(uint32_t) * (zeek::detail::KeyedHash::SEED_INIT_SIZE - pos));
safe_close(fd);
if ( amt > 0 )
pos += amt / sizeof(uint32_t);
else
// Clear errno, which can be set on some
// systems due to a lack of entropy.
errno = 0;
}
#endif
if ( pos < zeek::detail::KeyedHash::SEED_INIT_SIZE )
reporter->FatalError("Could not read enough random data. Wanted %d, got %zu",
zeek::detail::KeyedHash::SEED_INIT_SIZE, pos);
if ( ! seed )
{
for ( size_t i = 0; i < pos; ++i )
{
seed ^= buf[i];
seed = (seed << 1) | (seed >> 31);
}
}
else
seeds_done = true;
}
zeek_srandom(seed, seeds_done);
if ( ! first_seed_saved )
{
first_seed = seed;
first_seed_saved = true;
}
if ( ! zeek::detail::KeyedHash::IsInitialized() )
zeek::detail::KeyedHash::InitializeSeeds(buf);
if ( write_file && ! write_random_seeds(write_file, seed, buf) )
reporter->Error("Could not write seeds to file '%s'.\n",
write_file);
}
unsigned int initial_seed()
{
return first_seed;
}
bool have_random_seed()
{
return zeek_rand_determistic;
}
constexpr uint32_t zeek_prng_mod = 2147483647;
constexpr uint32_t zeek_prng_max = zeek_prng_mod - 1;
long int max_random()
{
return zeek_rand_determistic ? zeek_prng_max : RAND_MAX;
}
long int prng(long int state)
{
// Use our own simple linear congruence PRNG to make sure we are
// predictable across platforms. (Lehmer RNG, Schrage's method)
// Note: the choice of "long int" storage type for the state is mostly
// for parity with the possible return values of random().
constexpr uint32_t m = zeek_prng_mod;
constexpr uint32_t a = 16807;
constexpr uint32_t q = m / a;
constexpr uint32_t r = m % a;
uint32_t rem = state % q;
uint32_t div = state / q;
int32_t s = a * rem;
int32_t t = r * div;
int32_t res = s - t;
if ( res < 0 )
res += m;
return res;
}
long int random_number()
{
if ( ! zeek_rand_determistic )
return random(); // Use system PRNG.
zeek_rand_state = detail::prng(zeek_rand_state);
return zeek_rand_state;
}
// Returns a 64-bit random string.
uint64_t rand64bit()
{
uint64_t base = 0;
int i;
for ( i = 1; i <= 4; ++i )
base = (base<<16) | detail::random_number();
return base;
}
const array<string, 2> script_extensions = {".zeek", ".bro"};
void warn_if_legacy_script(std::string_view filename)
{
if ( ends_with(filename, ".bro") )
{
std::string x(filename);
reporter->Warning("Loading script '%s' with legacy extension, support for '.bro' will be removed in Zeek v4.1", x.c_str());
}
}
TEST_CASE("util is_package_loader")
{
CHECK(is_package_loader("/some/path/__load__.zeek") == true);
CHECK(is_package_loader("/some/path/notload.zeek") == false);
}
bool is_package_loader(const string& path)
{
string filename(std::move(SafeBasename(path).result));
for ( const string& ext : script_extensions )
{
if ( filename == "__load__" + ext )
{
warn_if_legacy_script(filename);
return true;
}
}
return false;
}
void add_to_zeek_path(const string& dir)
{
// Make sure path is initialized.
zeek_path();
zeek_path_value += string(":") + dir;
}
FILE* open_package(string& path, const string& mode)
{
string arg_path = path;
path.append("/__load__");
for ( const string& ext : script_extensions )
{
string p = path + ext;
if ( can_read(p) )
{
warn_if_legacy_script(path);
path.append(ext);
return open_file(path, mode);
}
}
path.append(script_extensions[0]);
string package_loader = "__load__" + script_extensions[0];
reporter->Error("Failed to open package '%s': missing '%s' file",
arg_path.c_str(), package_loader.c_str());
return nullptr;
}
void SafePathOp::CheckValid(const char* op_result, const char* path,
bool error_aborts)
{
if ( op_result )
{
result = op_result;
error = false;
}
else
{
if ( error_aborts )
reporter->InternalError("Path operation failed on %s: %s",
path ? path : "<null>", strerror(errno));
else
error = true;
}
}
TEST_CASE("util flatten_script_name")
{
CHECK(flatten_script_name("script", "some/path") == "some.path.script");
CHECK(flatten_script_name("other/path/__load__.zeek", "some/path") == "some.path.other.path");
CHECK(flatten_script_name("path/to/script", "") == "path.to.script");
}
string flatten_script_name(const string& name, const string& prefix)
{
string rval = prefix;
if ( ! rval.empty() )
rval.append(".");
if ( is_package_loader(name) )
rval.append(SafeDirname(name).result);
else
rval.append(name);
size_t i;
while ( (i = rval.find('/')) != string::npos )
rval[i] = '.';
return rval;
}
TEST_CASE("util normalize_path")
{
CHECK(normalize_path("/1/2/3") == "/1/2/3");
CHECK(normalize_path("/1/./2/3") == "/1/2/3");
CHECK(normalize_path("/1/2/../3") == "/1/3");
CHECK(normalize_path("1/2/3/") == "1/2/3");
CHECK(normalize_path("1/2//3///") == "1/2/3");
CHECK(normalize_path("~/zeek/testing") == "~/zeek/testing");
CHECK(normalize_path("~jon/zeek/testing") == "~jon/zeek/testing");
CHECK(normalize_path("~jon/./zeek/testing") == "~jon/zeek/testing");
CHECK(normalize_path("~/zeek/testing/../././.") == "~/zeek");
CHECK(normalize_path("./zeek") == "./zeek");
CHECK(normalize_path("../zeek") == "../zeek");
CHECK(normalize_path("../zeek/testing/..") == "../zeek");
CHECK(normalize_path("./zeek/..") == ".");
CHECK(normalize_path("./zeek/../..") == "..");
CHECK(normalize_path("./zeek/../../..") == "../..");
CHECK(normalize_path("./..") == "..");
CHECK(normalize_path("../..") == "../..");
CHECK(normalize_path("/..") == "/..");
CHECK(normalize_path("~/..") == "~/..");
CHECK(normalize_path("/../..") == "/../..");
CHECK(normalize_path("~/../..") == "~/../..");
CHECK(normalize_path("zeek/..") == "");
CHECK(normalize_path("zeek/../..") == "..");
}
string normalize_path(std::string_view path)
{
if ( path.find("/.") == std::string_view::npos &&
path.find("//") == std::string_view::npos )
{
// no need to normalize anything
if ( path.size() > 1 && path.back() == '/' )
path.remove_suffix(1);
return std::string(path);
}
size_t n;
vector<std::string_view> final_components;
string new_path;
new_path.reserve(path.size());
if ( ! path.empty() && path[0] == '/' )
new_path = "/";
const auto components = tokenize_string(path, '/');
final_components.reserve(components.size());
for ( auto it = components.begin(); it != components.end(); ++it )
{
if ( *it == "" ) continue;
if ( *it == "." && it != components.begin() ) continue;
final_components.push_back(*it);
if ( *it == ".." )
{
auto cur_idx = final_components.size() - 1;
if ( cur_idx != 0 )
{
auto last_idx = cur_idx - 1;
auto& last_component = final_components[last_idx];
if ( last_component == "/" || last_component == "~" ||
last_component == ".." )
continue;
if ( last_component == "." )
{
last_component = "..";
final_components.pop_back();
}
else
{
final_components.pop_back();
final_components.pop_back();
}
}
}
}
for ( auto it = final_components.begin(); it != final_components.end(); ++it )
{
new_path.append(*it);
new_path.append("/");
}
if ( new_path.size() > 1 && new_path[new_path.size() - 1] == '/' )
new_path.erase(new_path.size() - 1);
return new_path;
}
string without_zeekpath_component(std::string_view path)
{
string rval = normalize_path(path);
const auto paths = tokenize_string(zeek_path(), ':');
for ( size_t i = 0; i < paths.size(); ++i )
{
string common = normalize_path(paths[i]);
if ( rval.find(common) != 0 )
continue;
// Found the containing directory.
std::string_view v(rval);
v.remove_prefix(common.size());
// Remove leading path separators.
while ( !v.empty() && v.front() == '/' )
v.remove_prefix(1);
return std::string(v);
}
return rval;
}
std::string get_exe_path(const std::string& invocation)
{
if ( invocation.empty() )
return "";
if ( invocation[0] == '/' || invocation[0] == '~' )
// Absolute path
return invocation;
if ( invocation.find('/') != std::string::npos )
{
// Relative path
char cwd[PATH_MAX];
if ( ! getcwd(cwd, sizeof(cwd)) )
{
fprintf(stderr, "failed to get current directory: %s\n",
strerror(errno));
exit(1);
}
return std::string(cwd) + "/" + invocation;
}
auto path = getenv("PATH");
if ( ! path )
return "";
return find_file(invocation, path);
}
FILE* rotate_file(const char* name, RecordVal* rotate_info)
{
// Build file names.
const int buflen = strlen(name) + 128;
auto newname_buf = std::make_unique<char[]>(buflen);
auto tmpname_buf = std::make_unique<char[]>(buflen + 4);
auto newname = newname_buf.get();
auto tmpname = tmpname_buf.get();
snprintf(newname, buflen, "%s.%d.%.06f.tmp",
name, getpid(), run_state::network_time);
newname[buflen-1] = '\0';
strcpy(tmpname, newname);
strcat(tmpname, ".tmp");
// First open the new file using a temporary name.
FILE* newf = fopen(tmpname, "w");
if ( ! newf )
{
reporter->Error("rotate_file: can't open %s: %s", tmpname, strerror(errno));
return nullptr;
}
// Then move old file to "<name>.<pid>.<timestamp>" and make sure
// it really gets created.
struct stat dummy;
if ( link(name, newname) < 0 || stat(newname, &dummy) < 0 )
{
reporter->Error("rotate_file: can't move %s to %s: %s", name, newname, strerror(errno));
fclose(newf);
unlink(newname);
unlink(tmpname);
return nullptr;
}
// Close current file, and move the tmp to its place.
if ( unlink(name) < 0 || link(tmpname, name) < 0 || unlink(tmpname) < 0 )
{
reporter->Error("rotate_file: can't move %s to %s: %s", tmpname, name, strerror(errno));
exit(1); // hard to fix, but shouldn't happen anyway...
}
// Init rotate_info.
if ( rotate_info )
{
rotate_info->Assign<StringVal>(0, name);
rotate_info->Assign<StringVal>(1, newname);
rotate_info->Assign<TimeVal>(2, run_state::network_time);
rotate_info->Assign<TimeVal>(3, run_state::network_time);
}
return newf;
}
const char* log_file_name(const char* tag)
{
const char* env = zeekenv("ZEEK_LOG_SUFFIX");
return fmt("%s.%s", tag, (env ? env : "log"));
}
double parse_rotate_base_time(const char* rotate_base_time)
{
double base = -1;
if ( rotate_base_time && rotate_base_time[0] != '\0' )
{
struct tm t;
if ( ! strptime(rotate_base_time, "%H:%M", &t) )
reporter->Error("calc_next_rotate(): can't parse rotation base time");
else
base = t.tm_min * 60 + t.tm_hour * 60 * 60;
}
return base;
}
double calc_next_rotate(double current, double interval, double base)
{
if ( ! interval )
{
reporter->Error("calc_next_rotate(): interval is zero, falling back to 24hrs");
interval = 86400;
}
// Calculate start of day.
time_t teatime = time_t(current);
struct tm t;
if ( ! localtime_r(&teatime, &t) )
{
reporter->Error("calc_next_rotate(): failure processing current time (%.6f)", current);
// fall back to the method used if no base time is given
base = -1;
}
if ( base < 0 )
// No base time given. To get nice timestamps, we round
// the time up to the next multiple of the rotation interval.
return floor(current / interval) * interval
+ interval - current;
t.tm_hour = t.tm_min = t.tm_sec = 0;
double startofday = mktime(&t);
// current < startofday + base + i * interval <= current + interval
return startofday + base +
ceil((current - startofday - base) / interval) * interval -
current;
}
void terminate_processing()
{
if ( ! run_state::terminating )
raise(SIGTERM);
}
void set_processing_status(const char* status, const char* reason)
{
if ( ! proc_status_file )
return;
// This function can be called from a signal context, so we have to
// make sure to only call reentrant functions and to restore errno
// afterwards.
int old_errno = errno;
int fd = open(proc_status_file, O_CREAT | O_WRONLY | O_TRUNC, 0700);
if ( fd < 0 )
{
char buf[256];
zeek_strerror_r(errno, buf, sizeof(buf));
if ( reporter )
reporter->Error("Failed to open process status file '%s': %s",
proc_status_file, buf);
else
fprintf(stderr, "Failed to open process status file '%s': %s\n",
proc_status_file, buf);
errno = old_errno;
return;
}
auto write_str = [](int fd, const char* s)
{
int len = strlen(s);
while ( len )
{
int n = write(fd, s, len);
if ( n < 0 && errno != EINTR && errno != EAGAIN )
// Ignore errors, as they're too difficult to
// safely report here.
break;
s += n;
len -= n;
}
};
write_str(fd, status);
write_str(fd, " [");
write_str(fd, reason);
write_str(fd, "]\n");
safe_close(fd);
errno = old_errno;
}
void set_thread_name(const char* name, pthread_t tid)
{
#ifdef HAVE_LINUX
prctl(PR_SET_NAME, name, 0, 0, 0);
#endif
#ifdef __APPLE__
pthread_setname_np(name);
#endif
#ifdef __FreeBSD__
pthread_set_name_np(tid, name);
#endif
}
} // namespace detail
TEST_CASE("util get_unescaped_string")
{
CHECK(get_unescaped_string("abcde") == "abcde");
CHECK(get_unescaped_string("\\x41BCD\\x45") == "ABCDE");
}
/**
* Takes a string, unescapes all characters that are escaped as hex codes
* (\x##) and turns them into the equivalent ascii-codes. Returns a string
* containing no escaped values
*
* @param str string to unescape
* @return A str::string without escaped characters.
*/
std::string get_unescaped_string(const std::string& arg_str)
{
const char* str = arg_str.c_str();
char* buf = new char [arg_str.length() + 1]; // it will at most have the same length as str.
char* bufpos = buf;
size_t pos = 0;
while ( pos < arg_str.length() )
{
if ( str[pos] == '\\' && str[pos+1] == 'x' &&
isxdigit(str[pos+2]) && isxdigit(str[pos+3]) )
{
*bufpos = (decode_hex(str[pos+2]) << 4) +
decode_hex(str[pos+3]);
pos += 4;
bufpos++;
}
else
*bufpos++ = str[pos++];
}
*bufpos = 0;
string outstring(buf, bufpos - buf);
delete [] buf;
return outstring;
}
TEST_CASE("util get_escaped_string")
{
SUBCASE("returned ODesc")
{
ODesc* d = get_escaped_string(nullptr, "a bcd\n", 6, false);
CHECK(strcmp(d->Description(), "a\\x20bcd\\x0a") == 0);
delete d;
}
SUBCASE("provided ODesc")
{
ODesc d2;
get_escaped_string(&d2, "ab\\e", 4, true);
CHECK(strcmp(d2.Description(), "\\x61\\x62\\\\\\x65") == 0);
}
SUBCASE("std::string versions")
{
std::string s = get_escaped_string("a b c", 5, false);
CHECK(s == "a\\x20b\\x20c");
s = get_escaped_string("d e", false);
CHECK(s == "d\\x20e");
}
}
/**
* Takes a string, escapes characters into equivalent hex codes (\x##), and
* returns a string containing all escaped values.
*
* @param d an ODesc object to store the escaped hex version of the string,
* if null one will be allocated and returned from the function.
* @param str string to escape
* @param escape_all If true, all characters are escaped. If false, only
* characters are escaped that are either whitespace or not printable in
* ASCII.
* @return A ODesc object containing a list of escaped hex values of the form
* \x##, which may be newly allocated if \a d was a null pointer. */
ODesc* get_escaped_string(ODesc* d, const char* str, size_t len,
bool escape_all)
{
if ( ! d )
d = new ODesc();
for ( size_t i = 0; i < len; ++i )
{
char c = str[i];
if ( escape_all || isspace(c) || ! isascii(c) || ! isprint(c) )
{
if ( c == '\\' )
d->AddRaw("\\\\", 2);
else
{
char hex[4] = {'\\', 'x', '0', '0' };
bytetohex(c, hex + 2);
d->AddRaw(hex, 4);
}
}
else
d->AddRaw(&c, 1);
}
return d;
}
std::string get_escaped_string(const char* str, size_t len, bool escape_all)
{
ODesc d;
return get_escaped_string(&d, str, len, escape_all)->Description();
}
char* copy_string(const char* s)
{
if ( ! s )
return nullptr;
char* c = new char[strlen(s)+1];
strcpy(c, s);
return c;
}
TEST_CASE("util streq")
{
CHECK(streq("abcd", "abcd") == true);
CHECK(streq("abcd", "efgh") == false);
}
int streq(const char* s1, const char* s2)
{
return ! strcmp(s1, s2);
}
char* skip_whitespace(char* s)
{
while ( *s == ' ' || *s == '\t' )
++s;
return s;
}
const char* skip_whitespace(const char* s)
{
while ( *s == ' ' || *s == '\t' )
++s;
return s;
}
char* skip_whitespace(char* s, char* end_of_s)
{
while ( s < end_of_s && (*s == ' ' || *s == '\t') )
++s;
return s;
}
const char* skip_whitespace(const char* s, const char* end_of_s)
{
while ( s < end_of_s && (*s == ' ' || *s == '\t') )
++s;
return s;
}
char* skip_digits(char* s)
{
while ( *s && isdigit(*s) )
++s;
return s;
}
TEST_CASE("util get_word")
{
char orig[10];
strcpy(orig, "two words");
SUBCASE("get first word")
{
char* a = (char*)orig;
char* b = get_word(a);
CHECK(strcmp(a, "words") == 0);
CHECK(strcmp(b, "two") == 0);
}
SUBCASE("get length of first word")
{
int len = strlen(orig);
int len2;
const char* b = nullptr;
get_word(len, orig, len2, b);
CHECK(len2 == 3);
}
}
char* get_word(char*& s)
{
char* w = s;
while ( *s && ! isspace(*s) )
++s;
if ( *s )
{
*s = '\0'; // terminate the word
s = skip_whitespace(s+1);
}
return w;
}
void get_word(int length, const char* s, int& pwlen, const char*& pw)
{
pw = s;
int len = 0;
while ( len < length && *s && ! isspace(*s) )
{
++s;
++len;
}
pwlen = len;
}
TEST_CASE("util to_upper")
{
char a[10];
strcpy(a, "aBcD");
to_upper(a);
CHECK(strcmp(a, "ABCD") == 0);
std::string b = "aBcD";
CHECK(to_upper(b) == "ABCD");
}
void to_upper(char* s)
{
while ( *s )
{
if ( islower(*s) )
*s = toupper(*s);
++s;
}
}
string to_upper(const std::string& s)
{
string t = s;
std::transform(t.begin(), t.end(), t.begin(), ::toupper);
return t;
}
int decode_hex(char ch)
{
if ( ch >= '0' && ch <= '9' )
return ch - '0';
if ( ch >= 'A' && ch <= 'F' )
return ch - 'A' + 10;
if ( ch >= 'a' && ch <= 'f' )
return ch - 'a' + 10;
return -1;
}
unsigned char encode_hex(int h)
{
static const char hex[16] = {
'0', '1', '2', '3', '4', '5', '6', '7', '8',
'9', 'A', 'B', 'C', 'D', 'E', 'F'
};
if ( h < 0 || h > 15 )
{
reporter->InternalWarning("illegal value for encode_hex: %d", h);
return 'X';
}
return hex[h];
}
TEST_CASE("util strpbrk_n")
{
const char* s = "abcdef";
const char* o = strpbrk_n(5, s, "gc");
CHECK(strcmp(o, "cdef") == 0);
const char* f = strpbrk_n(5, s, "xyz");
CHECK(f == nullptr);
}
// Same as strpbrk except that s is not NUL-terminated, but limited by
// len. Note that '\0' is always implicitly contained in charset.
const char* strpbrk_n(size_t len, const char* s, const char* charset)
{
for ( const char* p = s; p < s + len; ++p )
if ( strchr(charset, *p) )
return p;
return nullptr;
}
#ifndef HAVE_STRCASESTR
TEST_CASE("util strcasestr")
{
const char* s = "this is a string";
const char* out = strcasestr(s, "is");
CHECK(strcmp(out, "is a string") == 0);
const char* out2 = strcasestr(s, "IS");
CHECK(strcmp(out2, "is a string") == 0);
const char* out3 = strcasestr(s, "not there");
CHECK(strcmp(out2, s) == 0);
}
// This code is derived from software contributed to BSD by Chris Torek.
char* strcasestr(const char* s, const char* find)
{
char c = *find++;
if ( c )
{
c = tolower((unsigned char) c);
size_t len = strlen(find);
do {
char sc;
do {
sc = *s++;
if ( sc == 0 )
return 0;
} while ( char(tolower((unsigned char) sc)) != c );
} while ( strncasecmp(s, find, len) != 0 );
--s;
}
return (char*) s;
}
#endif
TEST_CASE("util atoi_n")
{
const char* dec = "12345";
int val;
CHECK(atoi_n(strlen(dec), dec, nullptr, 10, val) == 1);
CHECK(val == 12345);
const char* hex = "12AB";
CHECK(atoi_n(strlen(hex), hex, nullptr, 16, val) == 1);
CHECK(val == 0x12AB);
const char* fail = "XYZ";
CHECK(atoi_n(strlen(fail), fail, nullptr, 10, val) == 0);
}
template<class T> int atoi_n(int len, const char* s, const char** end, int base, T& result)
{
T n = 0;
int neg = 0;
if ( len > 0 && *s == '-' )
{
neg = 1;
--len; ++s;
}
int i;
for ( i = 0; i < len; ++i )
{
unsigned int d;
if ( isdigit(s[i]) )
d = s[i] - '0';
else if ( s[i] >= 'a' && s[i] < 'a' - 10 + base )
d = s[i] - 'a' + 10;
else if ( s[i] >= 'A' && s[i] < 'A' - 10 + base )
d = s[i] - 'A' + 10;
else if ( i > 0 )
break;
else
return 0;
n = n * base + d;
}
if ( neg )
result = -n;
else
result = n;
if ( end )
*end = s + i;
return 1;
}
// Instantiate the ones we need.
template int atoi_n<int>(int len, const char* s, const char** end, int base, int& result);
template int atoi_n<uint16_t>(int len, const char* s, const char** end, int base, uint16_t& result);
template int atoi_n<uint32_t>(int len, const char* s, const char** end, int base, uint32_t& result);
template int atoi_n<int64_t>(int len, const char* s, const char** end, int base, int64_t& result);
template int atoi_n<uint64_t>(int len, const char* s, const char** end, int base, uint64_t& result);
TEST_CASE("util uitoa_n")
{
int val = 12345;
char str[20];
const char* result = uitoa_n(val, str, 20, 10, "pref: ");
// TODO: i'm not sure this is the correct output. was it supposed to reverse the digits?
CHECK(strcmp(str, "pref: 54321") == 0);
}
char* uitoa_n(uint64_t value, char* str, int n, int base, const char* prefix)
{
static constexpr char dig[] = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
assert(n);
int i = 0;
uint64_t v;
char* p, *q;
char c;
if ( prefix )
{
strncpy(str, prefix, n-1);
str[n-1] = '\0';
i += strlen(prefix);
}
if ( i >= n - 1 )
return str;
v = value;
do {
str[i++] = dig[v % base];
v /= base;
} while ( v && i < n - 1 );
str[i] = '\0';
return str;
}
TEST_CASE("util strstr_n")
{
const u_char* s = reinterpret_cast<const u_char*>("this is a string");
int out = strstr_n(16, s, 3, reinterpret_cast<const u_char*>("str"));
CHECK(out == 10);
out = strstr_n(16, s, 17, reinterpret_cast<const u_char*>("is"));
CHECK(out == -1);
out = strstr_n(16, s, 2, reinterpret_cast<const u_char*>("IS"));
CHECK(out == -1);
out = strstr_n(16, s, 9, reinterpret_cast<const u_char*>("not there"));
CHECK(out == -1);
}
int strstr_n(const int big_len, const u_char* big,
const int little_len, const u_char* little)
{
if ( little_len > big_len )
return -1;
for ( int i = 0; i <= big_len - little_len; ++i )
{
if ( ! memcmp(big + i, little, little_len) )
return i;
}
return -1;
}
int fputs(int len, const char* s, FILE* fp)
{
for ( int i = 0; i < len; ++i )
if ( fputc(s[i], fp) == EOF )
return EOF;
return 0;
}
TEST_CASE("util is_printable")
{
CHECK(is_printable("abcd", 4) == true);
CHECK(is_printable("ab\0d", 4) == false);
}
bool is_printable(const char* s, int len)
{
while ( --len >= 0 )
if ( ! isprint(*s++) )
return false;
return true;
}
TEST_CASE("util strtolower")
{
const char* a = "aBcD";
CHECK(strtolower(a) == "abcd");
std::string b = "aBcD";
CHECK(strtolower(b) == "abcd");
}
std::string strtolower(const std::string& s)
{
std::string t = s;
std::transform(t.begin(), t.end(), t.begin(), ::tolower);
return t;
}
TEST_CASE("util fmt_bytes")
{
const char* a = "abcd";
const char* af = fmt_bytes(a, 4);
CHECK(strcmp(a, af) == 0);
const char* b = "abc\0abc";
const char* bf = fmt_bytes(b, 7);
CHECK(strcmp(bf, "abc\\x00abc") == 0);
const char* cf = fmt_bytes(a, 3);
CHECK(strcmp(cf, "abc") == 0);
}
const char* fmt_bytes(const char* data, int len)
{
static char buf[1024];
char* p = buf;
for ( int i = 0; i < len && p - buf < int(sizeof(buf)); ++i )
{
if ( isprint(data[i]) )
*p++ = data[i];
else
p += snprintf(p, sizeof(buf) - (p - buf),
"\\x%02x", (unsigned char) data[i]);
}
if ( p - buf < int(sizeof(buf)) )
*p = '\0';
else
buf[sizeof(buf) - 1] = '\0';
return buf;
}
const char* vfmt(const char* format, va_list al)
{
static char* buf = nullptr;
static unsigned int buf_len = 1024;
if ( ! buf )
buf = (char*) safe_malloc(buf_len);
va_list alc;
va_copy(alc, al);
int n = vsnprintf(buf, buf_len, format, al);
if ( (unsigned int) n >= buf_len )
{ // Not enough room, grow the buffer.
buf_len = n + 32;
buf = (char*) safe_realloc(buf, buf_len);
n = vsnprintf(buf, buf_len, format, alc);
if ( (unsigned int) n >= buf_len )
reporter->InternalError("confusion reformatting in fmt()");
}
va_end(alc);
return buf;
}
const char* fmt(const char* format, ...)
{
va_list al;
va_start(al, format);
auto rval = vfmt(format, al);
va_end(al);
return rval;
}
bool is_dir(const std::string& path)
{
struct stat st;
if ( stat(path.c_str(), &st) < 0 )
{
if ( errno != ENOENT )
reporter->Warning("can't stat %s: %s", path.c_str(), strerror(errno));
return false;
}
return S_ISDIR(st.st_mode);
}
bool is_file(const std::string& path)
{
struct stat st;
if ( stat(path.c_str(), &st) < 0 )
{
if ( errno != ENOENT )
reporter->Warning("can't stat %s: %s", path.c_str(), strerror(errno));
return false;
}
return S_ISREG(st.st_mode);
}
TEST_CASE("util strreplace")
{
string s = "this is not a string";
CHECK(strreplace(s, "not", "really") == "this is really a string");
CHECK(strreplace(s, "not ", "") == "this is a string");
}
string strreplace(const string& s, const string& o, const string& n)
{
string r = s;
while ( true )
{
size_t i = r.find(o);
if ( i == std::string::npos )
break;
r.replace(i, o.size(), n);
}
return r;
}
TEST_CASE("util strstrip")
{
string s = " abcd";
CHECK(strstrip(s) == "abcd");
s = "abcd ";
CHECK(strstrip(s) == "abcd");
s = " abcd ";
CHECK(strstrip(s) == "abcd");
}
std::string strstrip(std::string s)
{
auto notspace = [](unsigned char c) { return ! std::isspace(c); };
s.erase(s.begin(), std::find_if(s.begin(), s.end(), notspace));
s.erase(std::find_if(s.rbegin(), s.rend(), notspace).base(), s.end());
return s;
}
int int_list_cmp(const void* v1, const void* v2)
{
std::intptr_t i1 = *(std::intptr_t*) v1;
std::intptr_t i2 = *(std::intptr_t*) v2;
if ( i1 < i2 )
return -1;
else if ( i1 == i2 )
return 0;
else
return 1;
}
const std::string& zeek_path()
{
if ( zeek_path_value.empty() )
{
const char* path = zeekenv("ZEEKPATH");
if ( ! path )
path = DEFAULT_ZEEKPATH;
zeek_path_value = path;
}
return zeek_path_value;
}
const char* zeek_plugin_path()
{
const char* path = zeekenv("ZEEK_PLUGIN_PATH");
if ( ! path )
path = BRO_PLUGIN_INSTALL_PATH;
return path;
}
const char* zeek_plugin_activate()
{
const char* names = zeekenv("ZEEK_PLUGIN_ACTIVATE");
if ( ! names )
names = "";
return names;
}
string zeek_prefixes()
{
string rval;
for ( const auto& prefix : zeek::detail::zeek_script_prefixes )
{
if ( ! rval.empty() )
rval.append(":");
rval.append(prefix);
}
return rval;
}
FILE* open_file(const string& path, const string& mode)
{
if ( path.empty() )
return nullptr;
FILE* rval = fopen(path.c_str(), mode.c_str());
if ( ! rval )
{
char buf[256];
zeek_strerror_r(errno, buf, sizeof(buf));
reporter->Error("Failed to open file %s: %s", filename, buf);
}
return rval;
}
TEST_CASE("util path ops")
{
SUBCASE("SafeDirname")
{
SafeDirname d("/this/is/a/path", false);
CHECK(d.result == "/this/is/a");
SafeDirname d2("invalid", false);
CHECK(d2.result == ".");
SafeDirname d3("./filename", false);
CHECK(d2.result == ".");
}
SUBCASE("SafeBasename")
{
SafeBasename b("/this/is/a/path", false);
CHECK(b.result == "path");
CHECK(! b.error);
SafeBasename b2("justafile", false);
CHECK(b2.result == "justafile");
CHECK(! b2.error);
}
}
SafeDirname::SafeDirname(const char* path, bool error_aborts)
: SafePathOp()
{
DoFunc(path ? path : "", error_aborts);
}
SafeDirname::SafeDirname(const string& path, bool error_aborts)
: SafePathOp()
{
DoFunc(path, error_aborts);
}
void SafeDirname::DoFunc(const string& path, bool error_aborts)
{
char* tmp = copy_string(path.c_str());
CheckValid(dirname(tmp), tmp, error_aborts);
delete [] tmp;
}
SafeBasename::SafeBasename(const char* path, bool error_aborts)
: SafePathOp()
{
DoFunc(path ? path : "", error_aborts);
}
SafeBasename::SafeBasename(const string& path, bool error_aborts)
: SafePathOp()
{
DoFunc(path, error_aborts);
}
void SafeBasename::DoFunc(const string& path, bool error_aborts)
{
char* tmp = copy_string(path.c_str());
CheckValid(basename(tmp), tmp, error_aborts);
delete [] tmp;
}
TEST_CASE("util implode_string_vector")
{
std::vector<std::string> v = { "a", "b", "c" };
CHECK(implode_string_vector(v, ",") == "a,b,c");
CHECK(implode_string_vector(v, "") == "abc");
v.clear();
CHECK(implode_string_vector(v, ",") == "");
}
string implode_string_vector(const std::vector<std::string>& v,
const std::string& delim)
{
string rval;
for ( size_t i = 0; i < v.size(); ++i )
{
if ( i > 0 )
rval += delim;
rval += v[i];
}
return rval;
}
TEST_CASE("util tokenize_string")
{
auto v = tokenize_string("/this/is/a/path", "/", nullptr);
CHECK(v->size() == 5);
CHECK(*v == vector<string>({ "", "this", "is", "a", "path" }));
delete v;
std::vector<std::string> v2;
tokenize_string("/this/is/path/2", "/", &v2);
CHECK(v2.size() == 5);
CHECK(v2 == vector<string>({ "", "this", "is", "path", "2" }));
v2.clear();
tokenize_string("/wrong/delim", ",", &v2);
CHECK(v2.size() == 1);
auto svs = tokenize_string("one,two,three,four,", ',');
std::vector<std::string_view> expect{"one", "two", "three", "four", ""};
CHECK(svs == expect);
auto letters = tokenize_string("a--b--c--d", "--");
CHECK(*letters == vector<string>({ "a", "b", "c", "d" }));
delete letters;
}
vector<string>* tokenize_string(std::string_view input, std::string_view delim,
vector<string>* rval, int limit)
{
if ( ! rval )
rval = new vector<string>();
size_t pos = 0;
size_t n;
auto found = 0;
while ( (n = input.find(delim, pos)) != string::npos )
{
++found;
rval->emplace_back(input.substr(pos, n - pos));
pos = n + delim.size();
if ( limit && found == limit )
break;
}
rval->emplace_back(input.substr(pos));
return rval;
}
vector<std::string_view> tokenize_string(std::string_view input, const char delim) noexcept
{
vector<std::string_view> rval;
size_t pos = 0;
size_t n;
while ( (n = input.find(delim, pos)) != string::npos )
{
rval.emplace_back(input.substr(pos, n - pos));
pos = n + 1;
}
rval.emplace_back(input.substr(pos));
return rval;
}
static string find_file_in_path(const string& filename, const string& path,
const vector<string>& opt_ext)
{
if ( filename.empty() )
return string();
// If file name is an absolute path, searching within *path* is pointless.
if ( filename[0] == '/' )
{
if ( can_read(filename) )
return filename;
else
return string();
}
string abs_path = path + '/' + filename;
if ( ! opt_ext.empty() )
{
for ( const string& ext : opt_ext )
{
string with_ext = abs_path + ext;
if ( can_read(with_ext) )
return with_ext;
}
}
if ( can_read(abs_path) )
return abs_path;
return string();
}
string find_file(const string& filename, const string& path_set,
const string& opt_ext)
{
vector<string> paths;
tokenize_string(path_set, ":", &paths);
vector<string> ext;
if ( ! opt_ext.empty() )
ext.push_back(opt_ext);
for ( size_t n = 0; n < paths.size(); ++n )
{
string f = find_file_in_path(filename, paths[n], ext);
if ( ! f.empty() )
return f;
}
return string();
}
string find_script_file(const string& filename, const string& path_set)
{
vector<string> paths;
tokenize_string(path_set, ":", &paths);
vector<string> ext(detail::script_extensions.begin(), detail::script_extensions.end());
for ( size_t n = 0; n < paths.size(); ++n )
{
string f = find_file_in_path(filename, paths[n], ext);
if ( ! f.empty() )
{
detail::warn_if_legacy_script(f);
return f;
}
}
if ( ends_with(filename, ".bro") )
{
detail::warn_if_legacy_script(filename);
// We were looking for a file explicitly ending in .bro and didn't
// find it, so fall back to one ending in .zeek, if it exists.
auto fallback = string(filename.data(), filename.size() - 4) + ".zeek";
return find_script_file(fallback, path_set);
}
return string();
}
RETSIGTYPE sig_handler(int signo);
double current_time(bool real)
{
struct timeval tv;
if ( gettimeofday(&tv, 0) < 0 )
reporter->InternalError("gettimeofday failed in current_time()");
double t = double(tv.tv_sec) + double(tv.tv_usec) / 1e6;
if ( ! run_state::pseudo_realtime || real || ! iosource_mgr || ! iosource_mgr->GetPktSrc() )
return t;
// This obviously only works for a single source ...
iosource::PktSrc* src = iosource_mgr->GetPktSrc();
if ( run_state::is_processing_suspended() )
return src->CurrentPacketTimestamp();
// We don't scale with pseudo_realtime here as that would give us a
// jumping real-time.
return src->CurrentPacketTimestamp() +
(t - src->CurrentPacketWallClock());
}
struct timeval double_to_timeval(double t)
{
struct timeval tv;
double t1 = floor(t);
tv.tv_sec = int(t1);
tv.tv_usec = int((t - t1) * 1e6 + 0.5);
return tv;
}
int time_compare(struct timeval* tv_a, struct timeval* tv_b)
{
if ( tv_a->tv_sec == tv_b->tv_sec )
return tv_a->tv_usec - tv_b->tv_usec;
else
return tv_a->tv_sec - tv_b->tv_sec;
}
struct UIDEntry {
UIDEntry() : key(0, 0), needs_init(true) { }
UIDEntry(const uint64_t i) : key(i, 0), needs_init(false) { }
struct UIDKey {
UIDKey(uint64_t i, uint64_t c) : instance(i), counter(c) { }
uint64_t instance;
uint64_t counter;
} key;
bool needs_init;
};
static std::vector<UIDEntry> uid_pool;
uint64_t calculate_unique_id()
{
return calculate_unique_id(UID_POOL_DEFAULT_INTERNAL);
}
uint64_t calculate_unique_id(size_t pool)
{
uint64_t uid_instance = 0;
if( pool >= uid_pool.size() )
{
if ( pool < 10000 )
uid_pool.resize(pool + 1);
else
{
reporter->Warning("pool passed to calculate_unique_id() too large, using default");
pool = UID_POOL_DEFAULT_INTERNAL;
}
}
if ( uid_pool[pool].needs_init )
{
// This is the first time we need a UID for this pool.
if ( ! detail::have_random_seed() )
{
// If we don't need deterministic output (as
// indicated by a set seed), we calculate the
// instance ID by hashing something likely to be
// globally unique.
struct {
char hostname[120];
uint64_t pool;
struct timeval time;
pid_t pid;
int rnd;
} unique;
memset(&unique, 0, sizeof(unique)); // Make valgrind happy.
gethostname(unique.hostname, 120);
unique.hostname[sizeof(unique.hostname)-1] = '\0';
gettimeofday(&unique.time, 0);
unique.pool = (uint64_t) pool;
unique.pid = getpid();
unique.rnd = static_cast<int>(detail::random_number());
uid_instance = zeek::detail::HashKey::HashBytes(&unique, sizeof(unique));
++uid_instance; // Now it's larger than zero.
}
else
// Generate determistic UIDs for each individual pool.
uid_instance = pool;
// Our instance is unique. Huzzah.
uid_pool[pool] = UIDEntry(uid_instance);
}
assert(!uid_pool[pool].needs_init);
assert(uid_pool[pool].key.instance != 0);
++uid_pool[pool].key.counter;
return zeek::detail::HashKey::HashBytes(&(uid_pool[pool].key), sizeof(uid_pool[pool].key));
}
bool safe_write(int fd, const char* data, int len)
{
while ( len > 0 )
{
int n = write(fd, data, len);
if ( n < 0 )
{
if ( errno == EINTR )
continue;
fprintf(stderr, "safe_write error: %d\n", errno);
abort();
return false;
}
data += n;
len -= n;
}
return true;
}
bool safe_pwrite(int fd, const unsigned char* data, size_t len, size_t offset)
{
while ( len != 0 )
{
ssize_t n = pwrite(fd, data, len, offset);
if ( n < 0 )
{
if ( errno == EINTR )
continue;
fprintf(stderr, "safe_write error: %d\n", errno);
abort();
return false;
}
data += n;
offset +=n;
len -= n;
}
return true;
}
void safe_close(int fd)
{
/*
* Failure cases of close(2) are ...
* EBADF: Indicative of programming logic error that needs to be fixed, we
* should always be attempting to close a valid file descriptor.
* EINTR: Ignore signal interruptions, most implementations will actually
* reclaim the open descriptor and POSIX standard doesn't leave many
* options by declaring the state of the descriptor as "unspecified".
* Attempting to inspect actual state or re-attempt close() is not
* thread safe.
* EIO: Again the state of descriptor is "unspecified", but don't recover
* from an I/O error, safe_write() won't either.
*
* Note that we don't use the reporter here to allow use from different threads.
*/
if ( close(fd) < 0 && errno != EINTR )
{
char buf[128];
zeek_strerror_r(errno, buf, sizeof(buf));
fprintf(stderr, "safe_close error %d: %s\n", errno, buf);
abort();
}
}
void get_memory_usage(uint64_t* total, uint64_t* malloced)
{
uint64_t ret_total;
#ifdef HAVE_MALLINFO
struct mallinfo mi = mallinfo();
if ( malloced )
*malloced = mi.uordblks;
#endif
#ifdef HAVE_DARWIN
struct mach_task_basic_info t_info;
mach_msg_type_number_t t_info_count = MACH_TASK_BASIC_INFO;
if ( KERN_SUCCESS != task_info(mach_task_self(),
MACH_TASK_BASIC_INFO,
(task_info_t)&t_info,
&t_info_count) )
ret_total = 0;
else
ret_total = t_info.resident_size;
#else
struct rusage r;
getrusage(RUSAGE_SELF, &r);
// In KB.
ret_total = r.ru_maxrss * 1024;
#endif
if ( total )
*total = ret_total;
}
#ifdef malloc
#undef malloc
#undef realloc
#undef free
extern "C" {
void* malloc(size_t);
void* realloc(void*, size_t);
void free(void*);
}
static int malloc_debug = 0;
void* debug_malloc(size_t t)
{
void* v = malloc(t);
if ( malloc_debug )
printf("%.6f malloc %x %d\n", run_state::network_time, v, t);
return v;
}
void* debug_realloc(void* v, size_t t)
{
v = realloc(v, t);
if ( malloc_debug )
printf("%.6f realloc %x %d\n", run_state::network_time, v, t);
return v;
}
void debug_free(void* v)
{
if ( malloc_debug )
printf("%.6f free %x\n", run_state::network_time, v);
free(v);
}
void* operator new(size_t t)
{
void* v = malloc(t);
if ( malloc_debug )
printf("%.6f new %x %d\n", run_state::network_time, v, t);
return v;
}
void* operator new[](size_t t)
{
void* v = malloc(t);
if ( malloc_debug )
printf("%.6f new[] %x %d\n", run_state::network_time, v, t);
return v;
}
void operator delete(void* v)
{
if ( malloc_debug )
printf("%.6f delete %x\n", run_state::network_time, v);
free(v);
}
void operator delete[](void* v)
{
if ( malloc_debug )
printf("%.6f delete %x\n", run_state::network_time, v);
free(v);
}
#endif
TEST_CASE("util canonify_name")
{
CHECK(canonify_name("file name") == "FILE_NAME");
}
std::string canonify_name(const std::string& name)
{
unsigned int len = name.size();
std::string nname;
for ( unsigned int i = 0; i < len; i++ )
{
char c = isalnum(name[i]) ? name[i] : '_';
nname += toupper(c);
}
return nname;
}
static void strerror_r_helper(char* result, char* buf, size_t buflen)
{
// Seems the GNU flavor of strerror_r may return a pointer to a static
// string. So try to copy as much as possible into desired buffer.
auto len = strlen(result);
strncpy(buf, result, buflen);
if ( len >= buflen )
buf[buflen - 1] = 0;
}
static void strerror_r_helper(int result, char* buf, size_t buflen)
{ /* XSI flavor of strerror_r, no-op. */ }
void zeek_strerror_r(int zeek_errno, char* buf, size_t buflen)
{
auto res = strerror_r(zeek_errno, buf, buflen);
// GNU vs. XSI flavors make it harder to use strerror_r.
strerror_r_helper(res, buf, buflen);
}
static const std::map<const char*, const char*, CompareString> legacy_vars = {
{ "ZEEKPATH", "BROPATH" },
{ "ZEEK_PLUGIN_PATH", "BRO_PLUGIN_PATH" },
{ "ZEEK_PLUGIN_ACTIVATE", "BRO_PLUGIN_ACTIVATE" },
{ "ZEEK_PREFIXES", "BRO_PREFIXES" },
{ "ZEEK_DNS_FAKE", "BRO_DNS_FAKE" },
{ "ZEEK_SEED_FILE", "BRO_SEED_FILE" },
{ "ZEEK_LOG_SUFFIX", "BRO_LOG_SUFFIX" },
{ "ZEEK_PROFILER_FILE", "BRO_PROFILER_FILE" },
{ "ZEEK_DISABLE_ZEEKYGEN", "BRO_DISABLE_BROXYGEN" },
{ "ZEEK_DEFAULT_CONNECT_RETRY", "BRO_DEFAULT_CONNECT_RETRY" },
{ "ZEEK_BROKER_MAX_THREADS", "BRO_BROKER_MAX_THREADS" },
{ "ZEEK_DEFAULT_LISTEN_ADDRESS", "BRO_DEFAULT_LISTEN_ADDRESS" },
{ "ZEEK_DEFAULT_LISTEN_RETRY", "BRO_DEFAULT_LISTEN_RETRY" },
};
char* zeekenv(const char* name)
{
auto rval = getenv(name);
if ( rval )
return rval;
auto it = legacy_vars.find(name);
if ( it == legacy_vars.end() )
return rval;
auto val = getenv(it->second);
if ( val && starts_with(it->second, "BRO_") )
{
if ( reporter )
reporter->Warning("Using legacy environment variable %s, support will be removed in Zeek v4.1; use %s instead", it->second, name);
else
fprintf(stderr, "Using legacy environment variable %s, support will be removed in Zeek v4.1; use %s instead\n", it->second, name);
}
return val;
}
static string json_escape_byte(char c)
{
char hex[2] = {'0', '0'};
bytetohex(c, hex);
string result = "\\x";
result.append(hex, 2);
return result;
}
TEST_CASE("util json_escape_utf8")
{
CHECK(json_escape_utf8("string") == "string");
CHECK(json_escape_utf8("string\n") == "string\n");
CHECK(json_escape_utf8("string\x82") == "string\\x82");
CHECK(json_escape_utf8("\x07\xd4\xb7o") == "\\x07Էo");
// These strings are duplicated from the scripts.base.frameworks.logging.ascii-json-utf8 btest
// Valid ASCII and valid ASCII control characters
CHECK(json_escape_utf8("a") == "a");
CHECK(json_escape_utf8("\b\f\n\r\t\x00\x15") == "\b\f\n\r\t\x00\x15");
// Table 3-7 in https://www.unicode.org/versions/Unicode12.0.0/ch03.pdf describes what is
// valid and invalid for the tests below
// Valid 2 Octet Sequence
CHECK(json_escape_utf8("\xc3\xb1") == "\xc3\xb1");
// Invalid 2 Octet Sequence
CHECK(json_escape_utf8("\xc3\x28") == "\\xc3(");
CHECK(json_escape_utf8("\xc0\x81") == "\\xc0\\x81");
CHECK(json_escape_utf8("\xc1\x81") == "\\xc1\\x81");
CHECK(json_escape_utf8("\xc2\xcf") == "\\xc2\\xcf");
// Invalid Sequence Identifier
CHECK(json_escape_utf8("\xa0\xa1") == "\\xa0\\xa1");
// Valid 3 Octet Sequence
CHECK(json_escape_utf8("\xe2\x82\xa1") == "\xe2\x82\xa1");
CHECK(json_escape_utf8("\xe0\xa3\xa1") == "\xe0\xa3\xa1");
// Invalid 3 Octet Sequence (in 2nd Octet)
CHECK(json_escape_utf8("\xe0\x80\xa1") == "\\xe0\\x80\\xa1");
CHECK(json_escape_utf8("\xe2\x28\xa1") == "\\xe2(\\xa1");
CHECK(json_escape_utf8("\xed\xa0\xa1") == "\\xed\\xa0\\xa1");
// Invalid 3 Octet Sequence (in 3rd Octet)
CHECK(json_escape_utf8("\xe2\x82\x28") == "\\xe2\\x82(");
// Valid 4 Octet Sequence
CHECK(json_escape_utf8("\xf0\x90\x8c\xbc") == "\xf0\x90\x8c\xbc");
CHECK(json_escape_utf8("\xf1\x80\x8c\xbc") == "\xf1\x80\x8c\xbc");
CHECK(json_escape_utf8("\xf4\x80\x8c\xbc") == "\xf4\x80\x8c\xbc");
// Invalid 4 Octet Sequence (in 2nd Octet)
CHECK(json_escape_utf8("\xf0\x80\x8c\xbc") == "\\xf0\\x80\\x8c\\xbc");
CHECK(json_escape_utf8("\xf2\x28\x8c\xbc") == "\\xf2(\\x8c\\xbc");
CHECK(json_escape_utf8("\xf4\x90\x8c\xbc") == "\\xf4\\x90\\x8c\\xbc");
// Invalid 4 Octet Sequence (in 3rd Octet)
CHECK(json_escape_utf8("\xf0\x90\x28\xbc") == "\\xf0\\x90(\\xbc");
// Invalid 4 Octet Sequence (in 4th Octet)
CHECK(json_escape_utf8("\xf0\x28\x8c\x28") == "\\xf0(\\x8c(");
// Invalid 4 Octet Sequence (too short)
CHECK(json_escape_utf8("\xf4\x80\x8c") == "\\xf4\\x80\\x8c");
CHECK(json_escape_utf8("\xf0") == "\\xf0");
}
string json_escape_utf8(const string& val)
{
auto val_data = reinterpret_cast<const unsigned char*>(val.c_str());
auto val_size = val.length();
// Reserve at least the size of the existing string to avoid resizing the string in the best-case
// scenario where we don't have any multi-byte characters.
string result;
result.reserve(val_size);
size_t idx;
for ( idx = 0; idx < val_size; )
{
const char ch = val[idx];
// Normal ASCII characters plus a few of the control characters can be inserted directly. The
// rest of the control characters should be escaped as regular bytes.
if ( ( ch >= 32 && ch <= 127 ) ||
ch == '\b' || ch == '\f' || ch == '\n' || ch == '\r' || ch == '\t' )
{
result.push_back(ch);
++idx;
continue;
}
else if ( ch >= 0 && ch < 32 )
{
result.append(json_escape_byte(ch));
++idx;
continue;
}
// Find out how long the next character should be.
unsigned int char_size = getNumBytesForUTF8(ch);
// If it says that it's a single character or it's not an valid string UTF8 sequence, insert
// the one escaped byte into the string, step forward one, and go to the next character.
if ( char_size == 0 || idx+char_size > val_size || isLegalUTF8Sequence(val_data+idx, val_data+idx+char_size) == 0 )
{
result.append(json_escape_byte(ch));
++idx;
continue;
}
result.append(val, idx, char_size);
idx += char_size;
}
// Insert any of the remaining bytes into the string as escaped bytes
for ( ; idx < val_size; ++idx )
result.append(json_escape_byte(val[idx]));
return result;
}
} // namespace zeek::util
// Remove in v4.1.
double& network_time = zeek::run_state::network_time;
unsigned int bro_prng(unsigned int state)
{ return zeek::util::detail::prng(state); }
long int bro_random()
{ return zeek::util::detail::random_number(); }
void bro_srandom(unsigned int seed)
{ zeek::util::detail::seed_random(seed); }
zeek::ODesc* get_escaped_string(zeek::ODesc* d, const char* str, size_t len, bool escape_all)
{ return zeek::util::get_escaped_string(d, str, len, escape_all); }
std::string get_escaped_string(const char* str, size_t len, bool escape_all)
{ return zeek::util::get_escaped_string(str, len, escape_all); }
std::string get_escaped_string(const std::string& str, bool escape_all)
{ return zeek::util::get_escaped_string(str, escape_all); }
std::vector<std::string>* tokenize_string(std::string_view input,
std::string_view delim,
std::vector<std::string>* rval, int limit)
{ return zeek::util::tokenize_string(input, delim, rval, limit); }
std::vector<std::string_view> tokenize_string(std::string_view input, const char delim) noexcept
{ return zeek::util::tokenize_string(input, delim); }
char* skip_whitespace(char* s)
{ return zeek::util::skip_whitespace(s); }
const char* skip_whitespace(const char* s)
{ return zeek::util::skip_whitespace(s); }
char* skip_whitespace(char* s, char* end_of_s)
{ return zeek::util::skip_whitespace(s, end_of_s); }
const char* skip_whitespace(const char* s, const char* end_of_s)
{ return zeek::util::skip_whitespace(s, end_of_s); }
char* get_word(char*& s)
{ return zeek::util::get_word(s); }
void get_word(int length, const char* s, int& pwlen, const char*& pw)
{ zeek::util::get_word(length, s, pwlen, pw); }
void to_upper(char* s)
{ zeek::util::to_upper(s); }
std::string to_upper(const std::string& s)
{ return zeek::util::to_upper(s); }
char* uitoa_n(uint64_t value, char* str, int n, int base, const char* prefix)
{ return zeek::util::uitoa_n(value, str, n, base, prefix); }
int fputs(int len, const char* s, FILE* fp)
{ return zeek::util::fputs(len, s, fp); }
std::string implode_string_vector(const std::vector<std::string>& v,
const std::string& delim)
{ return zeek::util::implode_string_vector(v, delim); }
std::string flatten_script_name(const std::string& name,
const std::string& prefix)
{ return zeek::util::detail::flatten_script_name(name, prefix); }
std::string find_file(const std::string& filename, const std::string& path_set,
const std::string& opt_ext)
{ return zeek::util::find_file(filename, path_set, opt_ext); }
FILE* open_file(const std::string& path, const std::string& mode)
{ return zeek::util::open_file(path, mode); }
FILE* open_package(std::string& path, const std::string& mode)
{ return zeek::util::detail::open_package(path, mode); }
double current_time(bool real)
{ return zeek::util::current_time(real); }
uint64_t calculate_unique_id()
{ return zeek::util::calculate_unique_id(); }
uint64_t calculate_unique_id(const size_t pool)
{ return zeek::util::calculate_unique_id(pool); }
const array<string, 2>& script_extensions = zeek::util::detail::script_extensions;
namespace zeek {
void set_thread_name(const char* name, pthread_t tid)
{ zeek::util::detail::set_thread_name(name, tid); }
} // namespace zeek
extern "C" void out_of_memory(const char* where)
{
fprintf(stderr, "out of memory in %s.\n", where);
if ( zeek::reporter )
// Guess that might fail here if memory is really tight ...
zeek::reporter->FatalError("out of memory in %s.\n", where);
abort();
}